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Orientation
Today’s programming editors

gedit, Notepad, ..

Text editor

Eclipse, NetBeans, ...

Error feedback
Code browsing
Refactoring
Name completion
...

Semantic editor

Background:
- Programming: From text to semantic editor
- Not all languages have semantic editors

Problems:
- Construction is time-consuming and complex
- Maintenance may be difficult (extensions)

Challenge:
How can we make it easier to construct

and maintain semantic editors?
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Generate services from specification

Program
Model

Services

Programmer

Specification: RAGs

- Formalism, specify semantics

- Declarative, easily modularized

- JastAddJ, JModelica, JastAdd

RAGs – Reference Attribute Grammars

- Grammar – defines program model,
abstract syntax tree (AST)

- Attributes – computed properties of
AST nodes (types, scopes, ..)

- References: Attribute values

This dissertation:

Extend compiler with editor module
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The JastAdd Editor Framework

Framework

Completion

Errors Views

Browsing

Compiler

Editor

Completion

Errors Views

Browsing

Problem:
How to add an editor to an existing compiler?

Approach:
- Editor Framework

- JastAdd: semantics
- Eclipse: graphical components

- Predefined generic services

- RAG-based compiler extension

Results:
- Two demonstrators (size in LOC):

- JastAdd: compiler 29, 200, editor 4, 300 (1, 100)
- PicoJava: compiler 210, editor 600 (420)

Conclusions
- Modularly defined editor services

- Compiler reuse (name analysis, type analysis, ...) [Paper I]
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Example Service:

Dead assignments
a = 0;
b = 0;
a = b + 5;
a = a + b;
return a;

Here "a = 0" is a
dead assignment
because the value
is not used and it
could be removed.

Liveness (textbook)

Let n be a node and succ[n] the
set of successors for the node n:

in[n] = use[n] ∪ (out[n] \ def [n])
out[n] =

⋃
s∈succ[n] in[s]

RAGs
syn Set CFGNode.in() circular [empty()] =

use().union(out().compl(def()));

coll Set CFGNode.out() circular [empty()] with add;
Stmt contributes in() to CFGNode.out() for each pred();
Expr contributes in() to CFGNode.out() for each pred();

JastAddJJava 1.4

10,400 LOC

Java 1.5

5,000 LOC

ControlFlow 1.4

450 LOC

ControlFlow 1.5

20 LOC

DataFlow

60 LOC

DeadAssign

25 LOC

Problem:
How to specify flow analysis services?

Conclusions:
- Textbook-like definitions

- Flow analysis added modularly
with few LOC.

- Precision/performance on par
with Soot.

[Paper II]
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Performance
Faster evaluation from scratch

a = b.c b = d e = ..
c = d d = e

Reference Attributes
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Attribute Instance
Call Graphs
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Background: At attribute evaluation

- attribute dependencies → call graph
- no caching - multiple evaluations → very slow
- full caching - at most one evaluation → faster

Problem: Memory/performance costs

New idea: Selective caching

- based on profiling
- skip caching of some attributes

Results: 20% speedup and 38% memory reduction

- Compared to full caching
- JastAddJ Java compiler
- Java benchmarks

[Paper III]
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Performance
Incremental evaluation

if(c<10
c++;

}
for(int

c +=

Editor
Program

Model

Edits

Feedback

Problem:
How to efficiently update the program model after edits?

State of the art:
- Hand-coded solutions, complex, error-prone

Challenge:
- Automatically update model, RAGs

Earlier work:
- Optimal automatic updates for AGs
- No handling of references

New results:
- Dynamic algorithm for RAGs.

- Build dynamic dependency graph during evaluation
- Use graph to uncache affected attributes after edits

[Paper IV]
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Performance
Incremental evaluation comparison

AGs
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RAGs

Prog
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Single DeclSt IdUse
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Type

ll[a]
"a"

ll[a]

ll[a] ll[a]
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Legend
Name AST node
name Attribute instance

".." Token with value ".."

AST edge
Attribute dep.

Attribute dep.
(examined)

edited
affected
examined
skipped

Example
int a;
int c;
a = 42;

b

[Paper V]
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Robustness
How to handle erronoues input?

class A {
void m() {

int a
int b;

}

Editor

x Parser

Error Recovery:

Error Productions
Automatic Recovery

Err

Program Model

Outline

Folding

Completion

Island grammars:
- Islands: Interesting
- Water: Uninteresting

Bridge Parsing
- Reefs: Patterns for recovery
- Bridges – Scopes

class C {
void m() {

// ...
}
void n() {

// ...
}

}

0 class.. { 1 void.. { 2 //.. 1 } 1 void.. { 2 //.. 1 } 0 }

Problem:
Scope errors cause
recovery to fail

Idea:
- Use layout for recovery

- Aid existing recovery
with preprocessor

New Algorithm:

Bridge parsing

[Paper VI]
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Robustness
Bridge Parsing Algorithm

[Paper VI]
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Robustness
Results from adding bridge parsing

Antlr – a well-known LL-based parser generator
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[Paper VI]
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Robustness
Bridge Parsing ideas in JSGLR

GLR

Context Free Grammars

LR
LL

0 20 40 60 80 100

JSGLR
Eclipse/Java

% of Tests

Recovery Quality

Excellent
Good
Poor
Failed

Collaboration: TU Delft

Problem:
Provide error recovery for Scannerless GLR (SGLR)

SGLR:
- Generalized LR: Arbitrary CFG
- Scannerless – include tokens in the grammar
- Language composition, e.g., Java-SQL and enum
- JSGLR – implementation of SGLR in Java

Method:
Recovery using island grammars,

layout and bridge parsing

Results:
Recovery quality on par with the Eclipse Java parser.

[Paper VII]
Bridge Parser Parts
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