
Public Defence, January 18, 2013

Contributions to the Construction

of Extensible Semantic Editors

Emma Söderberg

Doctoral Dissertation, 2012

Department of Computer Science
Lund University



2/20
Orientation
Today’s programming editors

gedit, Notepad, ..

Text editor

Eclipse, NetBeans, ...

Error feedback
Code browsing
Refactoring
Name completion
...

Semantic editor

Background:
- Programming: From text to semantic editor
- Not all languages have semantic editors

Problems:
- Construction is time-consuming and complex
- Maintenance may be difficult (extensions)

Challenge:
How can we make it easier to construct

and maintain semantic editors?



3/20Approach
Generate services from specification

Program
Model

Services

Programmer

Specification: RAGs

- Formalism, specify semantics

- Declarative, easily modularized

- JastAddJ, JModelica, JastAdd

RAGs – Reference Attribute Grammars

- Grammar – defines program model,
abstract syntax tree (AST)

- Attributes – computed properties of
AST nodes (types, scopes, ..)

- References: Attribute values

This dissertation:

Extend compiler with editor module



4/20
Contributions

Specification

Performance

Robustness

Paper I

Paper II

Paper III

Paper IV
Paper V

Paper VI
Paper VII



5/20
Contributions

Specification

Performance

Robustness

Paper I

Paper II

Paper III

Paper IV
Paper V

Paper VI
Paper VII



6/20Specification
The JastAdd Editor Framework

Framework

Completion

Errors Views

Browsing

Compiler

Editor

Completion

Errors Views

Browsing

Problem:
How to add an editor to an existing compiler?

Approach:
- Editor Framework

- JastAdd: semantics
- Eclipse: graphical components

- Predefined generic services

- RAG-based compiler extension

Results:
- Two demonstrators (size in LOC):

- JastAdd: compiler 29, 200, editor 4, 300 (1, 100)
- PicoJava: compiler 210, editor 600 (420)

Conclusions
- Modularly defined editor services

- Compiler reuse (name analysis, type analysis, ...) [Paper I]



7/20Specification
Example Service:

Dead assignments
a = 0;
b = 0;
a = b + 5;
a = a + b;
return a;

Here "a = 0" is a
dead assignment
because the value
is not used and it
could be removed.

Liveness (textbook)

Let n be a node and succ[n] the
set of successors for the node n:

in[n] = use[n] ∪ (out[n] \ def [n])
out[n] =

⋃
s∈succ[n] in[s]

RAGs
syn Set CFGNode.in() circular [empty()] =

use().union(out().compl(def()));

coll Set CFGNode.out() circular [empty()] with add;
Stmt contributes in() to CFGNode.out() for each pred();
Expr contributes in() to CFGNode.out() for each pred();

JastAddJJava 1.4

10,400 LOC

Java 1.5

5,000 LOC

ControlFlow 1.4

450 LOC

ControlFlow 1.5

20 LOC

DataFlow

60 LOC

DeadAssign

25 LOC

Problem:
How to specify flow analysis services?

Conclusions:
- Textbook-like definitions

- Flow analysis added modularly
with few LOC.

- Precision/performance on par
with Soot.

[Paper II]



8/20
Contributions

Specification

Performance

Robustness

Paper I
Editor framework

Paper II
Flow analysis

Paper III

Paper IV
Paper V

Paper VI
Paper VII



9/20
Contributions

Specification

Performance

Robustness

Paper I
Editor framework

Paper II
Flow analysis

Paper III

Paper IV
Paper V

Paper VI
Paper VII



10/20
Performance
Faster evaluation from scratch

a = b.c b = d e = ..
c = d d = e

Reference Attributes

aI

aII

bI

cI

bII

dI eI

I

I
I

I

I

I I
I

I
I

I
I

I I

no caching

Attribute Instance
Call Graphs

aI

aII

bI

cI

bII

dI eI

I

I
I

I

I

I
I

I
I

I

full caching

Background: At attribute evaluation

- attribute dependencies → call graph
- no caching - multiple evaluations → very slow
- full caching - at most one evaluation → faster

Problem: Memory/performance costs

New idea: Selective caching

- based on profiling
- skip caching of some attributes

Results: 20% speedup and 38% memory reduction

- Compared to full caching
- JastAddJ Java compiler
- Java benchmarks

[Paper III]



11/20
Performance
Incremental evaluation

if(c<10
c++;

}
for(int

c +=

Editor
Program

Model

Edits

Feedback

Problem:
How to efficiently update the program model after edits?

State of the art:
- Hand-coded solutions, complex, error-prone

Challenge:
- Automatically update model, RAGs

Earlier work:
- Optimal automatic updates for AGs
- No handling of references

New results:
- Dynamic algorithm for RAGs.

- Build dynamic dependency graph during evaluation
- Use graph to uncache affected attributes after edits

[Paper IV]



12/20
Performance
Incremental evaluation comparison

AGs

Prog

Block

Single

BlockSt

Block

Comb

Comb Assign

Single DeclSt IdUse

DeclSt Decl

Decl Type

Type

used
org
upt

dec
"a"

org

used
upt

usedorg
upt

used

org
upt

type
"int"

org
upt

dec
"c"

org
upt

type
"int"

org
upt

used
type
"a"

used

org

used
upt

RAGs

Prog

Block

Single

BlockSt

Block

Comb

Comb Assign

Single DeclSt IdUse

DeclSt Decl

TypeDecl

Type

ll[a]
"a"

ll[a]

ll[a] ll[a]

ll[a]

ll[a]
"c"

ll[a]

type
"int"

type
"int"

ll[a]

lo[a]

type
decl

"a"

Legend
Name AST node
name Attribute instance

".." Token with value ".."

AST edge
Attribute dep.

Attribute dep.
(examined)

edited
affected
examined
skipped

Example
int a;
int c;
a = 42;

b

[Paper V]



13/20
Contributions

Specification

Performance

Robustness

Paper I
Editor framework

Paper II
Flow analysis

Paper III
Efficient caching

Paper IV
Paper V
Incremental

evaluation

Paper VI
Paper VII



14/20
Contributions

Specification

Performance

Robustness

Paper I
Editor framework

Paper II
Flow analysis

Paper III
Efficient caching

Paper IV
Paper V
Incremental

evaluation

Paper VI
Paper VII



15/20
Robustness
How to handle erronoues input?

class A {
void m() {

int a
int b;

}

Editor

x Parser

Error Recovery:

Error Productions
Automatic Recovery

Err

Program Model

Outline

Folding

Completion

Island grammars:
- Islands: Interesting
- Water: Uninteresting

Bridge Parsing
- Reefs: Patterns for recovery
- Bridges – Scopes

class C {
void m() {

// ...
}
void n() {

// ...
}

}

0 class.. { 1 void.. { 2 //.. 1 } 1 void.. { 2 //.. 1 } 0 }

Problem:
Scope errors cause
recovery to fail

Idea:
- Use layout for recovery

- Aid existing recovery
with preprocessor

New Algorithm:

Bridge parsing

[Paper VI]



16/20
Robustness
Bridge Parsing Algorithm

[Paper VI]



17/20
Robustness
Results from adding bridge parsing

Antlr – a well-known LL-based parser generator

0 10 20 30 40

0

50

100

150

200

250

Test cases

D
is

ta
n
ce

to
id

e
a
lA

S
T

plain ANTLR
with Bridge Parsing

[Paper VI]



18/20
Robustness
Bridge Parsing ideas in JSGLR

GLR

Context Free Grammars

LR
LL

0 20 40 60 80 100

JSGLR
Eclipse/Java

% of Tests

Recovery Quality

Excellent
Good
Poor
Failed

Collaboration: TU Delft

Problem:
Provide error recovery for Scannerless GLR (SGLR)

SGLR:
- Generalized LR: Arbitrary CFG
- Scannerless – include tokens in the grammar
- Language composition, e.g., Java-SQL and enum
- JSGLR – implementation of SGLR in Java

Method:
Recovery using island grammars,

layout and bridge parsing

Results:
Recovery quality on par with the Eclipse Java parser.

[Paper VII]
Bridge Parser Parts



19/20
Contributions

Specification

Performance

Robustness

Paper I
Editor framework

Paper II
Flow analysis

Paper III
Efficient caching

Paper IV
Paper V
Incremental

evaluation

Paper VI
Paper VII

Bridge parsing
Layout-sensitive

recovery



20/20
Contributions

Specification

Performance

Robustness

Paper I
Editor framework

Paper II
Flow analysis

Paper III
Efficient caching

Paper IV
Paper V
Incremental

evaluation

Paper VI
Paper VII

Bridge parsing
Layout-sensitive

recovery


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PlayPauseLeft: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 


