
Time-Triggered Garbage Collection

Robust and Adaptive Real-Time GC Scheduling for Embedded Systems

Sven Gestegård Robertz
sven@cs.lth.se

Roger Henriksson
roger@cs.lth.se

Department of Computer Science
Lund University

Box 118, SE-221 00 Lund, Sweden

ABSTRACT
The advent of Java and similar languages on the real-time
system scene necessitates the development of efficient strate-
gies for scheduling the work of a garbage collector in a
non-intrusive way. We propose a scheduling strategy, time-
triggered garbage collection, based on assigning the collector
a deadline for when it must complete its current cycle.

We show that a time-triggered GC with fixed deadline
can have equal or better real-time performance than an
allocation-triggered GC, which is the standard approach to
real-time GC. Also, by using a deadline-based approach, the
GC scheduling and, consequently, real-time performance, is
independent of a complex and error-prone GC work metric.

Time-triggered GC allows a more high-level view on GC
scheduling; we look at the GC cycle level rather than at
the individual work increments. This makes it possible to
schedule GC as any other thread. It is also suitable for
making the GC auto-tuning by dynamically adjusting its
deadline as necessary.

We have implemented our approach in a run-time system
for Java and present experimental data to support the prac-
tical feasibility of the approach.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose
and application-based systems—Real-time and embedded
systems; D.3.4 [Programming Languages]: Processors—
Memory management, run-time environments

General Terms
Reliability, Performance

Keywords
real-time, garbage collection, scheduling, auto-tuning, em-
bedded systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’03,June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-647-1/03/0006 ...$5.00.

1. INTRODUCTION
Memory management has traditionally been handled in a

very conservative manner in embedded systems. For reasons
of safety and predictability, static memory management has
often been the technology of choice. As embedded systems
grow in complexity, dynamic memory management becomes
increasingly desired. Although more flexible than static
memory management, manually managed dynamic memory
tends to inflict new problems of predictability, robustness,
and maintainability — important properties of embedded
systems. Many of these problems can be overcome if auto-
matic memory management, or garbage collection (GC), is
utilized. With the advent of type-safe languages like Java on
the real-time systems scene [7, 10] it becomes increasingly
important to develop garbage collectors with the following
properties:

1. The garbage collector should be reliable, predictable,
non-intrusive, and capable of meeting the memory al-
location demands of our applications at all times.

2. The garbage collector should be transparent to the ap-
plication developer and not require cumbersome man-
ual tuning to be effective on any particular platform
or hardware configuration.

This paper describes how a garbage collector can be de-
signed and scheduled to meet these demands.

We propose a concurrent garbage collector, i.e. it is ex-
ecuting as a separate thread. In order to make it possible
to preempt the garbage collector thread without long la-
tencies we require that a fine-granular incremental garbage
collection algorithm is employed. Any fine-granular incre-
mental algorithm should work provided an upper bound on
the amount of GC work required to conclude a GC cycle can
be found. Our approach is thus not dependent of any partic-
ular GC algorithm. Using either knowledge of the worst-case
allocation need of the application, or by using auto-tuning
techniques, we calculate a deadline for when the GC thread
must complete its cycle and make new memory available
for allocation. Establishing a deadline for the GC thread
means that we can schedule it using standard scheduling
techniques, such as rate monotonic or earliest deadline first
scheduling. Thus, we do not have to care about the schedul-
ing of individual GC increments, but leave this to the stan-
dard thread scheduler. The thread scheduler ensures that
the garbage collector will be allocated enough CPU time

provided that the system is schedulable. The schedulability
of the system can in turn be decided by the use of stan-
dard scheduling analysis techniques, e.g. generalized rate
monotonic analysis [18]. Since the elapsed time determines
when to run the garbage collector, we call the approach time-
triggered garbage collection.

The scheduling model we propose has several benefits
compared to previous techniques. Since the collector is con-
current and quickly preemptable, the scheduler can quickly
suspend it if necessary to allow near-deadline application
threads to execute. It also means that application threads
are not delayed in connection with memory allocations as
they would be if a traditional incremental collector were
used. In such a system, a burst of allocation could easily
result in a missed deadline due to accumulated GC work.
The single scheduling requirement that the garbage collector
must finish before its deadline makes it especially suitable
for earliest deadline first (EDF) systems, for which we have
not seen any similar systems.

Paper outline
The rest of the paper is organized as follows: Section 2 de-
scribes garbage collection techniques in general as well as
presents some of our previous work which forms a basis for
the rest of the paper. Section 3 describes our novel approach
to scheduling garbage collection and how it can be applied to
hard real-time systems. Section 4 shows how the techniques
described in the preceding section can be modified in order
to achieve automatic tuning of the GC cycle length. Sec-
tion 5 reports on our initial experimental validation of the
technique. Section 6 relates the work presented here with
previous work while our future research plans are outlined
in Section 7. Section 8 summarizes the paper and presents
our conclusions.

2. BACKGROUND
A garbage collector is the part of the runtime system re-

sponsible for automatically identifying memory blocks no
longer accessible by the mutator1, or application program,
and reclaiming them for later reuse. The type of garbage
collectors we consider in this paper work by periodically
traversing the pointer graph of the mutator in order to iden-
tify objects still reachable from the mutator. The memory
occupied by objects not visited in this way is considered
garbage and is reclaimed. For example, copying garbage
collectors do this by moving, or evacuating, all objects en-
countered during the pointer graph traversal to a separate
area in memory. The contents of the previously used mem-
ory area can then be considered garbage and reused during
the next period. Other algorithms, e.g. mark-sweep algo-
rithms, perform the GC work in multiple passes. The first
pass might for example mark all reachable objects while the
next pass enters not marked blocks into a free-list.

Each GC period corresponds to a GC cycle. A new GC
cycle starts each time a complete garbage collection traver-
sal has been completed and all of the reclaimed memory
blocks have been made available for allocation (e.g. after all
reachable objects have been evacuated by a copying collector

1The application program is often denoted mutator when
discussing memory management since it changes, or mu-
tates, the pointer graph constituting the data structures of
the application.

and the previously occupied memory has been freed). Early
garbage collectors performed all GC work at the end of the
GC cycles when no memory remained for allocation, in ef-
fect halting the application until the GC cycle ended and
the reclaimed memory was made available. This is clearly
unsuitable for use in real-time systems.

Research within the field of real-time garbage collection
has been on-going since the 1970s. The earliest attempts
to implement non-intrusive garbage collectors used a tech-
nique called incremental GC. Here, the GC work required
for a GC cycle is split into a number of very small work in-
crements that can be interleaved with the execution of the
application. In order to guarantee progress of the GC, a
number of GC work increments are performed in connection
with each memory allocation request. An example of such
an algorithm is Baker’s algorithm [5]. Let Fmin denote the
minimum amount of memory available for allocation during
a GC cycle, a denote the amount of memory requested, and
Wmax denote the maximum amount of GC work (according
to a given metric2 and corresponding unit) that might be
required to complete a GC cycle. Then, the size w of the
GC work increment that must be performed in connection
with the allocation in order to guarantee that we do not run
out of memory before the GC cycle is complete is:

w ≥ Wmax · a

Fmin
(1)

Incremental GC triggered by allocation requests has at
least two major disadvantages. Firstly, even if the overhead
incurred by a single GC increment is small, a burst of alloca-
tion requests can lead to long accumulated delays. Secondly,
in order to keep the cost of each GC increment within a low
upper bound we might need a complex GC work metric in
order to decide when to end each increment. When a simple
metric is used, e.g. based on measuring the number of evac-
uated objects in a copying garbage collector, an increment
which should be short according to the metric can in reality
take a long time to perform. For example, we might have
to traverse a significant amount of pointers in order to find
just one object to evacuate. Thus increasing the performed
amount of work according to the metric by one may require
an unbounded amount of actual work. Performing GC at
the time of allocation does make it easy to prove that the
garbage collector will always keep up with the application,
but it also means that it suffers from the inherent problem of
GC work always being performed when application threads
run — thus causing interference.

The problem of GC work always being performed when
application threads run can be overcome by making the GC
work concurrent, i.e., assigning the GC work to a sepa-
rate GC thread executing in parallel with the application
threads. This is a strategy applied by a number of garbage
collectors, e.g. the Appel-Ellis-Li collector [3], but it has
not been much used in real-time settings. Typically, no pro-
vision is made for guaranteeing that the collector keeps up
with the allocation demands of the application.

2We define a GC metric as a method of measuring how
much GC work has been performed at a given point in time.
This can be approximated in several ways, for example by
counting the number of pointers that have been traversed by
the GC or by the actual time spent performing GC. A GC
metric is used in one way or another by all real-time garbage
collectors in order to decide how to schedule the GC work.

In order to satisfy the demands of hard real-time systems,
a technique must be found to schedule the work of a con-
current GC such that the application is guaranteed to meet
all of its hard deadlines. In [9] we have previously presented
such a scheduling technique. Here, we assume an embed-
ded system with a number of high-priority (typically peri-
odic) threads which have to meet hard deadlines. It can
be observed that in most embedded systems, a relatively
small number of such threads exist. Apart from these, low-
priority (periodic or background) threads are often execut-
ing with more relaxed deadline requirements. This leads us
to the following idea: Do not perform any GC work when
the high-priority threads are executing. Instead, we assign
the work motivated by high-priority allocations to a separate
GC thread which is run when no high-priority thread is ex-
ecuting. When invoked, it performs an amount of GC work
proportional to the amount of memory allocated by the high-
priority threads. Since we may temporarily get behind with
the GC work in this way, there must always be an amount
of memory reserved for the high-priority threads. Slightly
modified generalized rate monotonic analysis [18] can be
used both for calculating the amount of memory which need
to be reserved and to verify that the garbage collector thread
will always keep up with the high-priority threads. GC work
motivated by low-priority threads are performed incremen-
tally at allocation time. Since GC work is partly performed
concurrently and partly incremental in such a system we call
the approach semi-concurrent scheduling.

The effect of this scheme is that we can guarantee hard
real-time performance for threads that actually require it in
a system scheduled by a fixed-priority scheduler. Since GC
work is not performed while high-priority threads run we
can allow ourselves to use a slightly coarser GC work met-
ric without affecting real-time performance. An imperfect
metric will only prevent low-priority threads without hard
deadlines to execute as often as they would prefer.

The approach still has some drawbacks, however. One
drawback is that it is not immediately suitable for systems
with EDF schedulers. Another is that we always have to
do an amount of scheduling analysis in order to tune the
collector to any target platform.

3. TIME-TRIGGERED GC
Traditionally, incremental garbage collectors have been

scheduled based on the allocations of the application — for
each unit of allocation, a corresponding amount of garbage
collection work is performed. We propose a different ap-
proach where we use time, instead of allocation, as the trig-
ger for GC work. That is, garbage collection is scheduled
to make the GC cycle finish at a certain time, rather than
after a certain amount of allocation.

In [16] the idea of time-based GC scheduling and having a
fix GC cycle length was introduced. That made it possible
to determine how much memory will be allocated during a
cycle or to reserve a certain amount of memory for the next
cycle while still making it possible to perform schedulability
analysis and give real-time guarantees on the run-time sys-
tem in a straight-forward manner. In that work, we used a
hybrid approach, with time-triggered GC that was scheduled
using a traditional work metric in a fixed-priority scheduled
system.

This paper presents time-triggered GC scheduling more
thoroughly. We show how the GC cycle time can be cal-

culated in order to guarantee sufficient GC progress. We
discuss how the process scheduling strategy affects a time-
triggered GC scheduler and argue that time-triggered GC
makes it possible to schedule the garbage collector as any
other thread under both RMS and EDF schedulers. We also
show how time-triggered GC can be used to achieve the same
objectives under a deadline-based process scheduler as the
semi-concurrent scheduling strategy does in a fixed-priority
system.

The main areas where time-triggered garbage collection
scheduling has impact are:

Concurrent GC in deadline-based systems: In order
to schedule GC in a way that we can give real-time
guarantees while still disturbing the mutator (applica-
tion) threads as little as possible in a deadline-based
system, we want to be able to schedule the GC just as
any other thread. With time-triggered GC, this prop-
erty is inherent in the model, as the only scheduling
parameter is the deadline, and we explicitly specify the
deadline of the current garbage collection cycle.

GC work metric concerns: A traditionally scheduled in-
cremental GC relies on some kind of work metric to
determine whether it is in sync with the mutator or
needs to perform more GC work. Therefore, such a
GC relies on the accuracy of the metric and using a
poor metric may cause poor real-time performance.
With time-triggered GC, the actual scheduling is done
by the process scheduler and therefore independent of
the work metric. Thus a poor metric does not affect
the real-time properties of the run-time system. This
allows us to separate the problems of schedulability
analysis3 and run-time scheduling.

Bursty allocation: Applications often show bursty alloca-
tion patterns. This means that an allocation-triggered
GC would have a bursty execution pattern. Time-
triggered GC scheduling does not have this problem
as the run-time scheduling of GC work is independent
of mutator activity.

Unified GC scheduling: GC schedulers based on a tra-
ditional GC work metric are tightly coupled to the
actual garbage collector implementation. By using a
time-based approach to GC scheduling, it would be
possible to separate the GC scheduler from the GC al-
gorithm; using time as both the trigger and the GC
work metric provides a simple interface between the
GC and the scheduler. Also, as time is easy to mea-
sure directly, time-based GC scheduling fits very well
into a feedback scheduling framework.

3.1 GC cycle time calculation
With time-triggered garbage collection, there is no di-

rect connection between the GC scheduling and the ap-
plication other than the allocation rate. The GC cycle
time is the only parameter that controls the progress of the
garbage collector. Thus, a time-triggered GC needs cor-
rect (or conservative) cycle time estimates in order to make
real-time guarantees as each garbage collection cycle must
be completed before the application runs out of memory.

3That, of course, still requires worst-case execution time
analysis.

This section shows how an upper bound on the GC cycle
time, which guarantees that the application never runs out
of memory, can be calculated.

The following symbols will be used in this section: pe-
riod time (T), frequency (f), heapsize (H), total amount of
allocated memory on the heap (A), amount of memory allo-
cated during a cycle (a), free memory (F), live objects (L),
floating garbage4 (G), amount of memory reclaimed during
a cycle (r), the set of threads (P), and the allocation per
period of thread j (aj).

Lemma 1. For a set of processes, P, with frequencies fj,
allocation requirements of aj bytes per period and F bytes
of memory available at the start of the GC cycle, an upper
bound on the GC cycle time that guarantees that the cycle
will be completed before the available memory is exhausted
is

TGC ≤ F −Pj∈PajP
j∈Pfj · aj

(2)

Proof A GC cycle must finish before the available mem-
ory at the start of the cycle has been allocated. That is,

a =
X
j∈P

�
TGC

Tj

�
· aj ≤ F (3)

where the ceiling is to cover the worst case schedule. A
stronger condition is

X
j∈P

�
TGC

Tj
+ 1

�
· aj ≤ F (4)

Substituting fj = 1
Tj

we get

X
j∈P

(TGC · fj + 1) · aj =

X
j∈P

TGC · fj · aj +
X
j∈P

aj =

TGC

X
j∈P

fj · aj +
X
j∈P

aj ≤ F (5)

) TGC ≤ F −Pj∈PajP
j∈Pfj · aj

The amount of free memory needs some further discus-
sion. Since any incremental garbage collector suffers from
the problem of floating garbage, we must take that into ac-
count when calculating the worst case amount of memory
available at the start of a GC cycle (Fmin). Put differently,
we may not be able to use all the free memory in the cur-
rent cycle if we want to be sure that there is also enough
memory for the next cycle as the amount of memory that is
reclaimed by the garbage collector can vary from one cycle
to another due to floating garbage.

We start by examining floating garbage.

4Floating garbage is objects that are no longer reachable by
the mutator but are still believed to be live by the collector.
For example, objects that die shortly after they have been
marked will not be reclaimed until in the next GC cycle.

Lemma 2. Let an be the amount of memory that is allo-
cated during the nth GC cycle and Lmax be the maximum
amount of live memory. Then, the sum of live memory and
floating garbage at the start of cycle n + 1 satisfies the in-
equality

Ln+1 + Gn+1 ≤ Lmax + an (6)

Proof Let δn be the net change in live memory during
cycle n:

Ln+1 = Ln + δn (7)

Let un be the amount of memory that becomes unreachable
during cycle n. Then,

δn = an − un =⇒ un = an − δn (8)

which gives

Gn+1 ≤ un = an − δn

Ln+1 = Ln + δn

�
=⇒ Ln+1 + Gn+1 ≤ Ln + an

(9)

But ∀n, Ln ≤ Lmax, which concludes the proof.

In order to make hard guarantees, we must determine the
maximum amount of memory that can be allocated during a
GC cycle without risking that the system runs out of mem-
ory due to floating garbage.

Lemma 3. Let H be the heapsize and Lmax be the maxi-
mum amount of live memory. Then, the maximum amount
of memory that can be safely allocated during a GC cycle is

amax =
H − Lmax

2
(10)

Proof The heap contains allocated and free memory

H = A + F = L + G + F (11)

and therefore,

F = H − (L + G) (12)

Applying Lemma 2 to (12) gives that, at the start of any
GC cycle,

F ≥ H − (Lmax + amax) = Fmin (13)

Thus, the worst case occurs when L = Lmax, and the re-
mainder of the proof makes this assumption. Then the sys-
tem has to be in steady state5 and the maximum amount of
floating garbage during a worst case cycle is

GWC
max = amax (14)

An upper bound on the amount of memory allocated during
a GC cycle must, of course, not be greater than the min-
imum amount of available memory so the trivial bound is
amax ≤ Fmin. We will now prove the equality. Objects that
are floating garbage at the start of cycle n will have been
reclaimed by the start of cycle n + 1, which means that

F n+1 ≥ Gn (15)

5This means that for each allocated object, another object
becomes unreachable.

The amount of available memory at the start of cycle n + 1
is

Fn+1 = F n − an + rn (16)

Cycle n is a worst case cycle (F n = Fmin) iff the amount of
floating garbage at the start of the cycle is at the maximum
(Gn = GWC

max). In the worst case, rn = Gn, which corre-
sponds to equality in (15). Applying this to Equation (16)
gives

F n+1 = Fmin − an + GWC
max = GW C

max =⇒ an = Fmin

(17)

Consequently, we can allocate all available memory during a
worst case cycle while still guaranteeing that the amount of
available memory at the start the following cycle is no less
than Fmin, i.e.,

amax = Fmin (18)

Finally, equations (13) and (18) give

amax =
H − Lmax

2

Because the amount of floating garbage may vary, depend-
ing on how the execution of the application and the garbage
collector are interleaved, the amount of memory reclaimed
will also vary from cycle to cycle. Therefore, we cannot al-
ways allocate all of the available memory if we want to guar-
antee that the system never will run out of memory. Con-
sequently, the length of the garbage collection cycles must
be calculated based on the worst case amount of available
memory.

Theorem 1. An upper bound on the GC cycle time that
guarantees that we always will have enough memory avail-
able for allocation is

TGC ≤
(H−Lmax)

2
−Pj∈PajP

j∈Pfj · aj
(19)

Proof The theorem follows from lemmas 1 and 3.

For an example of how varying amounts of floating garbage
affects the amount of available memory, see Figure 1. Note
that, somewhat counter-intuitively, the dangerous case is
when there is less than the worst case amount of floating
garbage, as this could lead to a situation where we allocate
too much memory if care was not taken to avoid that.

It may seem that the limit on the amount that may be
allocated during a garbage collection cycle may cause unnec-
essarily low memory utilization but this isn’t the case; the
limit on the amount of memory that may be allocated dur-
ing a GC cycle, according to Equation (10), only affects the
cycle time calculations. It is true that in the best case (when
we have no floating garbage) at most half of the available
memory is allocated during a cycle, but this has nothing to
do with the total memory utilization. If the GC cycle time
is reduced, the amount of allocation per cycle — and, conse-
quently, the maximum amount of floating garbage — is also
reduced. This means that if both high allocation rates and
high memory utilization is required, the GC cycles will be
short, but as long as Lmax < H and there is enough CPU

Assume that at the start of the nth GC cycle there is
Lmax = 50% live memory (black), G = 25 % floating
garbage (dark gray) and Fmin = 25 % (white) available
memory:

When the free memory has been allocated, the floating
garbage and some of the objects that died during this
cycle has been marked as garbage that will be reclaimed
in this cycle (light gray) and some of the old objects has
become floating:

The GC cycle is concluded (i.e., the objects that are not
to be reclaimed are compacted and a continuous area of
available memory is formed): Note that during this cycle,
we reclaimed more than Fmin:

Therefore, we cannot use all the free memory during cycle
n + 1 as that might result in less than Fmin available
memory in cycle n + 2. The solution is to reserve a part
of the memory (striped) so that we only allocate amax =
Fmin.

at the end of cycle n + 1:

the cycle is finished and the reserved memory is made
available:

This cycle, we reclaimed less than Fmin, but the amount
of reclaimed memory + the reserved memory = Fmin.
Thus, the amount of available memory at the start of
cycle n +2 is Fmin and our worst case assumptions hold.

Figure 1: Example of a how the amount of floating
garbage may vary between cycles and how our reser-
vation strategy guarantees that there always will be
at least Fmin available memory at the start of a cycle.

time to accommodate both application and GC, the system
is guaranteed to work.6

3.2 Scheduling
This section discusses how time-triggered GC scheduling

can be implemented in fixed priority and deadline based
systems, respectively and how the general process schedul-
ing policy affects the scheduling of garbage collection. It
also relates time-triggered GC scheduling to semi-concurrent
scheduling and handling of background tasks.

Based on the cycle time calculations presented in Sec-
tion 3.1, we can use standard scheduling techniques (e.g.,
RMS or EDF) and schedule the GC as any other thread
since the scheduling of individual GC increments is implicit;
the only real requirement is that the GC cycle has ended
and enough memory is made available before the application
runs out of memory. As the deadline is the sole scheduling
parameter, this means that the GC work calculations are
only needed for schedulability analysis and not for ensuring

6Note that the problems associated with floating garbage
are intrinsic to incremental GC and not a consequence of
our strategy.

GC progress at run-time. Hence an error in the GC metric
alone cannot cause the GC to run too slowly, which gives a
more robust system. If the system is schedulable, the GC
will finish on time, without causing any other thread to miss
its deadline.

In systems where hard real-time tasks co-exist with back-
ground tasks without strict timing requirements, we want
hard guarantees that the GC always will make memory
available to the real-time tasks on time. We also want
to avoid unnecessary disturbance of the background tasks.
Conversely, we want to protect the GC from the background
tasks in the sense that allocations performed by a back-
ground task must not cause the GC to miss its deadline
or fail to make enough memory available for the real-time
tasks. These problems are addressed by the semi-concurrent
GC scheduling strategy.

When implementing a semi-concurrent garbage collector
under the aforementioned scheduling policies, the main dif-
ference is that in a fixed priority system we must explicitly
schedule each GC increment in order to spread the garbage
collection overhead evenly across the cycle. That is, each
time the garbage collector is invoked, it has to determine
how long that increment should be (according to the met-
ric used). When enough work has been performed, the GC
must suspend itself until the next increment is triggered.
Otherwise, the garbage collector thread might starve low
priority7 threads for long periods of time. In an EDF sys-
tem, the scheduling of GC increments can be left to the
process scheduler, as there are no fixed priorities and, thus,
no risk of starvation.

A consequence of the requirement that the garbage collec-
tor must determine the length of each increment is that the
actual scheduling will depend on both the cycle time and the
work metric. In an EDF system, the only scheduling param-
eter is the deadline, and the garbage collection thread can
be scheduled like any other thread. Therefore the run-time
scheduling is independent of the GC work metric, worst-
case memory usage, and execution time analysis. This is a
big advantage in practice, as worst-case estimates are often
based on measurements rather than exact analysis.

3.2.1 Fixed priority scheduling
In a fixed priority system, a higher priority thread always

get precedence over lower priority threads. Therefore, a
semi-concurrent GC must spread the GC work evenly across
the whole cycle and not do more work in each increment than
absolutely necessary. Otherwise, the low priority threads
could be subjected to unnecessary starvation and excessive
jitter. Thus, some GC work metric has to be used to deter-
mine if the garbage collector has made enough progress.

Naturally, for a given GC cycle time, TGC , all the garbage
collection work required to complete a GC cycle has to be
performed before TGC seconds have elapsed. In order to en-
sure sufficient GC progress, the GC scheduler should main-
tain the invariant

P
w ≥ Wmax · t − tcycle start

TGC
(20)

7Here, we use the word “priority” in a sense that corre-
sponds better to the RTSJ notion of “importance” than the
RMS sense of the word “priority”. In the semi-concurrent
model, the low priority threads are background tasks with-
out firm deadlines.

That is, the fraction of GC work performed should be greater
than or equal to the fraction of the cycle time elapsed. This
corresponds to Equation (1) with time instead of allocations
as the trigger, on the right hand side. Scheduling garbage
collection according to this invariant ensures that progress
will be made at a well-defined rate regardless of if, and when,
the application allocates memory.

3.2.2 EDF scheduling
The first property of semi-concurrent scheduling, non-

intrusiveness, is inherent in the EDF model; if the requested
CPU utilization is less than 100%, all deadlines will be met.
Furthermore, as the period times of real-time threads typ-
ically are much shorter than the GC cycle time, the GC is
unlikely to interrupt the real-time threads. In systems where
low jitter is important, statically scheduled I/O can be used
as in e.g. the control server model [8].

The second property of the semi-concurrent model, isolat-
ing the high priority threads from the low priority ones, and
thus not having to do worst-case analysis on the low-priority
threads, can in an EDF system be achieved by using Con-
stant Bandwidth Servers (CBS) [1] with the addition of an
importance attribute for the servers. Then, the high-priority
and low-priority threads in the semi-concurrent model would
correspond to high-priority and low-priority servers.

In such a model, the threads running on high-priority
servers would just do allocations without any GC penalty,
while the threads on the low-priority servers would do in-
cremental GC at allocation time. When incremental GC is
performed due to a low-priority allocation, both the deadline
and execution time of the GC thread should be decreased as
the memory allocation has reduced the amount of available
memory and the incremental GC work has brought the GC
cycle closer to its finish. Moving deadlines to an earlier point
in time is, however, not allowed in an EDF system in the
general case as this causes a temporary increase in the re-
quested CPU utilization and might lead to missed deadlines.
This could be solved by temporarily reducing the bandwidth
of the low-priority server with a corresponding amount or, if
the remaining CPU time in the low-priority server’s budget
is too low, delaying the allocation that would cause incre-
mental GC work until the next CBS period. In practice,
however, this is not a problem as the GC cycles typically
are much longer than the period times of the threads and
therefore the deadlines and/or server bandwidths can be ad-
justed at the thread release times when it is safe to do so.

Another way to make sure that the memory management
overhead may never cause the critical parts of the appli-
cation to miss their deadlines was presented in [16]. By
introducing priorities for memory allocations, the run-time
system is able to automatically prioritize memory alloca-
tion requests (i.e., deny non-critical allocations) in order to
guarantee that the system will not run out of memory or
become unschedulable because of a too high GC workload.
In essence, this can be viewed as dividing the application
into critical aspects, which are guaranteed to be executed
on time and non-critical aspects, which are only executed if
it is safe to do so.

4. AUTO-TUNING GC SCHEDULING
As we have seen, the GC cycle length can be calculated

at design-time based on the allocation requirements of the
high priority threads. If this is not practical for some reason

(for instance that the application’s execution pattern varies
greatly depending on operating mode or that it is to be
run on many different platforms and we do not want to do
analysis for all possible target platforms or even know which
platform it will run on) or if we want the GC scheduler to
be completely transparent to the developer we have to use
some adaptive technique to measure and control the GC
scheduling parameters on-line.

A very simple model is to measure or estimate the allo-
cation rate (ȧ) of the application. We can then calculate at
which time all the currently remaining free memory (F) will
have been allocated — the GC cycle’s deadline.

Tremaining this cycle =
F

ȧ
(21)

which, Telapsed seconds into the GC cycle, gives the cycle
time

TGC =
F

ȧ
+ Telapsed (22)

This simple model for on-line cycle time calculation per-
forms well if roughly the same amount of memory is re-
claimed in each GC cycle but it suffers from the same prob-
lems with floating garbage as described in Section 3.1, al-
though the symptoms are a bit different. In the previous
case, the system might run out of memory if the GC cycle
time was too long. In an adaptive system, the cycle time will
be tuned to ensure that this does not happen so the problem
in this case is that the system might become unschedulable.

One example of this that we encountered in our experi-
ments with this simple model is that if there, for some rea-
son, is much floating garbage during one cycle, little memory
will be freed during that cycle. Then, the following cycle will
have to be very short and we get a memory trace like the
one shown in Figure 2. This could cause real-time problems
since the required CPU utilization of the GC will be much
higher during the short cycles than during the long ones, as
the amount of GC work is roughly the same in all cycles8,
but it has to be done in a much shorter time in the short
cycles.

F
re

e
m

em
o
ry

Time

Figure 2: Example of a very short GC cycle caused
by large amounts of floating garbage.

In order to handle variations in the amount of floating
garbage, we need to reserve memory so that the allocations
during the next cycle can be satisfied even if no objects

8Of course, this depends on the garbage collection algorithm
as well as on implementation details. However, the execu-
tion time of a garbage collector typically depends on both
the amount of retained and reclaimed memory. Even al-
gorithms where there is no explicit free operation, like for
instance a copying collector, have a fraction of the cost that
is proportional to the amount of reclaimed memory if, e.g.,
the initialization of memory is taken into account.

are reclaimed during this cycle. Let ˆ̇a be the estimated
allocation rate and ȧnext be the allocation rate for the next
cycle. Then TGC · ȧnext will be allocated during the next
GC cycle and we get

T̂GC =
F − T̂GC · ȧnext

ˆ̇a
+ Telapsed (23)

=⇒ T̂GC =
F + ˆ̇a · Telapsed

ˆ̇a + ȧnext
(24)

If we assume that the mutator will continue at the measured
allocation rate, i.e., ȧnext = ˆ̇a, we get

T̂GC =
1

2

�
F
ˆ̇a

+ Telapsed

�
(25)

If the allocation rate is constant, this means that we should
reserve half of the available memory at the start of a cycle
for the allocations during the next GC cycle. Doing so guar-
antees9 that we can handle the worst case, i.e., when all the
objects that died during a cycle became floating garbage and
will not be reclaimed until at the end of the next GC cycle.

Only allocating at most half of the available memory each
GC cycle is the price we pay for incrementality. Note that
this only affects the length of the GC cycles and not the
overall memory utilization. If, for instance, the amount of
live memory is 80% of the heap, the GC cycle length would
be set so that 10% of the total memory is reserved for the
next cycle.

It should also be noted that a copying collector [5] by de-
sign has the property of reserving a part of the available
memory for the next cycle so this is only a concern with
mark-sweep type collectors and it is not a problem to imple-
ment a mark-sweep collector so that it only makes memory
available at the GC cycle boundaries. There also exist mark-
sweep type algorithms with more than one allocation area
that, by design, have this behaviour (e.g., Bengtsson’s [6]).

5. EXPERIMENTAL VERIFICATION
A simple control system was implemented to test the pro-

posed technique for auto-tuning GC scheduling. For the
experiments, we used a lab process with a ball on a beam.
The angular velocity of the beam is controlled in order to
roll the ball to a given position on the beam, see Figure 3.

The control was performed by a Java application consist-
ing of three threads: a user interface (low priority), a refer-
ence generator (high priority) and a controller (high prior-
ity). The UI thread sends setpoints to the reference genera-
tor which does rate limiting and sends reference values to the
controller thread. In addition to doing the actual control,
the controller thread sends log data back to the user inter-
face thread. The reference generator and controller were run
at between 20 and 100 Hz. The UI was run at 0.5 Hz.

The experiments were performed using compiled Java [15]
on a 350 MHz PowerPC running the STORK [2] real-time
kernel. The garbage collector used is an incremental mark-
compact collector and the traces were collected by instru-
menting the memory manager and the RT-kernel with log-
ging calls at memory operations and context switches. Log-
ging was done to a dedicated memory area and dumped via
a serial line after the experiment.

9Given, of course, that the total amount of available memory
is sufficient.

Figure 3: The ball-on-beam process. The beam can
be rotated to roll the ball to the desired position.

Figure 4 shows a memory trace of the system with the
auto-tuner enabled. The fast threads run at 100 Hz. Fig-
ure 5 shows how the auto-tuner reacts to changes in alloca-
tion rate. At t = 10 s, the frequency of the high priority
threads is increased from 20 to 100 Hz and at t = 20 s the
frequency is lowered to 20 Hz. The GC is scheduled so that
it will work even if all the dead objects in one cycle would
be floating garbage. I.e., we reserve a part of the available
memory for the next GC cycle as described in Section 4.

As memory allocations typically are bursty, the measure-
ment of the allocation rate is filtered in order to keep the
deadline estimates more stable and reduce the update fre-
quency for the scheduling parameters. Care must be taken
not to underestimate the allocation rate, as this might lead
to an out-of-memory situation, so we must react quickly to
actual changes in allocation rate while avoiding chatter due
to bursty allocations. The rise time in the allocation rate
plots are due to such filtering.

0 5 10 15 20 25 30
0

0.5

1

1.5

2
x 10

4

A
llo

ca
tio

n
ra

te

Time

0 5 10 15 20 25 30
0

5

10

x 10
4

F
re

e
m

em
or

y

0 5 10 15 20 25 30
0

2000

4000

6000

G
C

 c
yc

le
 ti

m
e

Figure 4: Memory trace of the system with adap-
tive GC cycle length. The topmost plot shows the
amount of available memory (in bytes), the middle
plot shows the estimated GC cycle length (in mil-
liseconds) and the bottom plot shows the LP filtered
allocation rate measurement (in bytes/second). The
time is given in seconds.

0 5 10 15 20 25 30
0

0.5

1

1.5

2
x 10

4

A
llo

ca
tio

n
ra

te

Time

0 5 10 15 20 25 30
0

5

10

x 10
4

F
re

e
m

em
or

y

0 5 10 15 20 25 30
0

1

2

3

4
x 10

4

G
C

 c
yc

le
 ti

m
e

Figure 5: How the GC scheduler reacts to changes
in allocation rate; At t = 10 s, the frequency of the
high priority threads is increased from 20 to 100 Hz
and at t = 20 s the frequency is lowered to 20 Hz.

6. RELATED WORK

Incremental and concurrent GC
The fields of fine-grained incremental and concurrent GC
algorithms are well explored. Examples of an incremental
collector is Baker’s copying algorithm [5] which we described
in Section 2, but several other exist. The problem with
algorithms of this type is that they are typically scheduled
in connection with allocation requests. That means that
GC work will always be performed when application threads
run. Even if each increment is made small and predictable in
length, it still means intrusion. This is especially noticeable
when several allocation requests are clustered together.

An alternative approach is to run the GC as a separate
thread. This approach was for example used by Nettles and
O’Toole [14] in their replicating GC. Here, most of the mem-
ory management overhead can be avoided when executing
the mutator (application) threads, but we have not seen any
provision for guaranteeing that the collector always keeps up
with the mutator threads.

A general issue when using concurrent GC is that it must
be possible to quickly interrupt the GC thread. This is
important in order to guarantee short latency for the appli-
cation threads. Therefore, we must ensure that each atomic
operation of the GC is very short and that the heap is in a
consistent state after each atomic operation. In [9] it is illus-
trated how a variant of Baker’s algorithm can be modified
in order to produce a concurrent GC with minimal atomic
work increments (order of microseconds).

For a more thorough presentation of the area we refer
to [11] and the publications referenced therein.

Time-based GC scheduling
The problems of allocation-triggered GC scheduling in real-
time systems, particularly the uneven GC overhead and con-
sequentially, mutator CPU utilization, caused by variances
in allocation rate, are addressed by David Bacon et al in a
recent paper [4]. To achieve even and predictable mutator
utilization, time-based scheduling, where the collector and
mutator are interleaved using fixed time quanta, is proposed.

The work of Bacon et al is largely motivated by the same
concerns and has much in common with the work presented
in this paper. One fundamental feature of time-based GC
scheduling common to both approaches is that they turn
garbage collection into a periodic activity instead of a spo-
radic one as allocation-triggered GC does.

The main difference between the model proposed by Ba-
con et al and the time-triggered GC scheduling model pre-
sented in this paper lies in the level at which GC schedul-
ing is considered; the period time of their model is at the
quantum level while the period of the time-triggered GC is
the GC cycle. Also, the fixed time quanta of [4] explicitly
state how the GC work should be scheduled while the time-
triggered model specifies a deadline and leaves the actual
scheduling decisions to the underlying process scheduler.

The behaviour of the approach of Bacon et al is, at a large
time scale, similar to that of a semi-concurrent GC or a time-
triggered GC in that the CPU utilization of the mutator is
predictable, consistent, and independent of bursty alloca-
tion rate of the mutator.10 However, at a more fine-grained
level, the garbage collector may still preempt the mutator
as the GC is scheduled to run for one GC quantum after
each mutator quantum. Here, the design goals behind their
collector differ from the ones driving the work in this paper;
they focus on low overhead and consistent utilization while
non-intrusiveness and low GC induced latency and jitter are
the key issues behind this paper.

Time-based GC was also proposed in [19] as a means to
spread GC work more evenly and minimize the number of
GC invocations and heap usage when the application’s allo-
cation pattern is bursty. The focus on that work is on mea-
suring object lifetimes but they note that similar concerns
are relevant in run-time systems for server applications.

Previous object life span studies have used an allocation-
triggered approach, calling the GC every n kB of allocation,
in order to measure object lifetimes. Qian et al supplement
this with a time based approach by periodically performing
a GC cycle, e.g., every 100 ms. No effort is made to ensure
that the collector keeps up with the mutator since this is
not a problem in their application; it is sufficient that the
GC cycle time can be manually tuned to suit a particular
application.

They also hint that the time-triggered approach can be
applicable to embedded systems by using the timing infor-
mation of the threads to run the GC when the number of
live objects is small. The focus is still on efficiency and
minimizing the number of GC invocations and they do not
address any real-time issues.

7. FUTURE WORK
The auto-tuning presented in this paper uses a black-box

approach; we do not require any knowledge of the internals
of the garbage collector or mutator — the only quantity that
is measured is the amount of available memory. This has the
advantage that it is very easy to plug this kind of auto-tuner
into an existing system, as very little communication with
the memory subsystem, and none at all with the mutator,

10The interleaving of GC and background processes in the
semi-concurrent model may be almost identical also on a
fine-grained level; quantization effects due to atomic GC
primitives make a GC scheduled according to Equation 20
behave as a time-based GC with small GC and mutator
quanta.

is required. The drawback is of course that we cannot react
to changes in allocation rate until after they actually occur.

A more sophisticated model would take e.g., information
that some threads are periodic (i.e., the knowledge that each
thread does a certain amount of allocation during each invo-
cation and then is idle until its next invocation) into account.
That would make it possible to measure and estimate how
much each thread allocates during each invocation which
might even further mitigate the problems with apparently
bursty and random allocation patterns. It would also allow
us to use information about the execution patterns of the
threads, for instance for feed-forward of changed sampling
periods etc.

In this paper, we have shown how to find one of the
GC’s scheduling parameters, the deadline. The other im-
portant parameter, the execution time, could also be esti-
mated by using automatic system identification techniques
as discussed in [17]. This would make it feasible to fully
incorporate the GC scheduling into a feedback scheduling
system, where both the deadline and execution time is used
since the scheduler does on-line schedulability analysis and
dynamically changes the period times of the threads in order
to keep the system’s total CPU utilization below a certain
level. Another interesting approach is to use Equation (5) or
(19) to find safe allocation rates and, hence, period times,
for each thread by finding a suitable set {aj} given TGC

and the CPU bandwidth available for GC and background
threads.

The experiments presented in this paper are of a prelim-
inary nature and the performance requirements of the ap-
plication were modest. We currently work on implement-
ing and evaluating the real-time performance of our time-
triggered GC prototype under more challenging conditions
in a high-performance robotics application.

Another area where the presented techniques may have
impact are temporally predictable distributed systems. In
a distributed system, the nodes can be seen as components
and the whole system as being constructed by composition
of node components. When designing such systems, one
important factor is the ease of composing systems out of
components, composability . The time-triggered architec-
ture [12, 13] addresses the composability problem and im-
portant features of that model are time-triggered communi-
cation and temporal firewalls — interfaces between the com-
ponents specifying what data should be available or com-
municated at what time. Such interfaces makes it possible
to guarantee that if the individual components conform to
their specified interfaces, the resulting system will work as
intended. They also solve problems of safety critical sys-
tems like, for instance, maintaining a global timebase and
determining data validity.

In order to utilize automatic memory management in such
temporally predictable components, it seems it would be
helpful, if not necessary, to be able to guarantee that also
the memory manager is temporally predictable. As time-
triggered GC scheduling has the property that it has an
explicit deadline and therefore makes it possible to guaran-
tee that a GC cycle finishes and makes a certain amount of
memory available at a certain time, it would be interesting
to study the impact of time-triggered GC in this field of
application.

8. CONCLUSIONS
We have presented a strategy, based on time, for schedul-

ing concurrent garbage collection in a hard real-time envi-
ronment. Since GC work is triggered by elapsed time, as
opposed to triggered at allocations, we avoid the problem
of constructing a GC work metric that accurately models
the temporal behaviour of the collector. This also makes
it straight-forward to use a concurrent GC in hard real-
time, EDF scheduled systems, which is a big advantage over
allocation-triggered concurrent GC.

We have also shown how the scheduling strategy lends it-
self well to to adaptively tuning the GC speed according to
the requirements of the individual application. Experimen-
tal verification has shown that the adaptive GC scheduling is
capable of handling significant load changes without violat-
ing the real-time demands of the application. The benefits
of an adaptive GC scheduler is twofold: It relieves the devel-
oper from having to manually tune the performance of the
system, both in the initial development phase and during
maintenance. It also makes an application more portable,
as there is no need for calculating new scheduling parame-
ters when the application is moved to another platform or
the CPU load or memory availability is changed.

9. ACKNOWLEDGMENTS
This work has been financially supported by ARTES

(A network for Real-Time research and graduate Education
in Sweden), SSF (the Swedish Foundation for Strategic Re-
search), and VINNOVA (the Swedish Agency for Innovation
Systems).

10. REFERENCES
[1] Luca Abeni and Giorgio Buttazzo. Integrating

multimedia applications in hard real-time systems. In
Proceedings of the 1998 IEEE Real-Time Systems
Symposium, Madrid, Spain, December 1998.

[2] Leif Andersson and Anders Blomdell. A real-time
programming environment and a real-time kernel. In
Lars Asplund, editor, National Swedish Symposium on
Real-Time Systems, Technical Report No 30
1991-06-21. Dept. of Computer Systems, Uppsala
University, Uppsala, Sweden, 1991.

[3] Andrew W. Appel, John R. Ellis, and Kai Li.
Real-time concurrent collection on stock
multiprocessors. In Proceedings of the SIGPLAN’88
Conference on Programming Language Design and
Implementation, Atlanta, Georgia, June 1988.

[4] David F. Bacon, Perry Cheng, and V. T. Rajan. A
real-time garbage collector with low overhead and
consistent utilization. In Proceedings of POPL’03,
New Orleans, Louisiana, USA, January 2003.

[5] Henry G. Baker. List processing in real time on a
serial computer. Communications of the ACM,
21(4):280–294, April 1978.

[6] Mats Bengtsson. Real-Time Compacting Garbage
Collection Algorithms. Lic. eng. thesis, Department of
Computer Science, Lund University, 1990.

[7] Greg Bollella et al. The Real-Time Specification for
Java. Addison-Wesley, 2001.

[8] Anton Cervin and Johan Eker. The Control Server: A
computational model for real-time control tasks. In
Proceedings of the 15th Euromicro Conference on
Real-Time Systems, Porto, Portugal, July 2003. To
appear.

[9] Roger Henriksson. Scheduling Garbage Collection in
Embedded Systems. PhD thesis, Department of
Computer Science, Lund Institute of Technology,
Lund University, 1998.

[10] J-Consortium. Real-time Core Extensions for the Java
Platform. International J Consortium Specification,
2000.

[11] Richard Jones and Raphael Lins. Garbage Collection.
Algorithms for Automatic Dynamic Memory
Management. John Wiley & Sons, 1996.

[12] Hermann Kopetz. Time-triggered real-time
computing. IFAC World Congress, Barcelona, July
2002, IFAC Press, July 2002.

[13] Hermann Kopetz and Günther Bauer. The
time-triggered architecture. Proceedings of the IEEE,
91(1):112 – 126, January 2003.

[14] Scott Nettles and James O’Toole. Real-time
replication garbage collection. SIGPLAN Notices,
28(6):217–226, 1993.

[15] Anders Nilsson, Torbjörn Ekman, and Klas Nilsson.
Real Java for real time – gain and pain. In Proceedings
of CASES-2002, pages 304–311. ACM Press, October
2002.

[16] Sven Gesteg̊ard Robertz. Applying priorities to
memory allocation. In Proceedings of the 2002
International Symposium on Memory Management
(ISMM’02), Berlin, Germany, June 2002. ACM Press.

[17] Sven Gesteg̊ard Robertz. Flexible automatic memory
management for real-time and embedded systems. Lic.
eng. thesis, Department of Computer Science, Lund
Institute of Technology, Lund University, 2003.

[18] Lui Sha, Ragunathan Rajkumar, and John. P.
Lehoczky. Generalized rate-monotonic scheduling
theory. Proceedings of the IEEE, 82(1), 1994.

[19] Qian Yang, Witawas Srisa-an, Therapon Skotiniotis,
and J. Morris Chang. Java virtual machine timing
probes – a study of object life span and GC. In
Proceedings of 21th IEEE International Performance,
Computing and Communications Conference
(IPCCC), Phoenix, Arizona, April 2002.

