
1

Exam 26 October 2012, 8:00–13:00, Sparta:A–B

EDAN55 Advanced Algorithms
The exam consists of 4 large questions; each consisting of a num-

ber of smaller subquestions.

1. The exam is “open book,” so you can bring whatever material
you want, including textbooks, a dictionary, and your own course
notes.

2. You can bring an electronic calculator.

3. We try to minimise the dependencies among subquestions. In
particular, you can solve them in any order. Also, you are free to
use the result of subquestion x to answer subquestion y, even if
you didn’t answer x.

4. Scoring: Answering “I don’t know” (and nothing else) scores
1
4 of a subquestion’s points. An empty or wrong answer scores
0 points.

5. You can answer in Swedish or English.

Some tips:

1. Shorter is better.

2. An example is better than a failed attempt at explaining some-
thing in general.

3. Drawings, pseudocode, and formulas are good. “Wall of text” is
bad.

4. Admit ignorance.

5. Be tidy.

Good luck!

2

(blank)

3

Question 1, Approximation 1 2 3

4 5 6

Figure 1: An instance to Max Triparti-
tion.

The Max Tripartition problem is defined as follows. Given an undi-
rected graph G = (V, E), find a partition of V into three nonempty
sets such that the number of edges (called the size of the cut) be-
tween them is maximised. Formally, a tripartition conists of three
nonempty sets A, B, C ⊆ V called parts such that A ∩ B = A ∩ C =

B ∩ C = ∅ and A ∪ B ∪ C = V. Define the the cutsize c as

c(A, B, C) =
∣∣{ uv ∈ E : u ∈ A∧ v ∈ B∨u ∈ A∧ v ∈ C∨u ∈ B∧ v ∈ C }

∣∣ .

We want to find a tripartition of maximum cutsize.

I1a (1 pt.) Find a maximum tripartition of the graph in fig. 1.1 1 Your answer is a drawing showing
the tripartition and an integer (the
corresponding cutsize).Consider the following simple algorithm for Max Tripartition. Let

V = {v1, . . . , vn} and for vertex subset S ⊆ V let d(u, S) =
∣∣{ v ∈

S : uv ∈ E }
∣∣ denote the number of edges between u and S.

Initially, set A = {v1}, B = {v2}, and C = {v3}.
For every i with 4 ≤ i ≤ n,

if d(vi, A) ≤ d(vi, B) and d(vi, A) ≤ d(vi, C) then add vi to A,
else if d(vi, B) ≤ d(vi, A) and d(vi, B) ≤ d(vi, C) then add vi to B,
else add vi to C.

I1b (1 pt.) Run the algorithm on the graph in fig. 1. 2 2 Your answer is the resulting sets A
and B and C and the cutsize.

I1c (1 pt.) Give an example where the algorithm finds a cut of size
only 2

3 OPT. 3 3 Your answer is a concrete graph, an
optimum solution to that instance and
the solution found by the algorithm.I1d (3 pts.) Show that the algorithm is guaranteed to find a cut of

size at least 2
3 OPT of the optimum. 4 4 Your answer is a short proof. It in-

cludes a lower bound on the solution
found by the algorithm and an upper
bound on the optimum solution.

I1e (2 pts.) Prove that unless P equals NP, there cannot be an algo-
rithm for Max Tripartion whose solution is at most a factor (1 + ε)

below OPT and that runs in polynomial time for any choice of
ε > 0. You can freely use that Max Tripartition is NP-hard.5 5 You answer is a short proof.

I1f (1 pt.) Modify the algorithm and analysis so that it works for the
Max k-Cut problem, where the input consists of a graph and an
integer k, and we want to find a partition into k parts, maximising
the edges between them. (Max Tripartition is Max k-Cut for k =

3.)6 6 You answer contains an algorithm and
a brief analysis of its approximation
guarantee; the most important part is to
clearly state the approximation factor.

I1g (1 pt.) Modify the algorithm and analysis for the Max Dicut
problem, where the input consists of a directed graph, and we want
to find a partition into 2 subsets A and B so as to maximise the
total number of directed arcs from A to B. 7 7 You answer contains an algorithm and

a brief analysis of its approximation
guarantee; the most important part is to
clearly state the approximation factor

4

Question 2, Parameterized Analysis

Figure 2: Left: A set of 8 points in the
plane. (In general, the points need not
be at integer coordinates.) Right: 4 lines
covering the points.

Consider n points in the plane, such as in figure 2. We consider the
problem of covering them with k lines. Formally,

Name: Covering Points With Lines

Input: A set S of n points in the Euclidean plane (x1, y1), . . . , (xn, yn).
Integer k.

Output: A set of k lines covering the n points, or “impossible” if no
such set exists.

Figure 2 also shows a line cover with k = 4 lines.
Throughout this exercise you can assume that it takes constant

time to perform basic geometric operations such as constructing a
line trough two points, or checking if a given point lies on a given
line, or if 3 points are colinear. (“Colinear” means “you can draw a
single line through them”.)

I2a (1 pt.) Find a line cover of size k = 3 for the set of points in
fig. 2.8 8 Your answer is a drawing showing the

lines.
I2b (2 pts.) Write a simple exhaustive search (or “brute force”) algo-

rithm and give its running time in terms of n and k. Note that this
is not completely trivial—there are infintely many lines through n
points, so you can’t just say “Check all lines”.9 9 Your answer is some lines of pseu-

docode and a running time estimate
using asymptotic notation.We will write a better algorithm. The central observation is that

if S contains a set of k + 1 colinear points or more, then the optimal
solution is guaranteed to include the line through all of them.

I2c (1 pt.) Why is this true?

I2d (1 pt.) Give a counterexample that shows that this is not true for
k colinear points.

I2e (4 pts.) (Harder.) Write an algorithm based on the above ob-
servation, briefly argue for its correctness, and state its running
time. (The running time must have the form f (k) · nO(1) for some
function f .)

5

Question 3, Exponential Time Algorithms

a b c d e f g h
S1

S2

S3

S4

S5

S6

S7

S8

Figure 3: One way of visualis-
ing the set cover instance where
U = {a, b, c, d, e, f, g, h} and
S1 = {a, d, e, h}, S2 = {a, b, c},
S3 = {b, c, d}, S4 = {c, e}, S5 = {b, e},
S6 = {d, e, f}, S7 = {f}, and
S8 = {a, g, h}.

We consider the Set Cover problem.

Name: Minimum Set Cover (MSC)

Input: A set U of n elements and a collection C of n subsets
S1, . . . , Sn ⊆ U.

Output: A smallest subcollection that covers U, i.e., an index set
J ⊆ {1, . . . , n} such that ⋃

j∈J
Sj = U ,

with |J| minimal.

For instance, the graph in fig. 3 contains a (nonoptimal) set cover
of size 5 given by J = {1, 4, 5, 7, 8}. (In other words, the union of the
sets S1, S4, S5, S7, and S8 contains U.)

I3a (1 pt.) Find a minimum set cover for the instance in fig. 3.

I3b (2 pt.) Explain very briefly how MSC can be solved using ex-
haustive search (“brute force”) and state the resulting running
time, ignoring polynomial factors.

I3c (1 pt.) Explain very briefly why MSC can be solved in polyno-
mial time if every subset Si ∈ C in the collection contains at most 2

elements.

I3d (4 pts.) Construct a branching (“decrease-and-conquer”) al-
gorithm for MSC. You running time must be better than 2n. Be
precise about which branching rules you use; for example by writ-
ing the algorithm in some form of pseudocode. Briefly argue why
each rule is valid. Give a recurrence relation for the running time
of the resulting algorithm; read the solution to your recurrence
off Table 1. Hint: Use two parameters, n = |U| and m = |C|, the
number of subsets in the collection.

b

a 1 2 3 4 5

1 2 1.62 1.47 1.39 1.33

2 1.42 1.33 1.28 1.24

3 1.26 1.23 1.20

4 1.19 1.17

5 1.15

Table 1: Running times for decrease-
and-conquer recurrences of the form
f (N) ≤ f (N − a) + f (N − b) for small
a ≤ b. For example, the Fibonacci
reccurence F(N) = F(N− 1) + F(N− 2)
satisfies F(N) = O(1.62N).

6

Question 4, Randomized Algorithms 1 2 3

4 5 6

Figure 4: An instance to Vertex Cover.

We consider the well-known Vertex Cover problem.

Name: Minimum Vertex Cover

Input: A simple, undirected graph G = (V, E) with |V| = n, |E| = m.

Output: A minimum vertex cover, i.e., a vertex subset S ⊆ V such
that for every edge uv ∈ E, we have u ∈ S or v ∈ S (or both).

Consider the following randomized algorithm for this problem:

1. For every vertex v, pick a priority p(v) uniformly at random from the
interval [0, 1].

2. Let S be the set of vertices that have at least one neighbour of higher
priority. Formally,

S = V − { v : p(v) ≥ max
u∈N(v)

p(u) } ,

where N(v) denotes the neighbours of v.

I4a (1 pt.) Run the algorithm on the graph in fig. 4. Use the random
values 0.345, 0.432, 0.165, 0.814, 0.74, 0.524 for p(v1), p(v2), 10 10 Your answer is a drawing showing S.

I4b (1 pt.) Assume vertex v has degree d(v). Find Pr(v ∈ S). 11 11 Your answer is an expression and an
argument for it.

I4c (1 pt.) Consider running the algorithm on the 2-vertex graph
u v . Are the events u ∈ S and v ∈ S independent? Why or

why not? 12 12 Your answer is the word “yes” or the
word “no”, followed by an argument.

I4d (1 pt.) Find the probability that S is a vertex cover.13

13 This is not meant to be a trick ques-
tion. But if you think your answer is
weird, it’s probably correct.

I4e (2 pt.) Assume that G is d-regular (i.e., every vertex has degree
exactly d). Find the expected size of the vertex cover computed by
the algorithm. 14 14 Your answer is an expression and an

argument for it.
I4f (1 pt.) Assume G is the n-cycle. (That is, E = { {i, i + 1} : 1 ≤

i < n } ∪ {n, 1} .) Find the expected approximation ratio of the
algorithm. 15 15 Your answer is an expression and an

argument for it.
I4g (1 pt.) Assume G is the n-star. (That is, E = { {1, i} : 2 ≤ i ≤

n } .) Find the probability that the algorithm computes a minimum
vertex cover. 16 16 Your answer is an expression and an

argument for it.
I4h (1 pt.) Assume G is the n-star. Calculate the number of times

that I need to repeat the algorithm before I have constant nonzero
probability of finding a minimum vertex cover. 17 17 Your answer is an expression and an

argument for it.

	Exam 26 October 2012, 8:00–13:00, Sparta:A–B
	EDAN55 Advanced Algorithms
	Question 1, Approximation
	Question 2, Parameterized Analysis
	Question 3, Exponential Time Algorithms
	Question 4, Randomized Algorithms

