Lectures
Lectures 2017
Lecture | Date | What |
---|---|---|
1 | Tue 29 Aug | Randomized algorithms I |
2 | Thu 31 Aug | Randomized algorithms II |
3 | Tue 5 Sep | Approximation algorithms I |
x | Thu 7 Sep | No Lecture! |
4 | Tue 12 Sep | Approximation algorithms II |
5 | Thu 14 Sep | Exponential time algorithms |
6 | Mon 18 Sep | Randomized algorithms III |
7 | Mon 25 Sep | Parameterized algorithms |
8 | Mon 2 Oct | Algebraic algorithms |
9 | Mon 9 Oct | Complexity of hard problems |
Detailed curriculum:
- Randomized algorithms I: [KT] 13.1–2
- Randomized algorithm II: [KT] 13.3-5
- Approximation algorithms I: [KT] 11.1–3
- Approximation algorithms II: [KT] 11.4, 11.6, 11.8, 12.4
- Exponential time algorithm: [exp-notes]
- Randomized algorithms III: [MU] 7.1
- Parameterized algorithms: [KT] 10.1-4, [ftp-notes]
- Algebraic algorithms: Strassen-slides, [exp-notes, section 4, “finding triangles”], Berkeley CS 367 2:1, CS 271 1,2
- Complexity of hard problem: [ftp-notes] [inap]
[exp-notes]: Husfeldt, “Expontial Time Algorithms”
[ftp-notes]: Husfeldt, “supplementary notes for fixed parameter tractability”
[inap]: Husfeldt, “EDAN55, supplementary notes for inapproximability”
[MU] Mitzenmacher & Upfal, Probability and Computing, Cambridge.
Berkeley CS 367: http://theory.stanford.edu/~virgi/cs367/lecture2-0.pdf
Berkeley CS 271: https://people.eecs.berkeley.edu/~sinclair/cs271/n1.pdf, https://people.eecs.berkeley.edu/~sinclair/cs271/n2.pdf
Strassen-slides: http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/05DivideAndConquerII-2x2.pdf, “matrix multiplication”
Current research:
[V. Williams] Hardness of easy problems: Basing hardness on popular conjectures such as the Strong Exponential Time Hypothesis. 10th International Symposium on Parameterized and Exact Computation (IPEC 2015). http://vesta.informatik.rwth-aachen.de/opus/volltexte/lipics-complete/lipics-vol43-ipec2015-complete.pdf
[Backurs-Indyk] Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false). arxiv:1412.0348.
[Husfeldt] Computing Graph Distances Parameterized by Treewidth and Diameter. Handout.
Lectures 2016
Lecture | Date | What |
---|---|---|
1 | Tue 30 Aug | Randomized algorithms I |
2 | Thu 1 Sep | Randomized algorithms II |
3 | Tue 6 Sep | Approximation algorithms I |
4 | Thu 9 Sep | Approximation algorithms II |
5 | Tue 13 Sep | Exponential time algorithms |
6 | Thu 15 Sep | Randomized algorithms III |
7 | Mon 19 Sep | Parameterized algorithms |
8 | Mon 26 Sep | Algebraic algorithms |
9 | Mon 3 Oct | Complexity of hard problems |
10 | Mon 10 Oct | Current research |
Detailed curriculum:
- Randomized algorithms I: [KT] 13.1–2
- Randomized algorithm II: [KT] 13.3-5
- Approximation algorithms I: [KT] 11.1–3
- Approximation algorithms II: [KT] 11.4, 11.6, 11.8, 12.4
- Exponential time algorithm: [exp-notes]
- Randomized algorithms III: [MU] 7.1
- Parameterized algorithms: [KT] 10.1-4, [ftp-notes]
- Algebraic algorithms: Strassen-slides, [exp-notes, section 4, “finding triangles”], Berkeley CS 367 2:1, CS 271 1,2
- Complexity of hard problem: [ftp-notes] [inap]
- Current research: [Backurs-Indyk, V. Williams, Husfeldt]
[exp-notes]: Husfeldt, “Expontial Time Algorithms”
[ftp-notes]: Husfeldt, “supplementary notes for fixed parameter tractability”
[inap]: Husfeldt, “EDAN55, supplementary notes for inapproximability”
[MU] Mitzenmacher & Upfal, Probability and Computing, Cambridge.
Berkeley CS 367: http://theory.stanford.edu/~virgi/cs367/lecture2-0.pdf
Berkeley CS 271: https://people.eecs.berkeley.edu/~sinclair/cs271/n1.pdf, https://people.eecs.berkeley.edu/~sinclair/cs271/n2.pdf
Strassen-slides: http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/05DivideAndConquerII-2x2.pdf, “matrix multiplication”
Current research:
[V. Williams] Hardness of easy problems: Basing hardness on popular conjectures such as the Strong Exponential Time Hypothesis. 10th International Symposium on Parameterized and Exact Computation (IPEC 2015). http://vesta.informatik.rwth-aachen.de/opus/volltexte/lipics-complete/lipics-vol43-ipec2015-complete.pdf
[Backurs-Indyk] Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false). arxiv:1412.0348.
[Husfeldt] Computing Graph Distances Parameterized by Treewidth and Diameter. Handout.
Lectures 2014
Lecture | Date | What |
---|---|---|
1 | Mon 1 Sep | Randomized algorithms I |
2 | Thu 4 Sep | Randomized algorithms II |
3 | Mon 8 Sep | Approximation algorithms I |
4 | Thu 11 Sep | Approximation algorithms II |
5 | Mon 15 Sep | Exponential time algorithms |
6 | Thu 18 Sep | Randomized algorithms III |
7 | Mon 22 Sep | Parameterized algorithms |
8 | Mon 29 Sep | Complexity of hard problems |
9 | Mon 6 Oct | Streaming algorithms |
10 | Mon 13 Oct | Current research |
Detailed curriculum:
- Randomized algorithms I: [KT] 13.1–2
- Randomized algorithm II: [KT] 13.3-5
- Approximation algorithms I: [KT] 11.1–3
- Approximation algorithms II:
- Exponential time algorithm: [Hu-draft]
- Randomized algorithms III: [MU] 7.1
- Parameterized algorithms: [KT] 10.1-4, [ftp-notes]
- Own notes
- McGregor and Mutukrishnan
- Shortest two disjoint paths in polynomial time by Andreas Björklund and Thore Husfeldt. ICALP 2014. [PDF]
Curriculum for 2013 (obsolete but interesting)
- Randomized algorithms I. Randomized contention resolution. Karger’s algorithm. Coupon collecting. Guessing cards. Event, probability, random variable, and expectation. Use of indicator random variables to compute expectation. [KT] 13.1-3
- Exponential time algorithms. Brute force. Branching. Divide-and-conquer. Ryser’s algorithm for bipartite matchings. Finding triangles via matrix multiplication; application to independent set. Dynamic programming over the subsets. [HU-draft]
- Approximation algorithms I. Set cover, vertex cover [KT] 11.3-4. PTAS for Knapsack 11.8.
- Randomized algorithms II. Quicksort. Randomized max 3-satisfiability. Markov chains. Schöning’s algorithm. [KT] 13.3-5, [MU] 7.1.
- Approximation algorithms II, Algebraic algorithms. Wigderson’s 3-colouring approximation. Maximum cut. Algebraic algorithms.
- Parameterized algorithms. FPT for Vertex Cover, greedy independent set on trees, weighted independent set on trees, circular arc colouring, tree decompositions [KT] 10.1-4, Bodlaender’s algorithm, colour coding [ftp-notes] 10.6.
- Streaming algorithms. [KT] sec 13.6. [MM] Andrew McGregor and S. Mutukrishnan, Data Stream Algorithms for Vectors, sec. 1.1.1, 1.2.1, 1.3.1. [B+] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan, section 2 in Counting distinct elements in a data stream, Randomization and Approximation Techniques, 6th International Workshop, RANDOM 2002, Cambridge, MA, USA, September 13-15, 2002, Proceedings. Lecture Notes in Computer Science 2483 Springer 2002, p. 1–10.
- Complexity of hard problems. Inapproximability [inap]. W[1]-hardness [FG06]. Exponential Time Hypothesis [ETH].
- Graph colouring. Chapter Graph Colouring Algorithms (2nd draft from 20 Sep 2013).
Lecture Plan (2012)
1. Introduction to randomized algorithms.
Mon 3 Sep 2012, 8–10.
Topics
Contention Resolution. Minimum Cut.
Materials
[KT] sec. 13.1–2
Secondary reading
[E] lecture 13. [MU] chapter 1 (in particular, 1.4). [RM] 1.1, 10.2, [H] 3.5.3, [Ka], [KS]
2. Introduction to approximation algorithms.
Wed 5 Sep 2012, 15–17.
Greedy Load balancing. FPTAS for Knapsack. Expectation, linearity, indicator random variables, coupon collecting. Randomized Max 3-Sat.
Materials
[KT] sec. 11.1, 11.8, 13.3–4.
3. Advanced approximation algorithms.
Mon 10 Sep 2012, 8–10.
Weighted Vertex Cover, Set Cover, Coloring 3-colorable Graphs, Max Cut.
Lecture Slides
Materials
[KT] sec. 11.4, 12.4.
Secondary reading
Goemans Williamson's Max Cut algorithm on wikipedia (See example 3)
4. Exponential time algorithms.
Wed 12 Sep 2012, 15–17.
Decrease-and-conquer, dynamic programming, inclusion-exclusion, brute force
Materials
[Hu-draft], [Hu11]
Secondary reading
[Er] chap. 4. [Hr] chap 3.
5. Markov chains and random walks.
Mon 17 Sep 2012, 8–10.
Markov chains, Schöning’s algorithm, derandomization
Materials
[MU] Chapter 7.1, [Da+]
6. Parameterized algorithms.
Wed 19 Sep 2012, 13–15.
FPT. Vertex cover. Independent set on trees. Tree decompositions. Colour coding.
Lecture Slides
Materials
[KT] sec 10.1-4, [fpt-draft]
Secondary reading
Tree decompositions on wikipedia
7. Streaming algorithms.
Mon 24 Sep 2012, 8–10.
(lecture by Rasmus Pagh, ITU Copenhagen)
Materials
- [KT] sec 13.6
- [MM] Andrew McGregor and S. Mutukrishnan, Data Stream Algorithms for Vectors: Draft Chapter, 3 Oct. 2012. (handed out).
- Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan, Counting distinct elements in a data stream, Randomization and Approximation Techniques, 6th International Workshop, RANDOM 2002, Cambridge, MA, USA, September 13-15, 2002, Proceedings. Lecture Notes in Computer Science 2483 Springer 2002, p. 1–10.
8. Algebraic algorithms.
Mon 1 Oct 2012, 8–10.
Strassen's matrix multiplication, Freivald's fingerprinting, Tutte-Edmunds-Lovász perfect matching algorithm.
Lecture Slides
Materials
[KT] sec 5.6
[S11a,S11b]
9. Computational complexity of hard problems.
Mon 8 Oct 2012, 8–10.
Approximation complexity. W[1]-hardness. Exponential Time Hypothesis
[FG06] chapter 1.1-1.4
10. Current research, leftovers
Mon 15 Oct 2012, 8–10.
Algorithm for motif detection. Selection. Quicksort.
Materials
[KT] sec 13.5
[BKK]