Hard and easy problems

October 19, 2012

A very brief compendium of various computational problems whose complexity is considered well-known.

Some Problems in P

You can freely use that the following problems are in *P*, with the given running times.

- *Linear programming.* Given an $m \times n$ matrix A, vectors $b \in R^m$ and $c \in R^n$, find vector $x \in R^n$ minimizing $c^t x \colon x \ge 0, Ax \ge b$.¹
- *2-Sat.* Given a boolean formula in conjunctive normal form with *m* clauses, with exactly two literals per clause, does the formula have a satisfying assignment? Time O(m).²
- *Maximum Flow, Minimum Cut.* Given directed graph with edge capacities, source and terminal vertex. What is the largest flow from the source to the terminal respecting the capacities? What is the smallest capacity of a cut separating the source from the terminal? Time O(ms) where *s* is the size of the max flow [Ford–Fulkerson], or $O(nm^2)$ [Edmonds–Karp].³
- Shortest Path. Given a directed, weighted graph with no negative cycles, find a shortest path between two given vertices. Time O(nm) [Bellman–Ford] or $O(m + n \log n)$ [Dijkstra, assuming no negative weights]. ⁴
- *Maximum Matching*. Given a graph, find a matching (a subset of edges without common endvertices) of maximal size. Time $O(n^4)$ [Edmonds] or O(nm) (for bipartite graphs).⁵
- *Determinant.* Given $n \times n$ matrix A, compute det A. Running time $O(n^3)$ [Gaussian elimination].
- *Matrix product.* Given $n \times n$ matrices *A* and *B*, compute *AB*. Running time $O(n^3)$ or $O(n^{2.373})$ (Coppersmith-Winograd).
- *Prime.* Decide if a given *n*-digit number is prime. Time $O(n^{12})$ [AKS].

Some NP-hard Problems

You can freely use that the following problems are NP-hard:

Circuit-Sat. Given Boolean circuit, are there input values that make the circuit output True?

¹ *Integer* Linear Programming is NP-hard.

² 3-Sat is NP-hard. Max 2-Sat is NP-hard.

³ Maximum Cut is NP-hard.

⁴ When negative cycles are allowed, problem is equivalent to Longest Path, which is NP-hard because it reduces from Hamiltionan Path.

⁵ NP-hard in *hypergraphs*, even tripartite; reduces from 3D Matching.

- *3-Sat.* Given Boolean formula in conjunctive normal form, with exactly three literals per clause, does the formula have a satisfying assignment?
- *Max 2-Sat.* Given Boolean formula in conjunctive normal form, with exactly two literals per clause, what is the largest number of clauses that can be satisfied by an assignment?
- *Max Independent Set.* Given undirected graph *G*, what is the size of the largest subset of vertices in G that have no edges among them?
- *Max Clique.* Given undirected graph *G*, what is the size of the largest complete subgraph of *G*?
- *Min Vertex Cover.* Given undirected graph *G*, what is the size of the smallest subset of vertices that touch every edge in *G*?
- *Min Set Cover.* Given collection of subsets S_1, \ldots, S_m of a set U, what is the size of the smalles subcollection whose union is U?
- *Min Hitting Set.* Given collection of subsets S_1, \ldots, S_m of a set U, what is the size of the smallest subset of U that intersects every S_i ?
- *Vertex 3-Colouring.* Given undirected graph *G*, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?
- *Maxcut.* Given a graph *G*, what is the size (number of edges) of the largest bipartite subgraph of *G*?
- *Hamiltonian Cycle/Path.* Given a graph *G*, is there a cycle/path in *G* that visits every vertex exactly once?
- *Traveling Salesman.* Given a graph *G* with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in *G*?
- *Integer Programming.* Given $m \times n$ matrix A, vectors $b \in R^m$ and $c \in R^n$, find integer vector $x \in Z^n$ minimizing $c^t x \colon x \ge 0$, $Ax \ge b$.⁶
- *Subset Sum.* Given a set X of positive integers and integer *k*, does X have a subset whose elements sum to *k*?
- *Partition.* Given a set *X* of positive integers, can *X* be partitioned into two subsets with the same sum?
- *3D Matching.* Given *n* elements paritioned into three disjoint sets V_1 , V_2 , V_3 and family of triples (v_1, v_2, v_3) with $v_i \in V_i$, find subset of triples such that every element appears exactly once.⁷

⁶ If instead *x* ranges over *Rⁿ*, the problem is Linear Programming, in P.

^{7 &}quot;2D Matching" is bipartite matching, in P.