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This note extends the presentation in Kleinberg and Tardos, chapter 11

with some inapproximability results, making plausible that the tools
from computational complexity can be used to argue about approxima-
tion quality.

11.9 Inapproximability
No FPTAS for Max 3-Sat
In [KT, 11.8] we saw that there is an algorithm for the Knapsack
problem that given any ε > 0 computed a feasible solution to an
instance of size n in time O(n3ε−1) that is at most a factor (1 + ε)

below the maximum possible.
Such an algorithm is called a fully polynomial time approximation

scheme.
Such an algorithm cannot exist for Max 3-Sat, the problem consid-

ered in [KT 13.4].

Theorem 1. There is no FPTAS for for Max 3-Sat unless P = NP.

Proof. Assume there was such an FPTAS. Let φ be an instance to the
decision problem 3-Sat with m clauses. (The total size of φ is O(m).)
Set ε = 1

2m and run the FPTAS.
If φ is satisifiable, all m =: OPT clauses can be satisfied, so the

FPTAS returns a solution of size at least (1− ε)m = m − 1
2 . Since

the solution size is an integer, the solution size is equal to m, so the
FPTAS has solved the decision problem.

The running time of the FPTAS is polynomial in the input size m
and inverse polynomial in the approximation guarantee 1

2m , so the
algorithm runs in polynomial time.

It is known (but far beyond the scope of these notes) that for any
ε > 0 there is no polynomial-time algorithm for 3-Sat that satisfies
more than 7

8 + ε of the clauses, unless P = NP.1. This is a tight bound 1 Johan Håstad, Some optimal inapprox-
imability results, Journal of the ACM
(ACM) 48: 798–859, 2011.

for Johnson’s algorithm from [KT 13.4], so this particular problem is
fully understood.

TSP
We first present a simple approximation algorithm for the Traveling
Salesman Problem in metric graphs, i.e., the distance function satisfies
the triangle inequality d(u, w) ≤ d(u, v) + d(v, w) for all vertices
u, v, w.

Theorem 2. If the distances in an instance to TSP satisfy the triangle
inequality then there is a polynomial-time 2-approximation algorithm.
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Proof. 1. Find a minimum spanning tree T of the given graph G.

2. Perform a depth-first search of T from vertex 1.

3. Visit the vertices of the given graph in the depth first search order,
and finally return to 1.
To see that this works, let OPT denote the length of an optimal

TSP tour in G. Note that the total weight |T| is at most OPT, because
removing any edge from a tour makes the tour a spanning tree, and
T is the minimum spanning tree in G. Consider now the nonsimple
tour T′ given by a traversal of T. This tour has length 2|T|, because
it travels along every edge of T exactly twice. Note that the depth
first search order is a subsequence of T′, so it can be viewed as the
result of a successive application of operations that replace sequences
u, v, w by the sequence u, w. If the distances in G satisfy the triangle
inequality, none of these operations can increase the length of the
tour. In particular, the resulting tour has length at most 2OPT.

A simple modification of this algorithm reduces the approximation
factor from 2 to 3

2 ; this is a classical result.2 With even more restric- 2 N. Christofides, Worst-case analysis of
a new heuristic for the travelling salesman
problem, Technical Report 388, Graduate
School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh,
1976.

tions on the distance measure, much faster algorithms are possible: If
the require that the distance function is Euclidian then TSP can be ap-
proximated within a factor (1 + ε) in polynomial time for any given
ε > 0.3

3 Sanjeev Arora. Polynomial Time Approx-
imation Schemes for Euclidean Traveling
Salesman and other Geometric Problems.
Journal of the ACM, Vol.45, Issue 5,
pp.753–782, 1998. J.S.B. Mitchell, Guil-
lotine subdivisions approximate polygonal
subdivisions: A simple polynomial-time
approximation scheme for geometric TSP, k-
MST, and related problems, SIAM Journal
on Computing 28 (4): 1298–1309, 1999.

Is the assumption about the triangle inequality crucial? It turns
out that the answer is yes.

Theorem 3. There can be no polynomial-time 2-approximation algorithm
for TSP unless P = NP.

Proof. We reduce from Hamiltonian Cycle, which is known to be NP-
hard. Given an instance G = (V, E) to Hamiltonian Cycle, build an
instance K = (V, E′) to TSP as follows. The edge set is the complete
set E′ = { {u, v} : u ∈ V, v ∈ V }, and the distances are given by

c(e) =

1 , e ∈ E ;

|V|+ 2 , e /∈ E .

If G is a yes-instance, the shortest TSP tour has length |V|, so the
hypothetical 2-approximation algorithm would return a solution of
value at most 2|V|.

If G is a no-instance, the shortest TSP tour must include at least
one edge from E′ − E, so the optimal tour has length at least (|V|+
2) + |V| − 1 = 2|V|+ 1.

In particular, the approximation algorithm distinguishes yes- and
no-instances to the Hamiltonian Cycle problem in polynomial time.



edan55, supplementary notes for inapproximability 3

The same proof rules out much less impressive approximation
factors as well, such as ρ = 10 or ρ = 1010. To show that TSP admits
no polynomial-time ρ-approximation algorithm, the cost function in
the proof has to be set to

c(e) =

1 , e ∈ E ;

(ρ− 1)|V|+ 2 , e /∈ E .

In fact, the proof works even for nonconstant approximation fac-
tors, and even superpolynomial ones. To prove that TSP cannot be
approximated within exp(Ω(|V|1/3)), set

c(e) =

1 , e ∈ E ;

2|V||V|+ 1 , e /∈ E .

This is as far as we can push this proof, because the space needed to
store the values on the edges start to dominate the instance size.

Approximation-preserving reductions
The examples so far established approximation hardness by reducing
directly from a decision problem. However, there is a rich theory
about reducibility among approximation problems as well.

For a simple example, consider the well-known reduction from
3-Sat to Independent Set in [KT, (8.8)]. There, it was given as a reduc-
tion between two decision problems. But he same construction can
be used to reason about interdependencies with respect to approxi-
mation quality instead. These are called approximation-preserving
reductions. A completely formal treatment of these notions is beyond
the scope of these notes.

Theorem 4. If Independent Set can be approximated within a factor (1+ ε)

in polynomial time then so can Max 3-Sat.

Proof. Given an instance φ to Max 3-Sat with m clauses, follow the
reduction in [KT, (8.8)] to build an instance G of Independent Set.
The graph G contains 3m vertices. We note from the reduction that if
the maximum number of satisfiable clauses φ is OPT then the largest
independent set in G has size OPT as well. Conversely, every indpen-
dent set of size k in G corresponds to an assignment in φ that satisfies
at least k clauses.

Thus, a (1 + ε)-approximation algorithm for Independent Set
would achieve the same approximation guarantee for Max 3-Sat.

In particular, we can use this reduction and the result of Håstad
mentioned earlier to establish that no polynomial-time algorithm
can approximate the size of a maximum independent set in a graph
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better than 7
8 + ε. However, unlike the case for Max 3-Sat, this is far

from optimal. It is known (but far beyond the scope of these notes)
that Independent Set cannot be approximated in polynomial time
within a factor n1−ε for every ε > 0, unless P = NP.4 4 David Zuckerman, Linear degree

extractors and the inapproximability of max
clique and chromatic number, Proc. 38th
ACM Symp. Theory of Computing, pp.
681–690, 2006.


