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Abstract

In a flexible real-time system, the constraints in available CPU time and
memory lead to resource management problems, which must be handled
carefully in order to maximize quality of service while avoiding over-
load. Managing CPU time — scheduling — is well studied and dynamic
scheduling is widely accepted in the real-time industry. In order to make
safe high-level languages, like Java, practically feasible for use in hard
real-time systems, memory management and particularly the dependen-
cies between memory and CPU usage must be studied.

The traditional approach to incremental GC scheduling, to perform
garbage collection work in proportion to the amount of allocated mem-
ory, has drawbacks such as inconsistent utilization due to bursty allo-
cations. To remedy this, time-triggered GC scheduling is proposed. It is
shown that this strategy gives real-time performance that is equal to, or
better than, that of an allocation-triggered GC. It is also shown that by
using a deadline-based scheduler, the GC scheduling and, consequently,
the real-time performance, is independent of complex and error-prone
work metrics.

Time-triggered GC also allows a more high-level view on GC sched-
uling, as the entire GC cycle is considered rather than each individual in-
crement. This makes it possible to schedule GC as a normal task. As the
scheduling parameters are explicit in the model, it also makes the time-
triggered strategy well suited for auto-tuning and fits well into feedback
scheduling systems.

A novel approach of applying priorities to memory allocation is intro-
duced and it is shown how this can be used to enhance the robustness
of real-time applications. The proposed mechanisms can also be used to
increase performance of systems with automatic memory management
by limiting the amount of garbage collection work.

Together, these solutions facilitate flexible and robust automatic mem-
ory management for real-time systems. Adaptive techniques are pre-
sented, aimed at replacing or complementing a priori analysis with on-
line auto-tuning. The presented ideas have been successfully imple-
mented and validated in an experimental real-time Java environment,
supporting the claim that this work is a step towards write once — run
anywhere with hard real-time performance.
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CHAPTER 1

INTRODUCTION

Today, computers are used as components in all kinds of systems and
products, from industrial robots and cars to home appliances and toys,
and functionality that has traditionally been implemented using me-
chanical systems or analog electronics now often include a computer or
even a network of computers. Such embedded systems typically need to
interact with an external evironment, and the dynamics of the environ-
ment give rise to timing constraints on program execution. Therefore,
most embedded systems are also real-time systems, meaning that they
have to react to external stimuli within a specified time.

In a system with timing requirements, all parts of the system —
including the run-time system — must be implemented in a way that
makes them temporally predictable. The overall goal of this thesis is to
develop new techniques to improve the real-time properties of run-time
systems for embedded and real-time applications, particularly with re-
spect to memory management,

As the complexity of embedded software increases, so does the en-
gineering and programming effort required. High-level programming
languages provide programmer-friendly abstractions that hide much of
the low-level details, notably memory management. Apart from making
programming easier, that also improves safety and robustness, as some
types of common programming errors are simply not possible to make at
the abstracted level. The drawback is that, at the higher level of abstrac-
tion, the programmer no longer has full control of all low-level aspects
of the system. When responsibility for handling low-level tasks is trans-
ferred from the programmer to the run-time system, predictability must
not be lost, and engineering decisions traditionally expressed directly in
code must be possible through e.g. parameters to the run-time system.
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1.1 Resource-aware computing

A fundamental property which makes embedded software different from
computer programs in general is that an embedded application must,
to a much higher degree, execute in a resource-constrained environ-
ment. Therefore, we will very briefly examine the issues associated with
resource-constrained applications, in order to help putting the presented
work into context.

In general, resource constraints on computer systems can be consid-
ered to fall into five cathegories, of which the first two (and, in particular,
the dependencies between them) and the last one are of primary interest
in this thesis;

1. CPU time

2. Memory

3. Input/Output capabilities (I/O, networking, etc.)

4. External physical (Energy, power, space)

5. Engineering effort

The first four are physical constraints that obviously cannot be violated
and therefore must be taken into account in the development of an ap-
plication. The engineering effort required, on the other hand, addresses
the economic aspects of the development; just as there are trade-offs be-
tween the physical constraints (e.g., using a faster CPU or larger mem-
ory may allow a more sophisticated algorithm to be used, but it comes
at the cost of higher power consumption), programming in a high-level
language may result in a bit less efficient code than hand-written as-
sembly language, but the development time, and the number of errors,
would most likely be much lower. Therefore, economical or time-to-
market concerns may favour a high-level language even if it incurs e.g.
additional run-time overhead and higher hardware costs.

Resource constraints are extra-functional requirements, and should
ideally be handled independently of the functional requirements. That
is further emphasized by the increasing desire to use modular, or com-
ponent based, methods of development; when the individual modules
or components are developed, it is not known how they will be com-
posed into the final system, and therefore their implementation must
not depend on such knowledge.

Instead, resources should be managed by a resource manager, a com-
ponent of the run-time system. In the real-time community, the resource
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management problem applied to CPU time has been thoroughly stud-
ied and the theoretical foundation of on-line scheduling is well built.
Recently, with the development of processors with variable clock fre-
quency, the relation between CPU time and power consumption has
been investigated. Memory management, on the other hand, has been
regarded as part of the application, and has not been considered in this
context. While viable in traditional systems, the introduction of auto-
matic memory management complicates the picture as illustrated by the
following sketch of past, present, and future software architectures.

Traditionally, a real-time system uses on-line process scheduling and
static or manual memory management. Figure 1.1 illustrates how this
architecture provides temporal isolation both between different appli-
cations and between applications and the run-time system; the only re-
source that is managed is CPU time, and the process scheduler has full
control over the CPU time assignment. Thus, one application overrun-
ning its designed execution time cannot cause a failure of another that is
executing with higher priority on the same CPU.

P1 P2 P3

Run-time system

Figure 1.1: Traditional model, whith independent processes running on top of
a run-time system.

Introducing automatic memory management, as a part of a safe lan-
guage, complicates the picture, and the boundary between the applica-
tion and the run-time system becomes unclear as shown in Figure 1.2.
There are multiple reasons for this; First, memory is a global resource,
and without global management, over-use of memory in one part of the
system may cause failure of another part 1. Secondly, most current real-
time garbage collectors (RTGC) are intrusive, in the sense that they can
interrupt the application threads at arbitrary times, causing latencies
and jitter. Scheduling of garbage collection work also often by-passes

1While the focus of this thesis is on memory management, similar problems arise from
shared use of any shared global resource for which the system does not provide arbitration.
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the normal task scheduler, further compilicating things. Finally, the CPU
requirements of the GC depends heavily on the behaviour of the appli-
cation, which complicates off-line schedulability analysis, as worst case
analysis would require global analyis of both memory and CPU usage
of both the applications and the GC.

P1 P2 P3

Run-time system

Memory management

Figure 1.2: Introducing automatic memory management into a real-time sys-
tem complicates the boundary between applications and run-time system

The problem of resource management is that the utilization of differ-
ent resources cannot be handled independently, as performing a certain
task typically requires simultaneous use of several resources. In order
to get the clear separation of the traditional model, future run-time sys-
tems will need to include some sort of resource manager, as in Figure 1.3.
With control over resource utilization, the dependencies between differ-
ent resources can be taken into account, resulting in the desired isola-
tion between applications and the run-time system. That is an emerging
trend, and research on quality-of-service and quality-of-control has re-
sulted in techniques and mechanisms for such isolation of applications
with respect to CPU time and I/O capabilities. Investigating how mem-
ory management concerns can be incorporated into that picture is part
of the motivation for the presented work .

1.2 Memory management

Memory management in real-time and embedded systems is still han-
dled in a very conservative manner and for reasons of safety and pre-
dictability, static memory management is often the technology of choice.
However, as the complexity of embedded systems increase, static im-
plementations become problematic; they are difficult to maintain and
develop as even minor changes may require major reorganization of
the software, and resource utilization may be low. For those reasons,
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P1 P2 P3

Run-time system

Resource manager

Figure 1.3: A resource manager provides the desired isolation between appli-
cations and run-time system

dynamic memory management becomes increasingly desirable. While
more flexible than static memory management, manually managed dy-
namic memory introduces new problems of predictability, robustness,
and maintainability — important properties of embedded systems. Many
of these problems can be overcome by automatic memory management,
or garbage collection (GC). With the advent of type-safe languages like
Java on the real-time systems scene it becomes increasingly important
to develop reliable, predictable, and non-intrusive garbage collectors
which are capable of meeting the memory allocation demands of our
applications at all times. The garbage collector should also be transpar-
ent to the application developer and not require cumbersome manual
tuning to be effective on any particular platform. This thesis proposes a
new approach to GC scheduling aimed at meeting these demands.

The focus of this thesis is on GC scheduling rather than algorithm
design, and the fundamental idea is to let elapsed time, rather than per-
formed allocations, determine when to run the garbage collector, using
an approach called time-triggered garbage collection. Using either know-
ledge of the worst-case allocation need of the application, or by using
auto-tuning techniques, it is possible to calculate a deadline for when
garbage collection must be completed and new memory made available
for allocation. Having an explicit deadline for the GC cycle implies that
it would be possible to schedule GC using standard scheduling tech-
niques, such as rate monotonic or earliest deadline first scheduling. This
thesis investigates the feasibility of such an approach.

Another area of growing research interest and recent development
is that of handling non-determinism in real-time systems, and an ap-
proach that has been successful is feedback scheduling. By using feed-
back control, the period times of the processes are dynamically altered in
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order to keep the total CPU utilization at a safe level. This is particularly
useful in control systems, where it is the resulting control performance,
rather than real-time performance, that is the ultimate goal. By getting
the process scheduler into the loop, this allows co-design of control and
real-time systems. Furthermore, worst-case analysis is not always fea-
sible, due to non-determinism in modern computers, lack of engineer-
ing resources or simply that a design based on worst-case assumptions
would be too pessimistic and therefore yield too low average resource
utilization to be economically feasible. For these reasons, it is interest-
ing to study adaptive memory management. This thesis presents two
approaches aimed at enhancing the robustness of memory management
for systems run in an unknown or changing environment.

1.3 Problem statement

This work comes from a practical engineering perspective and is aimed
towards developing techniques that facilitate the production of embed-
ded and real-time systems without the need for rigorous analysis and
huge engineering effort that is currently required to develop hard real-
time systems. Two categories of problems are addressed: The first is
adding flexibility to embedded systems without jeopardizing their real-
time properties. The second is how to implement hard real-time garbage
collection in an actual run-time system.

Adding flexibility to hard real-time systems

In this thesis, the focus is on memory management. Previous research
on flexible real-time systems has focused on process scheduling and lit-
tle attention has been given to memory management issues and their
impact on the real-time behaviour of a system. Also, while many of the
problems are generic to all kinds of resource allocation, memory alloca-
tion differs from CPU allocation in a major way in that preemption is not
possible2. Therefore, running out of memory is likely to cause the entire
system to fail while requesting too high CPU utilization may cause some
or all processes to miss deadlines but the system may be able to continue
executing with decreased performance.

2In systems with virtual memory, swapping and paging may be viewed as memory
preemption, but this is uncommon in embedded systems as they typically lack secondary
storage. Exceptions of course exist, for instance large embedded systems like ships and
power plants. However, in such systems, virtual memory should not be used for the time-
critical tasks as it reduces predictability. One method of ensuring this is to lock the pages
used by hard real-time tasks into RAM in order to avoid page faults.
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Let us start by making three observations on real-time and embed-
ded systems: The first one is that the need for flexibility in hard real-time
systems is increasing. Component based software development helps fa-
cilitate code reuse and makes it possible to build systems quickly by
composing and configuring components. While it is possible, in theory,
to perform worst case and schedulability analysis on each configuration,
constraints on the amount of available engineering resources may pro-
hibit such analysis. Therefore, adaptive techniques like feedback sched-
uling are increasing in popularity as they allow a system to adapt its
resource utilization in order to keep the system from overload while still
producing an acceptable quality of service.

Another technique that is gaining interest is dynamic reconfiguration
and code exchange where communicating devices may send pieces of
code to each other in order to perform some cooperative task. In such a
system, an introduction of a new device may cause pieces of code that
were not part of the original design to be executed on other devices.
This is facilitated on the programming language level by e.g., dynamic
loading of code, but the run-time system aspects need further studies.
For instance, in an environment where code is dynamically loaded and
replaced at run-time, static worst-case analysis (and scheduling based
thereupon) is not possible. Yet, it is desirable to include such techniques
in hard real-time systems.

The second observation is that not all hard real-time systems are safety
critical. A system is a hard real-time system if it fails or suffers major
performance degradation if deadlines are missed. But, for systems that
have a safe failure mode, a small theoretical risk of failure may be ac-
ceptable if the probability is low enough. This is also motivated by the
high cost of the engineering effort required to make absolute guarantees
that a system will never fail.

The final observation is that a problem with the current methods for
real-time systems development is the gap between theory and practice; the
real-time theory requires hard worst case calculations in order to guar-
antee schedulability. However, it is very common to use measurements
or “gut feeling” estimates rather than exact analysis to obtain the worst
case memory and CPU requirements and then, the quality of the real-
time guarantees is no better than that of the worst case estimates. For
those reasons, it may be better, both in terms of development costs and
run-time performance, to reserve the hard, a priori analysis based meth-
ods for the development of systems which are safety critical and to use
adaptive techniques for systems which are not.
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Motivated by these observations, the high level goal of this work is to
develop techniques for implementing hard real-time run-time systems,
particularly memory managers, that are independent of a priori analysis
of the application. That is, if an application is schedulable, the run-time
system should be able to guarantee that it will execute with real-time
performance — write once, run anywhere for hard real-time systems.

Making hard real-time memory management feasible in practice

The second problem addressed in this work is that previous research on
hard real-time garbage collection may not be directly applicable when
implementing actual real-time systems.

The first issue is the metric used to measure garbage collection work.
A good metric is essential to both schedulability analysis and for the
actual scheduling at run-time. Unfortunately, in much of the existing
literature, the problem is either neglected or the reasoning is done on a
too abstract level to be practically applicable.

Secondly, non-intrusiveness is a fundamental requirement on a hard
real-time garbage collector as GC work must not cause processes to miss
their deadlines. However, the common way of implementing real-time
GC is to use an incremental garbage collector that performs small por-
tions of work at each memory allocation — in line with the application
processes — and previous research has often been content with show-
ing that it is possible to find tight upper bounds on the lengths of each
increment. That is not a good strategy if one wants to minimize latency
and jitter due to garbage collection; even though each increment has a
small upper bound, if a process makes many allocations the total delay
caused by garbage collection will be large. Therefore, it is not enough to
prove predictability — in actual product development it is equally im-
portant to have a scheduling model that allows maximum utilization of
available resources.

Finally, previous real-time garbage collectors have required very fine
grained analysis in order to tune them to a particular application, and
the run-time scheduling has been done at the individual increment level.
This has made the utilization of real-time GC difficult and tedious and
the whole concept of automatic memory management in real-time sys-
tems has often been shunned.

This work is an attempt to provide a conceptual framework and tech-
niques that are independent of the GC implementation and allow rea-
soning about garbage collection scheduling at a higher level, without
abstracting away the difficulties. The goal is to make it possible to sched-
ule garbage collection as any other task.
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1.4 About the thesis

Outline

The rest of the thesis is organized as follows:

Chapter 2: Preliminaries describes the fundamental concepts of the
areas of real-time computing and memory management and
presents previous results on which this thesis is based.

Chapter 3: Time-triggered garbage collection introduces the idea of
time-triggered garbage collection and discusses its impact in fixed-
priority and earliest deadline first scheduled systems.

Chapter 4: Adaptive garbage collection scheduling discusses how a
time-triggered garbage collector can be made auto-tuning and
presents techniques for on-line estimation of the GC cycle length
and the amount of work required to perform a GC cycle.

Chapter 5: Priorities for memory allocation presents a novel notion of
applying priorities to memory allocations and shows how that can
increase robustness and performance of real-time systems.

Chapter 6: Memory-aware feedback scheduling presents an approach
to extending traditional feedback scheduling results to also incor-
porate the costs of memory management explicitly in the period
time optimization.

Chapter 7: GC in an uncooperative environment describes the chal-
lengenges faced when implementing accurate concurrent GC in
an environment where one cannot rely on cooperation from the
compiler back end or scheduler.

Chapter 8: Experiments presents experimental support for the pro-
posed techniques.

Chapter 9: Future work outlines directions for future research and
points out possible areas of application for the presented ideas.

Chapter 10: Related work relates the work presented in this thesis with
previous results in the areas of garbage collection scheduling,
memory management for real-time Java and worst case analysis.

Chapter 11: Conclusions summarizes and discusses the contributions
of this thesis.
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tributed Computing (ISORC’05).

The prototype implementations used in the experimental verification
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CHAPTER 2

PRELIMINARIES

This chapter briefly presents the fundamental concepts of real-time and
embedded systems, scheduling and memory management. Previous re-
search in the fields of scheduling and automatic memory management
for real-time systems, which forms a base for the remainder of this the-
sis, is presented and discussed.

2.1 Real-time systems

In order to understand the problems and challenges associated with
memory management in real-time systems, we will now review the fun-
damental properties of systems with timing requirements. We will dis-
cuss what defines a real-time system, how timing requirements arise and
are classified, how a set of processes may share a single CPU while still
performing in a timely manner and how processes with firm timing re-
quirements can co-exist with non real-time processes.

For any computer program, its task is, generally speaking, to pro-
duce some output based on its input values. The fundamental defini-
tion of correctness is that the program produces the right output for any
valid input values. However, for many systems, typically those that in-
teract with an external environment in some way, that is not enough.
In addition to producing the right output, the definition of correctness
is strengthened to also require that such a system produces the output
before a given time, the deadline. Such systems are called real-time sys-
tems and typical examples are found in the areas of automatic control,
communications, audio/video, interactive computer programs, etc.
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2.1.1 Concurrent programming

Concurrent programming is the common name for the techniques used
to allow many processes to execute in parallel on the same computer,
either truly in parallel on a multi-CPU machine, or virtually so by time-
sharing on a single CPU, in a consistent way. Important problems are
how to deal with communication and synchronization between parallel
activities. There are several reasons for using concurrent programming,
but for our purposes, the most important one is to model parallelism
in the external environment. A program in a control system may need
to react both to occurrences of certain events and perform operations
at certain times. If the different events are independent of each other
and of the passage of time, there are parallel activities in the controlled
system, and therefore it is convenient to have the same parallelism in
the software. We will not go into any details on the different problems
in concurrent programming or their solutions. For now it will suffice to
state that concurrent and real-time programming are very tightly related
(and sometimes even used synonymously); virtually any real-time or
embedded system will consist of many processes, either cooperating or
independent.

If there are more parallel processes than there are processors, like
when running multiple processes on a single-CPU machine, not all pro-
cesses can execute simultaneously with true parallelism. Therefore, some
form of time-sharing mechanism must be used to allow them to seem-
ingly execute in parallel, by switching back and forth between processes,
interleaving their execution. Time-sharing can be implemented either
explicitly in the processes, e.g. using co-routines [Knu73], or by the run-
time system or OS. In the latter case, a special piece of software called
the process scheduler is responsible for selecting which process that gets
to execute next.

Normally, the scheduler runs periodically, and at each invocation it
suspends, or preempts, the running process and selects another process,
which is then allowed to execute until the next scheduler period. This
model is called time-slicing. How processes are scheduled obviously af-
fects their temporal behaviour, and different scheduling techniques are
presented in Section 2.1.4.

2.1.2 Timing requirements

The term real-time systems represent a wide range of applications with
widely varying timing requirements, and the consequences of failing to
meet deadlines also range from minor inconveniences to total failures.



2.1 REAL-TIME SYSTEMS 13

Computer systems can be categorized based on their real-time require-
ments and a brief overview of the taxonomy is given here.

Batch systems

Most computer programs do not have any real-time requirements other
than that it, naturally, is desirable that the result is produced as quickly
as possible in order to make the program practically usable. Examples
of such programs are compilers, mathematical programs, etc. Such pro-
grams are called batch systems, as they typically take a batch of input,
perform some processing, and output the result. In batch systems, the
correctness of the system is completely independent of the time it takes
to produce the output.

Interactive systems

The next class of systems are systems where a human user interacts with
the system in the sense that the user gives a command, the system pro-
cesses it and presents the result, the user issues another command, and
so on. Typical examples are window systems, word processors, and
other desktop applications. Here, the response time of the system must
not be too long for the interaction to work well. If the system takes sec-
onds or more to respond to commands, the user tends to be annoyed,
but as long as the response times are of the same order as the human
response time — typically one or two tenths of a second — the system
is perceived to react instantly, and delays up to half a second are usually
tolerable. Therefore, while interactive systems have some degree of real-
time requirements, they are quite relaxed and also, the consequences of
excessive delays are merely an inconvenience.

Real-time systems

Computer systems that interact with external electrical or mechanical
devices or communicate via some shared medium typically have tighter
timing requirements. The term real-time systems is used to denote sys-
tems where timeliness is required for correct operation.

Systems that need to meet deadlines in order to function correctly,
but where a failure to do so only causes a temporary decrease in the
quality of service and does not cause the whole system to fail are called
soft real-time systems. One example is audio/video systems, where a
missed deadline causes a glitch but the playback still continues. Another
example is embedded systems, e.g, a computer controlling the electric
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windows or the cabin lighting in a car, where occasional small delays
will not have any severe consequences.

If missing a deadline may cause the whole system to fail, we have a
hard real-time system. Continuing the car example, the engine control
system is a hard real-time system, as it is critical to the operation of the
engine that the fuel injection and ignition are performed at exactly the
right time.

It is common that embedded systems consist of both hard and soft
real-time tasks, and then techniques like e.g. priority based scheduling
are used to guarantee that the hard tasks always get the resources they
need, possibly at the expense of the soft tasks.

Specifying temporal behaviour

Having defined a real-time system as a system that must react in a timely
manner, we will now discuss how timeliness can be parametrized and
measured. The real-time behaviour of a process can be specified as a
tuple (R, C, D), where R is the set of release times, C is the set of execution
times, and D the set of deadlines. For a periodic process with start time t0
and period time T , a constant execution time C and deadline D, we get

R = {Rk} = {t0 + kT} ; k ≥ 0

C = C

D = {Dk} = {t0 + kT + D} ; k ≥ 0 (2.1)

which is the form we will assume if nothing else is stated.
In addition to the fundamental real-time requirement — that a pro-

cess always finishes before its deadline — there are other aspects that are
of interest when specifying real-time systems, namely latency, response
time, and jitter. When a process is released, it may not always start exe-
cuting directly; for instance, if another process is executing it will have
to wait until that process has finished. Therefore, the actual invocation
time will be some time after the release, and the difference is called la-
tency. The response time of a process is defined as the time from release
to finish. These definitions are illustrated in Figure 2.1.

Finally, the variations in these quantities from one period to another,
or jitter, may be important. Figure 2.2 shows an example of jitter in both
latency and response time. Process 1 is periodic with period time T , and
has the release times {t0 + nT}, n ≥ 0. However, in the example, the
process actually starts executing in t0, t0 + T + L2 and t0 + 2T + L3, and
the execution is not exactly periodic. If we define latency jitter as the
difference between the minimum and maximum latency, in this case we
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execution timelatency

response time

Time
t2t1 t3

Process
ready running sleeping state

Figure 2.1: Definitions of real-time parameters. t1 is the release time of the
process, at t2 the process is invoked, and at t3, the process has finished its
execution and sleeps until its next release. The time from release to invocation
is called latency, and the time from release to finish is called response time.

get the maximum jitter ∆Lmax = L2 − 0 = L2. In the example, there is
also jitter in the response time, defined analogously.

It should be stressed that real-time systems are a very heterogenous
class of systems, and there are large variation in which aspects are im-
portant. For instance, one application may be very sensitive to jitter
whereas in another, only the response time is important. Also, there are
vast differences in time-scale. A typical video application has a sampling
rate (frame rate) in the range of 25 – 100Hz, while control applications
may have sampling rates of tens of kilohertz. Therefore, the fields of
real-time systems research and engineering is also quite heterogenous,
as the different requirements will give rise to different technical solu-
tions.

2.1.3 Control systems

A large class of embedded systems are control systems [AW97], where
the task of the computer is to control the behaviour of some external,
physical, process. When implementing a controller for a continuous-
time process on a computer, the process must be sampled, and most of
the control theory assumes that the samples are taken at a constant rate,
i.e. periodic sampling. Therefore, it is common to implement controllers
as periodic processes.
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R1 R3
L3

R2
L2

T T

Time

Process 2

Process 1

t0

Figure 2.2: Example of latency and response time jitter. Process 1 is periodic
with time T , Process 2 is sporadic and has higher priority. In this figure, R

denotes response time and not release time.

In controller design, it is common to discretize the continuous-time
system under the assumptions of periodic sampling and constant input-
output delay. Any jitter, in the sampling or output times, will cause
errors in the linearized model, which in turn leads to degraded perfor-
mance of the controller. Note, however, that it is not the jitter or delays
in the computer task, but in the sampling and control action, that has
impact on control performance.

In analog with the previously defined real-time parameters, for con-
trol systems we add corresponding quantities directly related to the con-
trol task. Figure 2.3 shows the execution of one invocation of a controller.
In addition to the latency and response time, the control counterparts are
defined. Figure 2.4 illustrates how the interactions between processes
affect both latency and response time. Controller 2 is executing when
Controller 1 is released which causes latency to Controller 1. Controller
2 has higher priority than Controller 1 and is therefore allowed to pre-
empt Controller 1, which increases the response time of Controller 1.

This illustrates how timing requirements on the controller process
come from the assumptions made in the controller design. For instance,
if a small sample delay is desired, the latency of the control task must
be small. The integration of control design and real-time scheduling has
been studied [Cer03], tools for analysis of the effects of varying delays
have been developed [LC02] as well as theoretical results for taking jitter
into account when doing control design [CLE+04].
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Time

Controller

control delaysample delay

execution timelatency

response time

control response time

Output signal

t4t2t1 t3 t5

Figure 2.3: Definitions of timing parameters for the control task. At t1 the
controller is released, at t2 it is invoked, at t3, the input signal is sampled, at t4
the new control signal is output and at t5 the process has finished its execution.

Time

Controller 1

response time

control response time
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Controller2
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control delaysample delay
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Figure 2.4: Interference from other processes affect real-time behaviour. Con-
troller 1 is released at t1, but does not get to execute until t2, when Controller
2 has finished. Then, at t4, Controller 1 is preempted by Controller 2 and is
suspended until t5.
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2.1.4 Predictability and scheduling

A key attribute of proper real-time systems is predictability; if we want
to make real-time guarantees, we must know how long each task may
take to execute in the worst case, the worst case execution time (WCET).
This is one big difference between interactive and real-time systems; in
an interactive system, it is the average case performance that usually is the
most interesting, as the worst case typically is quite unlikely to occur and
it is possible to achieve much better performance on a given platform by
disregarding the worst case and optimizing for the common case.

In real-time systems, on the other hand, predictability is paramount
as the system must not fail even in the unlikely event that the worst
case does occur. Therefore, in hard real-time systems it is often neces-
sary to trade off performance for predictability; in the average case we
may have a low CPU utilization in order to guarantee that there will be
enough CPU time for every process in the worst case.

In order to meet these requirements on predictability, it is necessary
to perform worst case analysis on execution time and memory usage
and, based on this, do a priori schedulability analysis — a theoretical anal-
ysis aimed at determining whether it can be guaranteed that a given
set of processes always can be scheduled in a way that they meet their
deadlines under a given scheduling model. This is a well understood
area and the theoretical foundation is well built.

The scheduling problem is, simply put, this: Given a set of processes
that should execute on a shared processor, find an execution order that
ensures that all processes meet their deadlines. This can be done in a
number of ways. The oldest, which is still widely used in safety-critical
systems, is static cyclic scheduling; the CPU time is divided into time
slots and then each process invocation is statically assigned to a partic-
ular time slot. The run-time scheduling is simple; the processes of each
time slot are executed in due order and when the end of the schedule is
reached, execution is restarted from the top. As both execution and com-
munication is statically scheduled, it is easy to verify that a schedule will
work. The drawback is that it may be difficult to create the schedule and
small changes to the processes may require that a whole new schedule
is created from scratch. Also, a static schedule may result in low CPU
utilization since the execution times of the different tasks are not equal
and therefore, there will often be unused time in some of the time slots.
If the execution times of the tasks are not constant, the length of the time
slots has to be long enough to accommodate the worst case execution
time, as tasks may not overrun their time slot. This further decreases the
maximum safe CPU utilization.
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An alternative scheduling strategy, which adds more flexibility and
transfers the low-level scheduling decisions from the programmer to the
run-time system is dynamic1 scheduling; the process scheduler dynam-
ically selects which process that should be allowed to execute at any
given instant based on whether that process has work to perform and
the relative importance compared to other processes in the system. The
rest of this thesis will assume dynamic scheduling and now a brief in-
troduction to various scheduling algorithms will be given.

Fixed priority scheduling

In a fixed-priority scheduler, a priority value is assigned to each process.
If more than one process is ready to execute, the scheduler always gives
precedence to the process with the highest priority. Usually, the sched-
uler also allows preemption, i.e., if a process is executing when another
process with higher priority becomes ready, the lower priority process
will be suspended in order to allow the higher priority process to exe-
cute without delay.

With fixed priority scheduling, it is usually not possible to have 100%
processor utilization without missing deadlines. However, due to the
strict priorities, such overload is handled in a way that lets the high prior-
ity processes continue executing unaffected while those with low prior-
ities are delayed. In cases of severe overload, the low priority processes
may not get any CPU time at all. This is called starvation.

A problem with fixed priority scheduling is how to assign priorities
to processes. The most common approach is Rate Monotonic Scheduling
(RMS), which says that the shorter the period time a process has, the
higher its priority should be. If priorities are assigned in this way, stan-
dard methods for schedulability analysis exist.

A system is schedulable if all processes are guaranteed to meet their
deadlines, i.e. that their worst case response time is less than the dead-
line. The fundamental result in fixed-priority scheduling is that if all
processes are released at the same time (known as a critical instant), the
system is schedulable if all processes finish before their deadline. RMS
is optimal in the sense that if a set of processes are not schedulable with
priorities assigned according to RMS, it will not be schedulable for any

1A note on terminology: Here, static and dynamic are used with respect to the schedule
itself. Other terms are off-line and on-line scheduling. This should not be confused with
the taxonomy used by Liu and Layland [LL73]. They discuss the distinction between static
and dynamic scheduling algorithms based on whether priorities are fixed or may change
during execution. In that context RMS and DMS are static algorithms, wheras EDF is
dynamic.
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other set of priorities. It can be proved that for n independent, periodical
processes, with execution time Ci and period time Ti, a RMS system is
guaranteed to be schedulable if

n
∑

i=0

(

Ci

Ti

)

< n
(

21/n − 1
)

(2.2)

From this, it follows that, for an arbitrary number of processes, a RMS
system is schedulable if the total CPU utilization is less than 69% [LL73].
The assumptions in this result are quite restrictive and not directly ap-
plicable for exact analysis in practice. It is still, however, a good rule-of-
thumb to be used as a starting point.

In the rate monotonic case, the deadline is assumed to be equal to
the period time. For tasks where the response time is important, it is
common to have a deadline that is shorter than the period time. In that
case, priorities may be assigned based on their deadlines rather than
their period times — deadline monotonic scheduling. If D = T , DMS and
RMS are obviously equivalent. If D < T it has been proved that DMS is
optimal, in the above sense.

For detailed analysis of real systems, the assumptions must be re-
laxed. In particular, processes are seldom unrelated; either they coop-
erate in order to perform a common task, or they compete for some
common resources. In both cases, they may interfere with each other
in a way that breaks the assumptions behind (2.2). This is dealt with in
the generalized RMS [SRL94]. The schedulability criterion is the same,
all processes should have a worst case response time shorter than their
deadline, but the response time calculations are extended to take block-
ing, while waiting for shared resources, etc., into account.

Earliest deadline first scheduling

Another approach to dynamic scheduling is deadline driven scheduling
[LL73], also known as earliest deadline first (EDF). Here, instead of assign-
ing fixed priorities to processes, the scheduling is done based directly on
the deadlines of processes; the process with the shortest time left to its
deadline is scheduled to run. Thus, this strategy requires no scheduling
decisions, other than the deadline assignment, to be made by the devel-
oper — the translation from timing requirements to priorities is done by
the scheduler, at run-time.

An interesting property of EDF scheduling is that 100% CPU utiliza-
tion is possible and, thus, EDF scheduling is optimal in the sense that if
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the system is not schedulable using EDF, it will not be schedulable us-
ing any other scheduling strategy. However, the handling of overload is
drastically different from a fixed priority scheduler; in an EDF system,
if the requested CPU utilization is greater than 100%, all processes will
miss their deadlines. In effect, the period times will be scaled so that
the CPU utilization is 100% and this may be fatal to processes with hard
deadlines.

It should be noted that, as there are no strict priorities in an EDF sys-
tem, it may cause more jitter to high frequency tasks, compared to RMS;
the fast tasks may occasionally be preempted by slower tasks that are
closer to their deadline. This, however, only occurs in a heavily loaded
system.

2.1.5 Co-existence of hard and soft processes

An important property in real-time and safety-critical systems is isolation
between processes. In management of global resources, it is desirable to
have a model that ensures that an overrun or violation of design-time as-
sumptions in one part of the system cannot cause a shortage of resources
in other parts of the system. Applied to scheduling, that means that, in a
system with independent processes, if one process overruns its allocated
execution time, it should not be allowed to “steal” CPU time from other
processes.

In order to overcome the problems with handling overload, espe-
cially in EDF scheduled systems, techniques for letting hard real-time
processes run with guaranteed deadlines while process with soft or no
deadlines may be delayed in order to keep the total CPU utilization at a
safe level have been developed.

Constant bandwidth servers

One approach to handling the problem with running both determinis-
tic and non-deterministic processes on the same processor using EDF
scheduling is is the constant bandwidth server (CBS) model [AB98]. For
each process or group of processes, a limit on the maximum fraction of
the CPU time, the CPU bandwidth, is assigned and this is enforced by the
scheduler: If a server has used up its CPU quota in the current period it is
blocked until the next CBS period. A set of constant bandwidth servers
running on a single CPU can be viewed as a if each process were running
on dedicated CPU with a given fraction of the original CPU speed. The
CBS model combines the advantages of fixed priority and EDF sched-
uling; it is possible to guarantee that the hard real-time processes al-
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ways meets their deadlines by isolating them from non-deterministic
processes while still allowing 100% CPU utilization.

The control server model

The control server model [CE03] is an attempt to combine the predictabil-
ity of static scheduling with the flexibility of dynamic scheduling aimed
at ensuring jitter-free execution of control tasks. The basic idea is to use
static scheduling for input and output while the computations in be-
tween are scheduled dynamically, with EDF. Isolation of tasks is pro-
vided through a mechanism similar to CBS.

The control server model was designed to facilitate component-based
development of control systems. The characteristic property of the model
is that all parameters effecting control performance (latency, response
time, period time, etc.) are linear in CPU utilization. This enhances
composability, as each component only has one knob, CPU utilization,
that needs to be tuned when the system is assembled.

2.1.6 Feedback scheduling

Another approach to handling non-determinism is based on that the
main goal is to optimize the resulting quality of service rather than some
aspect of scheduling like, for instance, minimizing the number of missed
deadlines. By using feedback control, the scheduling parameters are au-
tomatically adjusted at run-time in order to keep the CPU utilization
at a safe level while optimizing the quality of service of the application.
This is called feedback scheduling [AP00, Cer03, CEBÅ02]. One area where
this approach is useful is control systems, where it has been shown that
the total quality of control can be dramatically increased if the real-time
requirements are relaxed.

Figure 2.5 shows the structure of a basic feedback scheduler. A set
of tasks generate jobs that are passed to a run-time dispatcher. The exe-
cution times of the jobs and the total CPU utilization, U , are measured.
Based on this, the scheduler adjusts the period times of the tasks, Ti, in
order to keep the CPU utilization at the set-point, Usp.

If a system contains both hard and soft real-time tasks, it is reason-
able that the CPU utilization of the soft processes should be decreased
more than that of the hard processes. This can be done by using elastic
scheduling [BLA02], where a stiffness value is assigned to each process
and the scaling of period times is done in proportion to that value.

The general period assignment problem can be expressed as follows.
A set of n tasks, Ti, i ∈ {1 . . . n} with execution time Ci, an adjustable
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Scheduler Tasks Dispatcher

Usp {Ti} {jobs} {Ci}, U

Figure 2.5: The structure of a basic feedback scheduler. The scheduler measures
the execution time of each process, Ci, and the total CPU utilization, U . The
period times of the tasks, Ti, are scaled to achieve the setpoint utilization, Usp.

period hi, and a cost function Ji(h) share the same computer. The task
of the feedback scheduler is to assign new sampling intervals h1 . . . hn

so that the total cost is minimized and the total CPU utilization is kept
below a set-point, Usp. This is formulated as the optimization problem

min
h1...hn

n
∑

i=1

Ji(hi)

subject to

n
∑

i=1

Ci

hi
≤ Usp (2.3)

In that formulation, the cost only depends on the sampling rate. More
elaborate models, where also the state of the plant is taken into account
have been developed [HC05].

2.2 Embedded systems

An embedded system can be defined as a system that has a computer but
is not in itself a computer, and this is currently the dominating use for
computers, accounting for a vast majority of processor sales. Embedded
systems are found all over the range from tiny to very large systems,
and examples include intelligent price tags, home appliances, toys, mo-
bile phones, industrial robots, cars, aircraft, ships, and power plants.
Therefore, one must be careful when making general statements about
embedded systems and their properties. Design and implementation of
embedded system is also a vast research area, and most of it is outside
the scope of this thesis. Nonetheless, we will now briefly examine some
of the key differences between embedded systems and general-purpose
computers. The discussion will primarily target the small to medium
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sized range of systems, with single CPU computers2 and memory in the
range from several kilobytes to a few megabytes3, that are commonly
found in e.g., process and robot controllers.

There is a strong connection between the fields of real-time systems
and embedded systems, as most real-time systems are embedded and
vice versa. Therefore, when studying real-time systems, it is often nec-
essary to also consider the special properties and requirements of em-
bedded systems. In addition to timing requirements this includes safety
aspects and resource constraints.

2.2.1 Safety and dependability

A program in an embedded computer typically runs “forever” and is
not directly accessible to the user. This puts stronger demands on ro-
bustness and dependability on embedded software as compared to, e.g.,
desktop applications4. While it is annoying if a word processing appli-
cation occasionally crashes, users often accept having to reboot their PC
once in a while. This is not the case for embedded systems; it would be
unacceptable if the software of a microwave oven crashed and required
the user to pull the plug to turn off the appliance.

The fact that the program never terminates means that even minor
errors may, in time, cause a fault. For instance, a small memory leak in a
desktop application will probably not cause any problems, as that mem-
ory will be returned to the system when the application is terminated. In
contrast, in a program which never terminates, like an embedded system
or a server application, even a small memory leak will eventually cause
the system to run out of memory and fail.

Viewing the problem from a slightly different perspective, fault toler-
ance is an important aspect of embedded systems design. I.e., the system
should always be able to reach a safe state if a fault occurs. For some
systems, this may simply mean to emergency stop in case of a fault, or
to use a watchdog mechanism to automatically reboot a computer if it
stops responding. However, for many systems this is not possible, as
they do not have a simple safe state. For instance, in a moving car with
a drive-by-wire system, simply turning off the power does not leave the

2In the cases where more than one CPU is required, we use separate computers com-
municating via shared memory or a real-time network.

3Our platforms for experiments include the Atmel ATmega128 microcontroller with an
8 bit, 8 Mhz, 8 MIPS RISC CPU and 32 kilobytes of RAM and PowerPC G3 boards with
300 MHz CPU and 32 megabytes of RAM.

4A desktop computer can, of course, be part of a large embedded system, but usually
not of its time-critical parts.
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system in a safe state — it must be actively stopped. When using em-
bedded computers in such systems, care must be taken to ensure that the
critical parts of the software always will be able to continue executing,
albeit in a “safe mode” with degraded performance.

With increasing system complexity, especially in software, the engi-
neering effort required to ensure fault tolerance increases rapidly. There-
fore, run-time systems and development tools for embedded applica-
tions must provide as much support as possible for making software
safe and robust.

2.2.2 Well-defined area of application

The additional extra-functional requirements on embedded software in-
crease the complexity of system design and makes software design more
demanding. On the other hand, in contrast to a general-purpose com-
puter, an embedded system is specifically designed to perform a number
of well-defined tasks. This means that all aspects of the embedded hard-
ware and software may be tailored for a particular task, making some
aspects of software engineering easier.

For instance, while desktop or server applications may be subjected
to widely varying workloads, embedded software in time-critical appli-
cations commonly operate in steady state most of the time, with distinct
mode changes. Therefore, some problems that are undecidable in the
general case, like worst case execution time or live memory analysis,
may be practically feasible in an embedded systems context as problem-
atic program constructs like unbounded loops are typically avoided.

2.3 Memory management

Memory management consists of two principal tasks; memory allocation,
which means mapping a variable or an object to a particular memory
address, and de-allocation or reclamation, to return the chunk of memory
occupied by a variable or an object to the system so that it can be used
to satisfy another allocation request. Memory management can be static
or dynamic, and the latter is further divided into manual and automatic
memory management. We will now briefly review these different tech-
niques and the fundamental concepts of memory management.

The oldest form of memory management is static memory manage-
ment, where the space required for all variables and data structures of the
program is allocated statically by the programmer or compiler. As with
all static techniques, this makes it easy to verify that a program will work
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and requires no run-time decisions regarding memory management but
the limitations are severe when it comes to writing programs that e.g.,
build dynamic data structures depending on input. With the exception
of some parts of safety critical applications, static memory management
is seldom used due to the low flexibility and difficult development and
maintenance, and low average resource utilization which often results
from using off-line techniques.

Dynamic memory management [Knu73, WJNB95] overcomes these lim-
itations by making it possible to allocate memory at any time in the pro-
gram. However, this comes at the cost of having to manage memory at
run-time; when the program wants to allocate more memory, the run-
time system must find a suitable space in memory where the requested
object will fit. As the amount of physical memory is limited, it is also
necessary to reuse the memory occupied by objects that will no longer
be used. This can be done manually, by explicitly inserting instructions
to deallocate a certain memory area (as free and delete in C/C++) in
the code or automatically by the run-time system.

There are two major problems with manual memory management and
both are caused by the difficulty of manually determining object life-
times; failing to deallocate objects that will no longer be used, causing
memory leaks and deallocating objects too soon, causing dangling pointers.
The effects of the former is obvious — failure to deallocate objects that
are no longer needed causes excessive memory usage and may cause the
system to run out of memory. The latter problem, dangling pointers, is
more insidious. It arises when one part of the program deallocates an
object, O1, that is still used by another part of the program. The memory
occupied by O1 may then be used to allocate a new object, O2. Then, the
situation where one part of the program modifies O1 and another part
modifies O2 may arise. As both O1 and O2 refer to the same address,
this will result in memory corruption and program failure.

Determining when an object should be deallocated in order to avoid
both memory leaks and dangling pointers is non-trivial in a complex
system. To ensure memory consistency, systems with manually man-
aged memory require rigid coding conventions and protocols for when
allocation, deallocation and pointer passing is allowed.

In systems with automatic memory management, the task of keeping
track of when an object is no longer in use and can be safely deallocated
is preformed by the run-time system, which frees the programmer from
this complex and error-prone task. The technique used to identify and
reclaim dead objects is called garbage collection (GC). Examples of early
programming languages with GC are LISP [McC60] and Simula [DN76].
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2.3.1 Garbage collection

There are different approaches to implementing GC [JL96]. In this the-
sis, we will only consider tracing collectors — collectors that traverse the
reference graph in order to determine which objects are live and which
are not. Examples are mark-sweep [McC60] and copying [Min63, FY69]
collectors. Another approach to garbage collection is reference count-
ing [Col60], where the idea is to keep a count of how many references
there are to each object and reclaim objects when the reference count
reaches zero 5.

This thesis focuses on scheduling of GC work, rather than GC algo-
rithm design or implementation, and the presented approach is appli-
cable to any concurrent tracing garbage collector. However, different
collectors have different properties and different requirements on the
collector/mutator interface. Therefore, we will now briefly review the
most common fundamental algorithms for tracing garbage collection.

GC algorithms can be divided into moving or non-moving. If a non-
moving collector is used, objects reside at the same address from alloca-
tion to reclamation, just as in manually managed memory (e.g., malloc
and free). A moving collector, on the other hand, may move objects
during collection in order, for instance, to compact the heap by moving
all live objects to one end of the heap, leaving a single contious area of
free memory, and thus avoiding (external) fragmentation. Mark-sweep is
an example of a non-moving algorithm, and mark-compact and copying
algorithms are moving.

The cyclic nature of garbage collection

Most (tracing) garbage collectors need to make multiple passes in order
to identify the live objects and reclaim the garbage. For example, a mark-

5A problem with reference counting is that it cannot reclaim cyclic structures; even if
a set of objects are no longer reachable from a program, cycles in the object graph will
prevent reference counts from reaching zero, thereby preventing unreachable objects from
being reclaimed. For this reason, pure reference counting is not suitable for embedded or
other long-running software, where even small memory leaks will eventually cause the
system to fail. There are, however, reference counting real-time GCs, including techniques
for reclaiming cyclic structures [Rit03]. Cyclic structures are reclaimed either manually (by
manually breaking cycles or using weak references), or by having a tracing GC as back-
up. The former approach just transfers the responsibility to the programmer, and the latter
still requires a tracing real-time GC to ensure real-time performance. Also, in a reference
counting GC, the scheduling of GC work is implicit in the algorithm. Reference counts are
updated at reference assignments, and thus performed in-line with the mutator code. For
these reasons, reference counting is outside the scope of this thesis.
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sweep collector first scans all root pointers6, then marks live objects and
finally sweeps the heap. We call all the activities required to identify
and reclaim garbage a GC cycle. E.g., in the mark-sweep case, a GC cycle
consists of root scanning, pointer traversal and sweeping.

It should be noted that during some of the phases (e.g., root scanning
and pointer traversal), performing GC work does not cause any mem-
ory to be reclaimed. Thus, a generic GC model for use in scheduling
analysis must assume that no memory is reclaimed until at the end of
the GC cycle. Compacting or copying garbage collectors typically have
this behaviour, whereas a non-compacting mark-sweep frees memory
continuously during the sweep phase.

Mark-sweep

Mark-sweep is the classic non-moving tracing collector. A GC cycle con-
sists of two phases: In the mark phase the object graph is traversed and
each visited object is marked as live. Then, during the sweep phase, all
objects on the heap are examined and those that have not been marked
are reclaimed.

Figure 2.6 shows an example of a heap before and after a mark-
sweep GC cycle. As it is a non-moving algorithm, the free space is
non-contigous after the GC cycle. The free blocks are typically linked
together to form a free list, just as in traditional memory allocators.

Stack
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� � �� � �� � �

After sweeping

Heap

Live object

Free memory

Dead object
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	 	 		 	 	Heap

After marking
Stack

Figure 2.6: Example of a heap before and after a mark-sweep GC cycle.

6The roots of the object graph are objects that are, by definition, live. The roots are
identified through root pointers — pointers located outside the garbage collected heap that
reference objects on the heap. Typical examples are pointers located in global variables or
variables on the stack.
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Mark-compact

Mark-compact, is a moving version of mark sweep, where the heap
is compacted in order to get one large contigous area of free memory,
which both avoids external fragmentation and makes allocation simpler.
The mark phase is the same as in mark-sweep, but instead of reclaiming
the dead objects, the live ones are moved. Compaction can be done in
different ways, and the one described in Figure 2.7 is sliding objects. In
the compact phase, for each “hole” in the heap, the next live object is
moved to the start of the hole, leaving one large chunk of free memory
at one end of the heap. When objects have been moved, references are
updated to point to the new location of the object.

Stack

Stack

Heap � � �� � �� � �� � � Live object
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� � � �� � � �� � � �� � � � � � �� � �
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After marking

Heap

Figure 2.7: Example of a heap before and after a mark-compact GC cycle.

Copying collectors

Copying collectors, or semi-space collectors, in their basic form, work by
dividing the heap into two halves. New objects are allocated in one
space, fromspace, until it is filled up. Then, the reference graph is tra-
versed and all live objects are evacuated into tospace. When an object is
evacuated, a forwarding pointer in the fromspace copy points to the new
location. When the heap is scanned, all encountered references pointing
to the fromspace copy of an opbject are updated to point to the tospace
copy. Finally, the spaces are flipped, so that the old tospace becomes
fromspace, and vice versa. After the flip, the new tospace contains one
big area of free memory. Figure 2.8 shows an example of a GC cycle with
a copying collector.
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Figure 2.8: Example of a GC cycle in a copying collector. First, the reference
graph is traversed and the live objects evacuated to tospace. Then, the flip is per-
formed, and the memory of (the old) fromspace is reclaimed. This is a schematic
illustration of the principle of operation. In a real collector, references are up-
dated as they are encountered during evacuation, and the relative positions of
objects may differ between fromspace and tospace.
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2.3.2 Incremental and real-time GC

In the first systems with automatic memory management, the applica-
tion program, or mutator7, allocated memory until there was no more
free memory. Then, the mutator was suspended and the garbage col-
lector performed a full GC cycle, reclaiming the unused memory. This
is commonly known as stop the world garbage collection, as the whole
application is stopped when the garbage collector is running. Another
term is batch GC. The obvious drawback of batch GC, from a real-time
perspective, is that the GC pauses, although infrequent, may be very
long, which is unacceptable in a system with hard timing constraints.
For such applications, long GC pauses can be avoided by making the
GC incremental.

Research within the field of incremental and real-time garbage col-
lection has been going on since the late sixties. In the earliest attempts to
implement non intrusive garbage collectors the GC work was split into
a number of very small increments which were performed interleaved
with the execution of the application [Bob68, Ste75, Wad76, DLM+78,
Bak78]. In order to guarantee progress of the garbage collector, a suitable
number of increments of GC work are performed in connection with
each memory allocation request, in proportion to the size of the request.
An example of such an algorithm is Baker’s algorithm [Bak78]. Let Fmin

denote the minimum amount of memory available for allocation dur-
ing a GC cycle, a denote the amount of memory requested, and Wmax

denote the maximum amount of GC work (according to a given metric
and corresponding unit) that might be required to complete a GC cycle.
Then, the size w of the GC work increment that must be performed in
connection with the allocation in order to guarantee that we do not run
out of memory before the GC cycle is complete is:

w ≥ Wmax ·
a

Fmin
(2.4)

Incremental GC triggered by allocation requests has at least two ma-
jor disadvantages. Firstly, even if the overhead incurred by a single GC
increment is small, a burst of allocation requests can lead to long accu-
mulated delays. Secondly, in order to keep the cost of each GC incre-
ment within a low upper bound we might need to use a complex GC

7The term mutator comes from that, from the collector’s point of view, the application
is a process that changes, or mutates, the reference graph. In the sequel, the terms mutator
and application will be used synonymously, when there is no risk of confusion. However,
from the view of the underlying OS, a Java application includes both the mutator threads
and the collector.
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work metric in order to decide when to end each increment, since a sim-
ple metric often gives a poor approximation of the temporal behaviour
of the garbage collector. For instance, if a metric based on measuring the
number of evacuated objects in a copying garbage collector is used , an
increment which should be short according to the metric can take a long
time to perform. The problem is that we might have to scan a significant
amount of pointers in order to find just one object to evacuate. Thus in-
creasing the performed amount of work according to the metric by one
unit may require a virtually unbounded amount of time.

Performing GC at the time of allocation does make it easy to prove
that the garbage collector will always keep up with the application, but
it also means that it suffers from the inherent problem of GC work al-
ways being performed when the mutator runs — thus causing interfer-
ence. The problem of GC work always being performed when applica-
tion threads run can be overcome by making the collector concurrent, i.e.
assigning the GC work to a separate GC thread executing in parallel with
the mutator threads. This is a strategy applied by a number of garbage
collectors, e.g. the Appel-Ellis-Li collector [AEL88], but it has not been
much used in real-time settings. Typically, in traditional concurrent col-
lectors, no provision is made for guaranteeing that the collector keeps
up with the allocation demands of the application.

Read and write barriers

When doing incremental garbage collection, the collector will operate on
the heap while the mutator is potentially modifying the pointer graph.
Therefore, mechanisms are required to ensure that mutator operations
does not cause live objects to be missed by the collector, and that the
operations of a moving collector does not cause dangling pointers in the
mutator. Such mechanisms are called read and write barriers.

As barriers are preformed at every reference access it has been as-
sumed that they, and especially read barriers, add a significant over-
head. Therefore, much work has concentrated on developing algorithms
that do not rely on barriers for synchronization between collector and
mutator. However, a recent study found that, in many cases, the aver-
age overhead of both read and write barriers was small, and that the
assumption is not always correct [BH04].

Read barriers are used in copying collectors, where reads of point-
ers to objects in fromspace are trapped in order to evacuate live objects
and/or update pointers into fromspace to point to the new tospace copy.
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Read barriers are also used in concurrent, moving collectors, like mark-
compact, to ensure that pointer dereferences always return the current
location of an object after it has been moved.

The current location of objects can be recorded in two ways. The first
is the forwarding pointer approach typically used in copying collectors,
where a field in the object header is used in fromspace objects to indicate
their new, tospace, location. Another possibility is to use an indirection
table outside the objects, where each object on the heap is pointed to
from an entry in the table. The mutator do all accesses to objects via the
indirection table, and thus, when an object is moved, only the table entry
needs to be changed, and not all references to the object.

Write barriers are used in incremental or concurrent mark-sweep col-
lectors to ensure that pointer updates during the mark phase cannot
cause too few objects to be identified as live. Write barriers can be ei-
ther of the snapshot-at-the-beginning or the incremental update type [Wil92,
JL96], where the former is the more conservative of the two, ensuring
that everything that was live at the start of the cycle will be retained.
The latter works on the principle of preventing pointers to unmarked
objects to be written into marked ones. An attempt to do so causes one
of the objects to be (re)queued for marking.

2.3.3 Semi-concurrent GC scheduling

In order to satisfy the demands of hard real-time systems, a technique
must be found to schedule the GC work of a concurrent GC such that the
application is guaranteed to meet all of its hard deadlines. Such a sched-
uling technique was presented by Henriksson in [Hen98]. That work
focuses on embedded systems which are assumed to have a number
of high-priority (typically periodic) threads that must meet hard dead-
lines. It can be observed that in most embedded systems, a relatively
small number of such threads exist. Apart from these, low-priority (pe-
riodic or background) threads are often executing with more relaxed
deadline requirements. This leads to the fundamental idea of Henriks-
son’s work, which is as follows: Do not perform any GC work when
the high-priority threads are executing. Instead, assign the work moti-
vated by high-priority allocations to a separate GC thread which is run
when no high-priority thread is executing. When invoked, it performs
an amount of GC work proportional to the amount of memory allocated
by the high-priority threads. Since the garbage collector may temporar-
ily get behind with its work in this way, there must always be an amount
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of memory reserved for the high-priority threads. Slightly modified
generalized rate monotonic analysis can be used both for calculating
the amount of memory which need to be reserved and to verify that
the garbage collector thread will always keep up with the high-priority
threads. Garbage collection work motivated by low-priority threads are
performed incrementally at allocation time. Since GC work is partly
performed concurrently and partly incrementally in such a system the
approach is called semi-concurrent scheduling. A system using this sched-
uling strategy can be described as having three levels of priority:

1. High priority processes

2. Garbage collection required to satisfy the high priority processes

3. Low priority processes and incremental garbage collection

Figure 2.9 shows how the CPU time will be used in a system with one
periodic high priority process and one low priority process.

Priority

LP/GC

HP

GC

HP

GC

LP/GC LP/GC

Time

Figure 2.9: Dividing the CPU time between processes. The system consists
of one periodic high priority process (HP) and one low priority process (LP).
Whenever a high priority process is suspended, and no other HP process is
eligible for execution, the garbage collector (GC) is run. GC work is also in-
terleaved with the low priority process using traditional incremental garbage
collection.

The effect of this scheme is that it makes it possible to guarantee hard
real-time performance for threads that actually require it in a system
scheduled by a fixed-priority scheduler. Since garbage collection work
is not performed while high-priority threads run we can allow ourselves
to use a more coarse garbage collection work metric without affecting
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real-time performance. An unnecessarily conservative metric will only
prevent low-priority threads without hard deadlines to execute as often
as they would prefer.

The approach still has some drawbacks, however. One drawback is
that it is not immediately suitable for systems with EDF schedulers. An-
other drawback is that it is necessary to do a fair amount of scheduling
analysis in order to tune the collector to a specific target platform.

2.3.4 Definitions

For clarity, this section and Figure 2.10 introduces the important terms
used in the discussion of garbage collection scheduling. The operation
of a GC is divided into GC cycles, and the time from the start (release)
of a GC cycle to the end is called the GC cycle time, denoted TGC. If
nothing else is stated, the end time (deadline) of a GC cycle is equal to
the release time of the following one. The execution time required to
complete the GC work of one GC cycle is denoted CGC. Scheduling of
GC is aimed at avoiding out-of-memory situations, and the analysis is
based on the amount of free memory, F , and the allocation rate, ȧ.

TGC(k)

Fs(k)

Fe(k)

ts(k) te(k)

ȧ

Free memory

Time

Figure 2.10: Definitions used when discussing GC scheduling. The start
and end time of a GC cycle is denoted ts and te, respectively and TGC(k) =
te(k) − ts(k) is the GC cycle time. Fs(k) = F (ts(k)) and Fe(k) = F (te(k))
is the amount of free memory at the start (end) of GC cycle k, and ȧ is the
allocation rate.
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2.4 Real-time Java for embedded systems

Recently, Java has become more widely used in real-time applications
and different solutions for developing and executing Java programs with
timing requirements have been developed. We will now briefly review
some of those.

Given a program, written in Java, there are basically two different
alternatives for how to execute that program on the target platform. The
first alternative is to compile the Java source code to byte code, and then
have a, possibly very specialized, Java Virtual Machine (JVM) to execute
the byte code representation. This is the interpreted solution (as required
to be Java certified) used today for Internet programming, where the tar-
get computer type is not known at compile time. The second alternative
is to compile the Java source code, or byte code, to native machine code
for the intended target platform.

From the real-time garbage collection perspective, the differences be-
tween the two approaches are not significant, and the contributions of
this thesis is applicable to both. The GC scheduling decisions are taken
at a higher level, and is not dependent on instruction-level differences
between platforms. There are also many similarities when GC imple-
mentation is considered. For instance, when a just-in-time (JIT) com-
piling JVM has compiled the byte codes to native code, this code is no
different — to the GC — from code that was compiled ahead of time.

2.4.1 Real-time virtual machine

In virtual machines for real-time Java, the trade-off between predictabil-
ity and performance becomes apparent. Just-in-time (JIT) compilation is
very hard to combine with real-time demands, and using an interpreter
typically has execution speeds 10 times slower than natively compiled
code. To improve performance, some JVM (e.g. mackinac [Mac04]) use
the JIT compiler to compile the application at initialization time. That
however, comes at the cost of a significantly larger memory footprint.
Also, the overhead of the JVM itself makes virtual-machine based solu-
tions unsuitable for small embedded systems.

In order to speed up execution, reduce memory footprint or improve
predictability, a number of hardware-assisted approaches to execution of
Java byte-code have recently been developed. By using a co-processor
to execute Java byte-codes, or by augmenting the instruction set of the
processor with Java instructions, performance similar to that of native
code can be achieved, without the overhead in time and space of a JIT
compiler.
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Most JVMs for the embedded market do not include real-time garbage
collection, but rely on other mechanisms for memory management, like
the scoped memory of the Real-time specification for Java (RTSJ) [B+01,
Wel04].

With more and more large, high-performance computers used in con-
trol applications, the range of platforms which are referred to as “embed-
ded” is vast. At the lower end of that range, virtual machines for embed-
ded systems with only a few kilobytes of RAM can be found, including
the Infinitesimal Virtual Machine (IVM) [Ive03] and SimpleRTJ 8. For
those systems, small memory footprint is the dominating design goal.

2.4.2 The Lund Java-based real-time platform

The Lund Java-based9 Realtime Platform (LJRT) makes it possible to
write hard real-time applications for small and medium sized embed-
ded computers, in a portable way, using standard Java. The LJRT plat-
form consists of two parts, the LJRT compiler and runtime system, and
the LJRT class library.

The set of target systems considered include small (350 MHz PPC
G3 with 32 MB ram) to very small (AVR µcontroller at 8MHz/32 kB
RAM) embedded computers. Therefore, we prefer ahead-of-time com-
pilation to using a JVM. One thing in common for almost all CPUs, is
that there exists a C compiler with an appropriate back-end. In the inter-
est of maintaining good portability while compiling Java to native code,
C is used as the intermediate language; The Java front-end generates C
code which, in turn, is compiled by a standard C compiler, as shown in
Figure 2.11.

The compiler and run-time system part is made up of three loosely
coupled components; the Java compiler, the garbage collector interface
(GCI), and the run-time system. The Java compiler ([Nil04, NIEH04])
generates C code where all heap object accesses are made through the
generic GCI ([IBE+02]) in order to provide an abstraction from the de-
tails of the different hard real-time garbage collector (GC) implemen-
tations ([Hen98, RH03]) that are part of the run-time system. To date,
the run-time system has been ported to real-time Linux/RTAI/Xeno-

8http://www.rtjcom.com
9The term Java-based is due to the fact that our way of accomplishing a J2SE-compatible

(any embedded program will run with the proper concurrency behaviour on any Java-
enabled desktop) real-time Java platform is not compatible with the Java license conditions
from Sun (we provide a real-time improved J2SE subset affecting the RTOS API without
going via the JCP and without requiring a JVM). Thus, we may not call our free solution
“Java”, so we call it Java-based.
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Figure 2.11: LJRT compiler overview: The application Java source, together
with the required classes from the standard library are translated to C by the
Java compiler. That C code, any native method implementations provided by the
user or the standard library, and run-time system code, GC, etc., is compiled
and linked to produce the executable.

mai with both user-space and kernel-space real-time threads on Pow-
erPC and Intel, the STORK real-time kernel on PowerPC, a locally de-
veloped real-time kernel for the ATMEL AVR series of microcontrollers,
and posix (for running in user-space, without hard real-time guaran-
tees). Porting to a new RTOS is quite simple and requires writing a small
number of native functions to interface with the RTOS system calls.

The LJRT class library is an open-source Java package containing
classes for real-time threads, semaphores, monitors, mailboxes, etc. The
LJRT library has both a pure Java implementation, allowing real-time
applications implemented using the library to be executed on any JVM
with proper concurrency behaviour, and native implementations, giv-
ing hard real-time performance on the target systems supported by the
LJRT run-time system. The dual implementations are transparent to the
user at the Java level, and the target-system specific features are auto-
matically inserted through the LJRT compiler and run-time system.
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Due to external requirements, we want to be able to use an off-the-
shelf RTOS as well as external, legacy or automatically generated, C
code. That, combined with using a standard C compiler as the back-
end, means that we cannot rely on detailed assumptions on the behav-
ior of the back-end C compiler or the thread scheduler, which makes
implementation of a real-time GC more challenging. For instance, it
means that any synchronization required between collector and appli-
cation needs to be done explicitly. It also means that the generated C
code must be written so that it ensures, in a portable way, that no back-
end optimization causes interference with the GC. The challenges of im-
plementing accurate real-time GC in an uncooperative environment is
explored in Chapter 7.

2.4.3 Multi-stage deployment of control software

For future control systems, there is a strong need for tools and meth-
ods supporting the development and deployment of control software.
To this end, we have proposed a method for developing hard real-time
software based on the standard Java language and multi-stage deploy-
ment and verification towards the embedded platform [RNNH06]. As
enabling technology, the LJRT platform is used, making it possible to de-
velop embedded Java software on the desktop using standard software
tools for implementation, testing, and verification, before deployment
onto the embedded platform.

Development of embedded real-time software adds complexity com-
pared to software development in general, as it typically includes writ-
ing, or interfacing to, proprietary hardware drivers (such as I/O), and
cross compilation, resulting in platform-related problems. In order to
mitigate these problems, it is desirable to separate platform concerns
from application development. The presented method for development
and deployment provides such a separation of concerns: The major part
of the application can be implemented and its correctness in logical and
concurrent behaviour verified, on the desktop, where building and exe-
cution is done using the standard Java SDK, and powerful development
tools are readily available. In this stage, any process I/O, etc., is simu-
lated. With the application working on the desktop, the move towards
the embedded target system is done in steps where cross-compilation,
drivers for I/O, and real-time requirements can be added and tested,
one at a time.
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While it is desirable to be able to do as much of the development and
testing of an application as possible in a standard desktop environment,
the subsequent port of the application to the hard real-time embedded
system can require a large effort if done in an ad hoc manner. Therefore,
we propose a method for doing the transition from desktop to target in a
series of steps, where only one parameter is changed in each step, in or-
der to facilitate verification of the different components, or identification
of problems.

The fundamental principle is that the source code of the application
should remain unchanged during all the stages of the deployment. What
is changed, as the desktop application gradually is moved towards the
embedded target, is, in turn, the class library, the compiler, the computer,
the I/O drivers and the thread model. When the tools and the platform
have been verified to work, it is possible to directly do the transition
from the simulated environment on the desktop, to the target system.
The major benefit of the intermediate steps is when things do not work,
or when doing verification (or development) of the platform. The possi-
bility of doing the deployment in several steps also makes it much easier
to pinpoint at what stage of the deployment an error occurs and, hence,
if the source of the error is in the application code, the tools, hardware
drivers, or the operating system.

As a case study, a motion controller for the IRB-6 robot was devel-
oped. On the desktop, the application was run, in simulated time, on
a standard JVM, with a virtual robot consisting of a simple dynamics
model and Java3D visualization ([HN99]). On the real robot, the pro-
gram was compiled to C code using the LJRT Java compiler and to na-
tive code with gcc. The target system was a Motorola MVME 2600-1
computer, with a 200MHz PowerPC G3 CPU and the operating system
was Linux/RTAI fusion10, version 0.9.1. Figure 2.12 shows the real robot
in the robot lab, and a screenshot of the virtual robot.

10Recently, the fusion branch of the RTAI project was moved into a separate project;
Xenomai. RTAI fusion v0.9 corresponds roughly to Xenomai v 2.0.
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Figure 2.12: The IRB-6 in the robot lab and its virtual counterpart.





CHAPTER 3

TIME-TRIGGERED GARBAGE

COLLECTION SCHEDULING

Traditionally, in order to ensure sufficient progress, incremental garbage
collectors have been scheduled based on the allocations of the applica-
tion — for each unit of allocation, a corresponding amount of garbage
collection work must be performed. This chapter presents a different
approach where time, instead of allocation, is used as the trigger for GC
work. That is, garbage collection is scheduled to make the GC cycle fin-
ish at a certain time, rather than after a certain amount of allocation.

In Section 3.2 an upper bound on the GC cycle time that ensures that
new memory is always made available in time is formulated. Section 3.3
presents the problems associated with traditional metrics used to mea-
sure garbage collection work, and argues that time should be used as
the unit for garbage collection work and that this is practically feasible.
Section 3.4 discusses how the process scheduling strategy affects a time-
triggered GC scheduler and it is shown how time-triggered GC can be
used to achieve the same objectives using a deadline-based scheduler as
the semi-concurrent scheduling strategy does in a fixed-priority system.

3.1 Introduction

In [Rob02] the idea of time-based garbage collection scheduling and hav-
ing a fix GC cycle length was introduced. That made it possible to deter-
mine how much memory will be allocated during a cycle or to reserve a
certain amount of memory for the next cycle while still making it possi-
ble to perform schedulability analysis and give real-time guarantees on
the run-time system in a straight-forward manner.
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In that work, a hybrid approach was used, where the GC schedul-
ing on the cycle level was time-based and the increments were sched-
uled using a traditional work metric in a fixed-priority scheduled sys-
tem. This chapter presents time-triggered garbage collection more thor-
oughly, and we will see that having an explicit GC cycle time simplifies
reasoning about more aspects of the memory system. It also mitigates or
circumvents certain problems associated with real-time scheduling of an
allocation-triggered GC. The main areas where time-triggered garbage
collection scheduling has impact are:

Concurrent GC in deadline-based systems: In order to schedule GC in
a way that we can give real-time guarantees while still disturbing
the mutator (application) threads as little as possible in a deadline-
based system, we want to be able to schedule the GC just as any
other thread. With time-triggered GC, this property is inherent in
the model, as the only scheduling parameter is the deadline, and
we explicitly specify the deadline of each garbage collection cycle.

GC work metric concerns: A traditionally scheduled incremental GC
relies on some kind of work metric to determine whether it is in
sync with the mutator or needs to perform more GC work. There-
fore, such a GC relies on the accuracy of the metric and using a
poor metric may cause poor real-time performance. Errors caused
by a poor metric can be avoided by using the optimal GC work
metric — the actual CPU time required to complete a GC cycle.
Additionally, with time-triggered GC, the actual scheduling is in-
dependent of the work metric1 and thus a poor metric does not af-
fect the real-time properties of the run-time system. This allows us
to separate the problems of schedulability analysis2 and run-time
scheduling.

Bursty allocation: Applications often show bursty allocation patterns.
This means that an allocation-triggered GC would have a bursty
execution pattern. Time-triggered GC scheduling does not have
this problem as GC work is scheduled so that each GC cycle fin-
ishes before its deadline, regardless of when the application per-
forms its allocations.

Unified GC scheduling: Garbage collection schedulers based on a tra-
ditional GC work metric are tightly coupled to the actual garbage
collector implementation. By using a time-based approach to GC

1This is not the case for semi-concurrent scheduling, see Section 3.4.
2That, of course, still requires worst-case execution time analysis.
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scheduling, it would be possible to separate the GC scheduler from
the GC algorithm; using time as both the trigger and the GC work
metric provides a simple interface between the GC and the sched-
uler. Also, as time is easy to measure directly, time-based GC
scheduling fits very well into a feedback scheduling framework.

3.2 GC cycle time calculation

With time-triggered garbage collection, there is no direct connection be-
tween the GC scheduling and the application, so the GC cycle time is the
only parameter that controls the progress of the garbage collector. Thus,
a time-triggered GC needs correct (or conservative) cycle time estimates
in order to make real-time guarantees as each garbage collection cycle
must be completed before the application runs out of memory. This sec-
tion shows how an upper bound on the GC cycle time, which guarantees
that the application never runs out of memory, can be calculated.

The following symbols will be used in this section: period time (T ),
frequency (f ), heapsize (H), total amount of allocated memory on the
heap (A), amount of memory allocated during this cycle (a), free mem-
ory (F ), live objects (L), floating garbage3 (G), amount of memory re-
claimed this cycle (r), the set of threads (P), and the maximum allocation
per period of thread j (aj).

Lemma 1. For a set of processes, P, with, for each thread j, frequencies fj ,
allocation requirements of aj bytes per period and F bytes of memory available
at the start of the GC cycle, it is guaranteed that the cycle will be completed
before the available memory is exhausted if the GC cycle time, TGC, satisfies

TGC ≤
F −

∑

j∈P
aj

∑

j∈P
fj · aj

(3.1)

Proof. A GC cycle must finish before the available memory at the start
of the cycle has been allocated. That is,

a =
∑

j∈P

⌈

TGC

Tj

⌉

· aj ≤ F (3.2)

where the ceiling is necessary to cover the worst case schedule. A slightly
stronger condition is

3Floating garbage is objects that are no longer reachable by the mutator but are still
believed to be live by the collector. For example, objects that die shortly after they have
been marked will not be reclaimed until in the next GC cycle.
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∑

j∈P

(

TGC

Tj
+ 1

)

· aj ≤ F (3.3)

Substituting fj = 1
Tj

we get

∑

j∈P

(TGC · fj + 1) · aj =

TGC

∑

j∈P

fj · aj +
∑

j∈P

aj ≤ F (3.4)

∴ TGC ≤
F −

∑

j∈P
aj

∑

j∈P
fj · aj

The amount of free memory needs some further discussion. Since
any incremental garbage collector suffers from the problem of floating
garbage, we must take that into account when calculating the worst case
amount of memory available at the start of a GC cycle (Fmin). Or put
differently, we may not be able to use all the free memory during a cycle
if we want to be sure that there is also enough memory for the next
cycle as the amount of memory that is reclaimed by the garbage collector
can vary from one cycle to another due to floating garbage. Let us now
examine floating garbage in more detail.

Lemma 2. Let an be the amount of memory that is allocated during the nth GC
cycle and Lmax be the maximum amount of live memory. Then, the sum of live
memory and floating garbage at the start of cycle n + 1 satisfies the inequality

Ln+1 + Gn+1 ≤ Lmax + an (3.5)

Proof. Let δn be the net change in live memory during cycle n:

Ln+1 = Ln + δn (3.6)

Let un be the amount of memory that becomes unreachable during cycle
n. Then,

δn = an − un =⇒ un = an − δn (3.7)

which gives

Gn+1 ≤ un = an − δn

Ln+1 = Ln + δn

}

=⇒ Ln+1 + Gn+1 ≤ Ln + an (3.8)

But ∀n, Ln ≤ Lmax, which concludes the proof.
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In order to make hard guarantees, we must determine the maximum
amount of memory that can be allocated during a GC cycle without risk-
ing that the system runs out of memory due to floating garbage.

Lemma 3. Let H be the heapsize and Lmax be the maximum amount of live
memory. Then, the maximum amount of memory that can be safely allocated
during a GC cycle is

amax =
H − Lmax

2
(3.9)

Proof. The heap contains allocated and free memory

H = A + F = L + G + F (3.10)

and therefore,
F = H − (L + G) (3.11)

Applying Lemma 2 to (3.11) gives that, at the start of any GC cycle,

F ≥ H − (Lmax + amax) = Fmin (3.12)

Thus, the worst case occurs when L = Lmax, and the remainder of the
proof makes this assumption. Then the system has to be in steady state4

and the maximum amount of floating garbage during a worst case cycle
is

GWC
max = amax (3.13)

An upper bound on the amount of memory allocated during a GC cycle
must, of course, not be greater than the minimum amount of available
memory so the trivial bound is amax ≤ Fmin. We will now prove the
equality. Objects that are floating garbage at the start of cycle n will
have been reclaimed by the start of cycle n + 1, which means that

Fn+1 ≥ Gn (3.14)

The amount of available memory at the start of cycle n + 1 is

Fn+1 = Fn − an + rn (3.15)

Cycle n is a worst case cycle (Fn = Fmin) iff the amount of floating
garbage at the start of the cycle is at the maximum (Gn = GWC

max). In the
worst case, rn = Gn, which corresponds to equality in (3.14). Applying
this to Equation (3.15) gives

Fn+1 = Fmin − an + GWC
max = GWC

max =⇒ an = Fmin (3.16)

4I.e., for each allocated object, another object becomes unreachable.
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Consequently, we can allocate all available memory during a worst case
cycle while still guaranteeing that the amount of available memory at
the start the following cycle is no less than Fmin. I.e.,

amax = Fmin (3.17)

Finally, equations (3.12) and ( 3.17) give

amax =
H − Lmax

2

Because the amount of floating garbage may vary, depending on
how the execution of the application and the garbage collector are in-
terleaved, the amount of memory reclaimed will also vary from cycle to
cycle. Therefore, we cannot always allocate all of the available memory
if we want to guarantee that the system never will run out of memory.
Consequently, the length of the garbage collection cycles must be calcu-
lated based on the worst case amount of available memory.

Theorem 1. For a set of processes with, for each thread j, frequencies fj , allo-
cation requirements of aj bytes per period and a maximum total amount of live
memory Lmax, it is guaranteed that every GC cycle will be completed before the
available memory is exhausted if the cycle time, TGC, satisfies

TGC ≤
H−Lmax

2 −
∑

j∈P
aj

∑

j∈P
fj · aj

(3.18)

Proof. The theorem follows from lemmas 1 and 3.

Remark. The term
∑

aj is typically very small compared to the amount
of memory available for allocation. (If not, heap occupancy is very high,
a situation which is generally avoided, as it causes GC thrashing, in-
creasing the CPU overhead of the GC.) Therefore, under normal circum-
stances, and for most practical reasons, it is safe to disregard this term,
to get the simplified expression

TGC ≤
H − Lmax

2 · ȧ
(3.19)

where ȧ is the total allocation rate of the mutator.

For an example of how varying amounts of floating garbage affects
the amount of available memory, see Figure 3.1. Note that, somewhat
counter-intuitively, the dangerous case is when there is less than the
worst case amount of floating garbage, as this could lead to a situation
where we allocate too much memory if care is not taken to avoid that.
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Assume that at the start of the nth GC cycle there is Lmax = 50%
live memory (black), G = 25 % floating garbage (dark gray) and
Fmin = 25 % (white) available memory:

When the free memory has been allocated, the floating garbage and
some of the objects that died during this cycle has been marked as
garbage that will be reclaimed in this cycle (light gray) and some of
the old objects become floating:

The GC cycle is concluded (i.e., the objects that are not to be reclaimed
are compacted and a continuous area of available memory is formed):
Note that during this cycle, we reclaimed more than Fmin:

Therefore, we cannot use all the free memory during cycle n + 1 as
that might result in less than Fmin available memory in cycle n + 2.
The solution is to reserve a part of the memory (striped) so that we
only allocate amax = Fmin.

at the end of cycle n + 1:

the cycle is finished and the reserved memory is made available:

This cycle, we reclaimed less than Fmin, but the amount of reclaimed
memory + the reserved memory = Fmin. Thus, the amount of avail-
able memory at the start of cycle n + 2 is Fmin and our worst case
assumptions hold.

Figure 3.1: Example of a how the amount of floating garbage may vary between
cycles and how our reservation strategy guarantees that there always will be at
least Fmin available memory at the start of a cycle.
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It may seem that the limit on the amount that may be allocated dur-
ing a garbage collection cycle may cause unnecessarily low memory uti-
lization but this isn’t the case; the limit on the amount of memory that
may be allocated during a GC cycle expressed in Equation (3.9) only af-
fects the cycle time calculations. It is true that in the best case (when we
have no floating garbage) at most half of the available memory is allo-
cated during a cycle, but this has nothing to do with the total memory
utilization. If the GC cycle time is reduced, the amount of allocation per
cycle — and, consequently, the maximum amount of floating garbage —
is also reduced. This means that if both high allocation rates and high
memory utilization is required, the GC cycles will be short, but as long
as Lmax < H and there is enough CPU time to accommodate both ap-
plication and GC, the system is guaranteed to work.

3.3 GC work calculation

In order to schedule an incremental or concurrent garbage collector so
that it will finish at a certain time or after a certain amount of memory
has been allocated, the amount of garbage collection work required to com-
plete a GC cycle must be known. We will now examine how GC work
can be expressed.

The purpose of a GC work metric is to use quantities that can be di-
rectly measured to approximate the temporal behaviour of the garbage
collector as closely as possible. However, somewhat surprisingly, the
real-time GC literature does not pay much attention to work metrics,
and is often content with using some high level abstraction, e.g., the
number of “scanned objects”, to measure GC progress. Scanning the
heap is defined as doing all the GC work to complete a GC cycle. Thus,
for a multi-pass GC, like for instance a mark-sweep collector, scanning
involves both the mark and sweep phases. This is a way of dodging the
metric problem altogether, as it does not define which quantities that
should be measured in order to calculate the GC work.

When studying incremental garbage collectors without hard real-
time requirements, the focus is on ensuring GC progress while keeping
the average GC pause time reasonably short. In a traditional, allocation
triggered garbage collector, when garbage collection work is performed
in conjunction with each allocation and in proportion to the size of the
requested object, it is enough to prove that the metric is conservative.
Unfortunately, when applying the same incremental techniques to real-
time systems, it is not enough that the GC work metric is conservative;
if we want upper bounds on GC pause times, we must also have upper
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bounds on how conservative the work metric is. If a poor metric is used,
a real-time algorithm may lose its real-time properties. For example, if
we have a copying collector and use the number of evacuated objects as
the work metric, we might reach a situation where we need to evacuate
one more object to complete the current increment. However, this may
— in the worst case — require us to scan all the remaining objects in the
heap before we find a pointer that causes that last object to be evacuated.
Thus, an unsuitable work metric causes the worst case amount of work,
in actual execution time, of an increment that is small according to the metric,
to be practically unbounded.

3.3.1 Traditional GC work metrics

For an allocation-triggered garbage collector, the minimum GC ratio,
Rmin, (in work units per allocated byte) that will ensure that the GC
cycle finishes before the mutator runs out of memory is

Rmin =
Wmax

Fmin

where Wmax is the worst case amount of work to complete a GC cycle
and Fmin is the worst case amount of available memory at the start of a
cycle. Let the current GC ratio (R) be the ratio between performed work
(W ) and allocated memory (A):

R =
W

A

In order to guarante that the GC finishes on time, we must ensure that
the invariant

R ≥ Rmin

is satisfied at all times. Now, the problem is, how do we express, and
measure, W ? A common work metric for copying collectors is the evac-
uation pointer metric, i.e., use the amount of evacuated memory as a
measure of performed GC work. Let ∆B denote the position of the
evacuation pointer relative to the start of tospace (i.e., the amount of
evacuated memory) and Emax the maximum amount of memory that
may need to be evacuated. Then, the amount of performed work, W ,
and the maximum amount of work during a cycle, Wmax will be

W = ∆B

Wmax = Emax
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Unfortunately, this metric doesn’t model the temporal behaviour of
the garbage collector very well. For each allocation, an amount of garbage
collection work, according to the metric, has to be performed. However,
since GC progress is measured in the amount of evacuated objects, any
GC activity that doesn’t cause new objects to be evacuated will not be
captured by the metric. For example, tracing objects that only contains
pointers to already evacuated objects will not increase W . In a worst case
scenario, evacuating one single object may require scanning all remain-
ing objects on the heap. Thus, this metric may, in the worst case, cause
an incremental collector to have a behaviour close to that of a batch GC.

This problem is described in [Hen98], and Henriksson presents an
improved evacuation pointer metric which also takes scanning of objects
and roots as well as initialization of reclaimed memory into account. The
improved metric, as used in his semi-concurrent GC scheduling, is

W = α · roots + β · ∆S + ∆B + γ · ∆P

Wmax = α · rootsmax + β · Emax + Emax + γ · MHP

where S is the amount of scanned memory and P is the amount of
initialized memory. The constants α, β and γ depend on the implemen-
tation of the algorithm and rootsmax and Emax depend on the applica-
tion and these have to be manually tuned in order to make the discrep-
ancy between the metric and the actual execution time as small as pos-
sible. For a compacting mark-sweep collector, a similar GC work metric
looks as follows

W = α · (roots + mark) + β · sweep + γ · compact

Wmax = α · (rootsmax + livemax) + β · heapsize + γ · livemax

On the other end of the scale are the concurrent algorithms that have
a separate GC thread which performs garbage collection in parallel with
the mutator. In this case, the collector thread is run without synchro-
nization with the mutator (in the sense that it does GC work until the
cycle is complete and then waits for another cycle to be triggered.).

3.3.2 Using time as the GC work metric

As the purpose of a GC work metric is to approximate the execution time
required to complete a GC cycle as closely as possible, the optimal GC
work metric is the actual execution time used and this is the approach
chosen here; using time as both the trigger for the garbage collector and
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as the GC work metric (I.e., the total GC work of a cycle is the CPU time
the system has to spend on performing garbage collection.) in the actual
run-time system. This has, to our knowledge, not previously been done.

By using time as the GC work metric, the amount of performed work
can be measured directly, which eliminates all errors in the performed
work metric. The total amount of CPU time required to complete a GC
cycle, has to be calculated using standard worst case execution time
analysis techniques5. Then the GC scheduling will be independent of
both the application and GC implementation and the problems with
bursty allocation patterns and imperfect GC work metrics are avoided.
An additional advantage is that no assumptions about the GC algorithm,
implementation or application behaviour are hard-wired into the GC
work metric6.

Another important result of using CPU time as the GC work metric
is that the GC work calculations are made on a per cycle instead of a per
increment basis. Thus, if the Wmax estimates are conservative, the addi-
tional overhead will be distributed evenly across the GC cycle instead of
causing individual increments to be too long as described above. Hence,
using time as the GC work metric helps mitigate the negative effects of
using a conservative GC work metric when using an incremental GC.

Also, using execution time as the GC work metric together with time-
triggered garbage collection scheduling makes it easier to integrate the
GC scheduling with the application process scheduler, since the two
scheduling parameters, execution time and deadline, are explicit in the
model. Thus, the GC thread can be scheduled like any other thread in
EDF as well as fixed-priority systems. It also fits well into a feedback
scheduling system, as it makes the execution time requirements of the
garbage collector explicit. Finally, it has the advantage that it makes it
possible to incorporate other factors that affect the GC execution time,
but are not directly tied to the garbage collection algorithm (e.g., caches,
pipelines, etc.) into the GC work calculations and measurements.

5Note that this requirement is no restriction in relation to traditional real-time garbage
collection techniques; if we want to be able to make hard real-time guarantees, we have
to do worst case analysis. If this is not possible, it may be better to use some adaptive
technique, as described in Chapter 4.

6Of course, these aspects affect the GC workload and has to be taken into account when
calculating the GC workload, but having a generic metric allows us to separate e.g., the
GC scheduler from the GC algorithm.
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3.4 Scheduling

This section discusses how time-triggered GC scheduling can be imple-
mented in fixed priority and deadline based systems, respectively and
how the general process scheduling policy affects the garbage collec-
tion scheduling. It also relates time-triggered GC scheduling to semi-
concurrent scheduling and handling of background tasks.

Based on the cycle time calculations presented in Section 3.2, we can
use standard scheduling techniques (e.g., RMS or EDF) and schedule
the GC as any other thread since the scheduling of individual GC in-
crements is implicit; the only real requirement is that the GC cycle has
ended and enough memory is made available before the application
runs out of memory. As the deadline is the sole scheduling parameter,
this means that the GC work calculations are only needed for schedula-
bility analysis and not for ensuring GC progress at run-time. Hence an
error in the metric alone cannot cause the GC to run too slowly, which
gives a more robust system. If the system is schedulable, the GC will
finish on time, without causing any other thread to miss its deadline.

In systems where hard real-time tasks co-exist with background tasks
without timing requirements, we want hard guarantees that the GC al-
ways will make memory available to the real-time tasks on time but we
also want to avoid unnecessary disturbance of the background tasks.
Conversely, we want to protect the GC from the background tasks in
the sense that allocations performed by a background task must not
cause the GC to miss its deadline or fail to make enough memory avail-
able. These problems are addressed by the semi-concurrent GC sched-
uling strategy. The effects of incorporating time-triggered GC and semi-
concurrent scheduling will now be examined.

When implementing a semi-concurrent garbage collector under the
aforementioned scheduling policies, the main difference is that in a fixed
priority system we must explicitly schedule each GC increment in or-
der to spread the garbage collection overhead evenly across the cycle.
That is, each time the garbage collector is invoked, it has to determine
how long that increment should be (according to the metric used) and,
when enough work has been performed, the GC must suspend itself
until the next increment is triggered. Otherwise, the garbage collector
thread might starve low priority threads for long periods of time. In an
EDF system, the scheduling of GC increments can be left to the process
scheduler, as there are no fixed priorities and, thus, no risk of starvation.

A consequence of the requirement that the garbage collector must
determine the length of each increment is that the actual scheduling will
depend on both the cycle time and the work metric. In an EDF system,
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the only scheduling parameter is the deadline, and the garbage collec-
tion thread can be scheduled like any other thread. Therefore the run-
time scheduling is independent of the work metric and worst-case anal-
ysis, which is a big advantage in practice, as worst-case analysis often is
based on measurements rather than exact analysis.

A problem with using allocation-triggered, concurrent GC in hard
real-time systems is that it is necessary to reserve a certain amount of
memory for allocations of the high priority processes. Without a safety
margin it is impossible to guarantee that schedulability will not be jeop-
ardized due to special effects near the end of GC cycles [Hen98].

The reason that a safety margin is required is that when using fixed-
priority scheduling, the garbage collector is never allowed to interrupt a
high priority thread. Without a safety margin, the system could reach a
state when there is memory left (and, thus, the cycle not yet finished) but
not enough memory for all of the allocations of a high priority thread
during its execution. Since GC work is suspended during the execu-
tion of high priority threads, activating a high priority thread at such an
instant would cause the system to run out of memory which, in turn,
causes “panic” stop-the-world GC. Therefore it was necessary to reserve
enough memory for the worst case allocation requirements of the HP
threads during the maximum response time of the GC thread.

With time-triggered GC, on the other hand, this would not be a prob-
lem. As the deadline of the GC thread is explicit in the model, traditional
schedulability analysis could be performed and the safety margin would
not be necessary.

3.4.1 Fixed priority scheduling

In a fixed priority system, a higher priority thread always get prece-
dence over lower priority threads. Therefore, a semi-concurrent GC
must spread the GC work evenly across the whole cycle and not do more
work in each increment than absolutely necessary, in order to avoid sub-
jecting threads that run with a lower priority than the GC thread to un-
necessary starvation and excessive jitter. Thus, some GC work metric
has to be used to determine if the garbage collector has made enough
progress.

Naturally, for a given GC cycle time, TGC , all the garbage collection
work required to complete a GC cycle has to be performed before TGC

seconds have elapsed. In order to ensure sufficient GC progress, the GC
scheduler must maintain the invariant

∑

w ≥ Wmax ·
t − tcycle start

TGC
(3.20)
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That is, the fraction of GC work performed should be greater than
or equal to the fraction of the cycle time elapsed. This corresponds to
Equation (2.4) on page 31 with time instead of allocations as the trig-
ger, on the right hand side. Scheduling garbage collection according to
this invariant ensures that progress will be made at a well-defined rate
regardless of if, and when, the application allocates memory.

3.4.2 EDF scheduling

The first property of semi-concurrent scheduling, non-intrusiveness, is
inherent in the EDF model; if the requested CPU utilization is less than
100%, all deadlines will be met.

The second property of the semi-concurrent model, isolating the high
priority threads from the low priority ones, and thus not having to do
worst-case analysis on the LP threads, can in an EDF system be achieved
by using Constant Bandwidth Servers (CBS) with the addition of a prior-
ity, or importance, attribute for the servers. Then, the HP and LP threads
in the semi-concurrent model would correspond to HP and LP servers.

In such a model, the threads running on HP servers would just do
allocations without any GC penalty, while the threads on the LP servers
would do incremental GC at allocation time. When incremental GC is
performed due to a LP allocation, both the deadline and execution time
of the GC thread should be decreased as the memory allocation has re-
duced the amount of available memory and the incremental GC work
has brought the GC cycle closer to its finish. Moving deadlines to an
earlier point in time is, however, not allowed in an EDF system in the
general case as this causes a temporary increase in the requested CPU
utilization and might lead to missed deadlines. This could be solved by
temporarily reducing the bandwidth of the LP server with a correspond-
ing amount or, if the remaining CPU time in the LP server’s budget is
too low, delaying the allocation that would cause incremental GC work
until the next CBS period. In practice, however, this is not a problem as
the GC cycles typically are much longer than the period times of the ap-
plication threads and therefore the deadlines and/or server bandwidths
can be adjusted at the thread release times when it is safe to do so.

Another way to make sure that the memory management overhead
never may cause the critical parts of the application to miss their dead-
lines is presented in Chapter 5. By introducing priorities for memory al-
locations, the run-time system is able to automatically prioritize memory
allocation requests (i.e., deny non-critical allocations) in order to guaran-
tee that the system will not run out of memory or become unschedulable
because of a too high GC workload. In essence, this can be viewed as di-
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viding the application into critical aspects, which are guaranteed to be
executed on time and non-critical aspects, which are only executed if it
is safe to do so.

3.5 Summary

A new way of scheduling garbage collection work in real-time systems
was presented; instead of using allocation as the trigger for GC work,
time is used, and instead of ensuring that every GC cycle finishes before
all available memory has been allocated, garbage collection is scheduled
in a way that gives a fixed GC cycle time.

This approach leads to a number of desirable properties: It makes it
easy to spread the garbage collection work evenly across the GC cycle.
Consequently, a time-triggered GC does not suffer from the bursty exe-
cution pattern, due to the application performing allocations in bursts,
that an allocation-triggered GC does.

As the most important scheduling parameter, the deadline, is explicit
in the model, a time-triggered GC can be scheduled as any other pro-
cess in both fixed-priority and EDF systems with real-time requirements.
It is shown how a GC cycle time that guarantees that the application
never runs out of memory can be calculated based on the amount of live
memory and allocation rate of the application.

The metrics used to measure garbage collection work in previous
real-time garbage collectors often fail to model the temporal behaviour
of the garbage collector which may cause poor real-time performance.
By using time as the GC work metric, such inaccuracies can be avoided,
as time can be measured directly. This also makes it suitable for use in a
feedback scheduling environment.





CHAPTER 4

ADAPTIVE GARBAGE

COLLECTION SCHEDULING

Worst case analysis is, in the general case, difficult even for relatively
small programs and for a concurrent garbage collector it is even harder,
as the execution time of the garbage collector not only depends on the
GC implementation and application code per se, but also on the thread
scheduling, which affects both how the application and GC are inter-
leaved and in what order memory allocations are performed and conse-
quently where on the heap the objects are placed. Furthermore, the ex-
ecution time of the memory manager depends on memory performance
which is a big source of non-determinism on a modern computer system
with caches, etc. Even if worst-case analysis could be performed it may
be quite pessimistic, leading to unacceptably low CPU utilization. Using
feedback control, on the other hand, makes it possible to exploit varying
resource utilization among the application threads, allowing better over-
all utilization of both CPU and memory. If the CPU overhead of memory
management is made explicit, in a feedback scheduling system, that in-
formation can be measured at run-time and taken into account when
scheduling the application threads1.

We will now investigate how a time-triggered GC can be made auto-
tuning by estimating the scheduling parameters of the GC thread at run-
time. Section 4.1 gives an introduction to the problem to motivate the
work, and gives an overview of the proposed approach. In order to
schedule a task, two parameters are needed; its deadline and its execu-
tion time. Section 4.2 shows how the cycle time can be automatically
tuned and Section 4.3 discusses how the amount of CPU time required
to complete a GC cycle can be estimated.

1An approach to incorporating an auto-tuning GC into a feedback scheduler is sug-
gested in Chapter 6.
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4.1 Introduction

Manual tuning of GC scheduling parameters is based on certain as-
sumptions about the heap usage pattern of a particular application. Tun-
ing a real-time GC requires a great engineering effort and is usually
only practically feasible for safety-critical, hard real-time systems with
a small number of simple processes and not for larger systems or sys-
tems with less rigorous safety requirements.

In order to achieve greater flexibility and allow a larger number of
diverse applications to run with adequate performance without requir-
ing huge engineering efforts to tune the GC, we investigate whether it
is possible to make the GC scheduler auto-tuning, which would let us
run applications with real-time performance without any a priori ana-
lysis. We should also not forget that hard real-time guarantees are only
as good as the worst case assumptions they are based on so if the worst
case estimates are wrong the system will fail even if the scheduling al-
gorithms and GC work metrics used are correct. This implies that using
an adaptive strategy may result in a more robust system compared to a
manually tuned system where the worst-case estimates have been found
using measurements and a safety margin.

The proposed adaptive garbage collection scheduling model consists
of two auto-tuners; the GC cycle time (deadline) and the GC work (ex-
ecution time) estimations. The cycle time estimation is used directly to
determine the deadline of the GC thread (which is used by the sched-
uler for the actual scheduling, either directly, as in the EDF case, or
indirectly, when using RMS scheduling). The execution time estima-
tion is only needed if the GC is to be used in a semi-concurrent system,
where it is needed to determine the length of the increments, or in a feed-
back scheduling system, where the execution time is used in the on-line
schedulability analysis required to guarantee that the system remains
schedulable.

In a system with garbage collection, allocations can be measured con-
tinuously whereas measurements of the heap state are only available
after the completion of a GC cycle. Therefore, the proposed approach
has the structure sketched in Figure 4.1. The scheduling parameters are
tuned based on measurements of the amount of available memory and
the allocation rate. The work function describing how the execution time
of the GC depends on the heap state is based on previous measurements
of the heap state and GC execution time.

In the cycle time tuning, a black-box view on the application is used;
the estimates do not depend on any information about the application
other than the allocation rate, which can be measured directly. The state
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of the memory manager, on the other hand, is quite important for the
execution time estimation and might therefore be necessary to take into
account, either through manual or automatic tuning. Section 4.3 dis-
cusses both a black box and a clear box approach to garbage collection
work estimation.

GC tuner
Scheduler/
Tasks

Heap Identification
ĈGC, T̂GC Memory operations Heap state

Available memory, Allocations

CGC

GC work function

Figure 4.1: Block diagram of an adaptive GC. Based on measurements of the
amount of available memory, the allocation rate of the application, the heap state
and the previous execution of GC, the cycle time and execution time of the GC
is estimated.

4.2 Automatic GC cycle time tuning

As we have seen in Chapter 3, a GC cycle length that ensures that the
application never runs out of memory can be calculated at design-time,
if the allocation requirements of the (high priority) mutator threads are
known. If that is not practical for some reason (for instance that the
application’s execution pattern varies greatly depending on operating
mode or that it should be run on many different platforms and we do
not want to do analysis for all possible target platforms, or even know
which platform it will run on) or if we want the GC scheduler to be
completely transparent to the developer, we have to use some adaptive
technique to automatically tune the GC scheduling parameters on-line.

When doing on-line tuning without any information about the ap-
plication, the fundamental problem is that the amount of live memory
and floating garbage is not known and must be estimated in a safe and
robust way. Section 4.2.1 examines, in more detail, the model for how
the GC cycle time can be automatically tuned without any a priori in-
formation about the application. Section 4.2.2 investigates how the GC
scheduling can be improved if some information about the behaviour of
the application is available; for instance, through feed-forward of mode
changes. The GC cycle length depends on the allocation rate, and as
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allocations typically are bursty, the allocation rate estimation must be
done carefully, which is discussed in Section 4.2.3. Feed-forward from
the mutator to the GC scheduler is discussed in Section 4.2.4.

4.2.1 Application-independent auto-tuning

The fundamental requirement on the GC cycle time is that each GC cy-
cle must finish before the application runs out of memory. In an on-line
GC tuner, that can be achieved by calculating or measuring the alloca-
tion rate (ȧ) of the application and extrapolating at which time all the
currently remaining free memory (F ) will have been allocated — the
deadline of the current GC cycle.

Let ts denote the start(release) time of the current cycle and te = DGC

the deadline of the GC cycle. The GC cycle must end before the time
when all free memory will have been allocated. Therefore, at time t ; ts ≤
t < te, assuming that ȧ is constant, we can extrapolate when all memory
has been allocated, and we get the constraint

te ≤ t +
F (t)

ȧ
(4.1)

which gives the cycle time

TGC = te − ts ≤ t +
F (t)

ȧ
− ts (4.2)

The simple model of Equation (4.2) will work if the same amount
of memory is reclaimed in each GC cycle but it suffers from the same
problems with floating garbage as the fixed deadline case discussed in
Chapter 3, although the symptoms are a bit different. With a fixed dead-
line, the system might run out of memory if the GC cycle time is too
long. In an adaptive system where the cycle time is tuned to ensure
that this does not happen, the problem is that the system might become
unschedulable. One example of this encountered during experiments
with this simple model is that if there, for some reason, is much floating
garbage during one cycle, little memory will be reclaimed during that
cycle2. Then, the following cycle will have to be very short and we get
a memory trace like the one shown in Figure 4.2. This could cause real-
time problems since the required CPU utilization of the GC will be much
higher during the short cycles than during the long ones, as the amount

2Variation in the amount of floating garbage is mainly a concern when using an
incremental-update GC. The conservatism of snapshot-at-the-beginning collectors will
give more floating garbage but less variations.



4.2 AUTOMATIC GC CYCLE TIME TUNING 63

of GC work is roughly the same3 in all cycles, but it has to be done in a
much shorter time in the short cycles.
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Figure 4.2: Example of a very short GC cycle caused by large amounts of
floating garbage.

In order to handle the worst case amount of floating garbage, mem-
ory must be reserved so that the allocations during the next cycle can be
satisfied even if no objects are reclaimed during the current cycle. I.e.,
the GC cycle must end before all available memory has been allocated.

Theorem 2. Let ˆ̇a(t) be an estimate of an unknown but constant allocation

rate, ȧ, such that ˆ̇a(t) ≥ ȧ . Then, for ts(k) ≤ t < te(k), the GC cycle will
be completed before the available memory is exhausted if the cycle time, TGC,
satisfies

T̂GC(t) =
1

2

(

t +
F (t)

ˆ̇a(t)
− ts(k)

)

(4.3)

Proof. Let ȧ(k) be the allocation rate during GC cycle k. Then, the amount
of memory allocated during cycle k is a(k) = TGC · ȧ(k). In the worst
case, no memory is reclaimed during cycle k, so a(k + 1) bytes must be
reserved for the following cycle in order to satisfy all allocations. I.e., the
requirement is that

Fs(k + 1) ≥ TGC · ȧ(k + 1) (4.4)

During cycle k, i.e., for ts(k) ≤ t < te(k), the amount of memory avail-
able at the start of cycle k + 1 is

3Of course, this depends on the garbage collection algorithm as well as on implemen-
tation details. However, the execution time of a garbage collector typically depends on
both the amount of retained and reclaimed memory. Even algorithms where there is no
explicit free operation, like for instance a copying collector, have a fraction of the cost that
is proportional to the amount of reclaimed memory if, e.g., the initialization of memory is
taken into account.
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Fs(k + 1) ≥ F (t) − (te(k) − t) ȧ(k) (4.5)

with equality in the worst case, that no memory is reclaimed during
cycle k. Using the equalities in (4.4) and (4.5) we get

TGC · ȧ(k + 1) = F (t) − (te(k) − t))ȧ(k) (4.6)

∴ te(k) = t +
F (t) − TGC · ȧ(k + 1))

ȧ(k)
(4.7)

Thus, the GC cycle time estimate is

TGC = te(k) − ts(k) = t +
F (t) − TGC · ȧ(k + 1))

ȧ(k)
− ts(k) (4.8)

which can be rearranged as

TGC =
F (t) + (t − ts(k)) ȧ(k)

ȧ(k) + ȧ(k + 1)
(4.9)

If the allocation rate is constant, i.e., ȧ(k + 1) = ȧ(k), we get (4.3).

If the allocation rate is constant, this means that we should reserve
half of the available memory at the start of the current cycle for the al-
locations during the next GC cycle. Doing so guarantees4 that we can
handle the worst case, when all the objects that die during a cycle be-
come floating garbage and will not be reclaimed until at the end of the
next GC cycle. Figure 4.3 shows how the memory trace of the floating
garbage example would look with the reservation strategy in place; the
cycles are shorter and the floating garbage anomaly in the first cycle has
much less impact on the GC cycle lengths.
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Figure 4.3: Example of how reserving memory for the next cycle mitigates the
problems of floating garbage depicted in Figure 4.2.

As GC cycles are shortened, the number of GC cycles increase and
consequently the incurred GC overhead increases. However, as we do

4Given, of course, that the total amount of live memory is smaller than the heap-size.
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not use all of the heap, the additional overhead is not as big as it would
seem. Also, only allocating at most half of the available memory each
GC cycle might seem wasteful, but this is the price we pay for incre-
mentality. It should, however, be noted that this reservation strategy
only affects the length of the GC cycles and not the overall memory uti-
lization. If, for instance, the amount of allocated memory is 80% of the
heap, the GC cycle length would be set so that 10% of the total memory
is reserved for the next cycle.

In (4.3), it is assumed that the allocation rate is constant. For a typi-
cal control system with a number of periodic threads running the same
control algorithm every sample, that is a reasonable assumption, and in
experiments, the GC cycle time estimates have been stable and accurate.
Also, note that the assumption that ȧ is constant only means that TGC is
chosen to ensure that the allocations can be satisfied at the current rate.
If the allocation rate changes, the auto-tuner will change the TGC esti-
mate according to the new allocation rate, to ensure that all allocations
can be satisfied under the assumption that allocations will continue at
the new rate.

4.2.2 Using information about the application

If the GC cycle times are tuned according to Equation (4.3), the risk of
running out of memory due to floating garbage is reduced, but the cycle
times, and thus the CPU utilization of the GC will vary if there are big
variations in the amount of floating garbage. In particular, the GC cy-
cle time estimates will, in the average case, be quite conservative. This
is due to the fact that if the GC cycle time tuner has no information
about the behaviour of the mutator, it cannot differentiate between an
unusually large amount of floating garbage and an actual increase in the
amount of live memory, where the former should not affect the GC cycle
time, but the latter should. Therefore, under the proposed strategy, it
must always ensure that no more than half of the available memory at
the start of a cycle is used during that cycle. That means that in the ex-
treme case that nearly all of the objects that die during a cycle becomes
floating garbage, the cycle time estimate will be halved, as shown in Fig-
ure 4.3. That is, of course, better than without any reservation strategy,
but still unnecessarily conservative.

Based on this observation, we will now see how having information
about the behaviour of the mutator can improve the GC cycle time esti-
mates. In common special cases, additional information about the state
of the mutator and memory system allows using a less conservative GC
cycle time estimate. Such special cases include when the application
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is known to be in steady-state, and allocation and release of large data
structures, including creation and deletion of processes.

If the system is known to be in steady-state, the amount of live mem-
ory is constant5. Then, the variations in available memory at the start
of GC cycles are due to variations in floating garbage. The example in
Figure 4.4 shows how this information can be used to avoid unnecessary
changes to the GC cycle time.

F
re

e
m

em
o

ry

Time

∆G

Figure 4.4: Example of how information about the amount of floating garbage
allows a less conservative GC scheduling strategy. If we know that the system
is in steady state, the difference in free memory at the start of the cycles is due
to floating garbage. Thus, during the second cycle, we know that at least ∆G

bytes will be made available after the cycle and we can allow allocation of more
than half of the available memory.

Similarly, information about changes in the amount of live memory
can be used. While performing worst case live memory analysis in the
general case is very difficult, programmers — especially when devel-
oping real-time and embedded systems — will have a reasonably good
idea about what persistent data structures each process uses. If a mode
change requires some data structure to be allocated or causes some other
data structure to go out of scope, this is typically known at design time.
By informing the GC tuner about this, it can react to the changes in the
amount of live memory sooner and in a more accurate way 6. One spe-
cial case is when a process is created, the amount of live memory will
increase at a well-defined point in time. Conversely, when a process
dies, the amount of live memory will decrease. Typically, a process has
a set of persistent objects. E.g., in a control system, a process will typi-
cally create a set of objects for inputs, outputs, and control algorithms,

5In practice, that is merely an approximation, as a fraction of the allocated objects are
used for temporary results and not for persistent data, which adds small, high-frequent,
variations to the amount of live memory. Still, if the GC cycle time is much longer than the
period times of mutator processes, the impact of temporary objects will be small.

6Having a hint about object liveness is much less dangerous than explicit (manual)
deallocation; the former only affects the scheduling of garbage collection, whereas the
latter may cause dangling pointers and memory leaks.



4.2 AUTOMATIC GC CYCLE TIME TUNING 67

and the size of these may be found by compile-time analysis, especially
if doing whole-system compilation.

Just as in the case where the system was known to be in steady state,
if the amount of live memory has changed by a known amount, sim-
ilar reasoning can be used, with the addition of taking the change in
live memory into account: If there is less memory available at the start
of a GC cycle than at the start of the previous one, the sum of floating
garbage and live memory has changed, and if the change in live memory
is known, the change in floating garbage can be calculated.

From the preceding discussion we see that information about changes
in the amount of live memory, or knowing that the application is in
steady state, makes it possible to estimate the amount of floating garbage.
With that information, the GC cycle time estimates can be less conserva-
tive, allowing more uniform resource utilization. We will now formalize
that idea. In order to reason about differences in the amount of memory
reclaimed in different GC cycles, the amount of free memory just after
the reclaimed memory has been made available is used. For convenience
and clarity of the presentation, let Fs(k) = F (ts(k)) denote the amount
of free memory at the start of GC cycle k.

If information about the state of the memory system is available, it is
possible to generalize Theorem 2 slightly.

Theorem 2a. Let ˆ̇a(t) be an estimate of an unknown but constant allocation

rate, ȧ, such that ˆ̇a(t) ≥ ȧ, and ∆Fff (k) ≥ 0 an amount of memory that is
known to be reclaimed during GC cycle k. For ts(k) ≤ t < te(k), the GC cycle
will be completed before the available memory is exhausted if the cycle time,
TGC, satisfies

T̂GC(t) =
1

2

(

t +
F (t) + min(∆Fff (k), Fs(k))

ˆ̇a(t)
− ts(k)

)

(4.10)

Proof. If at least ∆Fff (k) will be reclaimed during cycle k, then

Fs(k + 1) ≥ F (t) − (te(k) − t) ȧ + ∆Fff (k) (4.11)

In order to satisfy the allocations of cycle k + 1, it must hold that

Fs(k + 1) ≥ TGC · ȧ (4.12)

In analog with the proof of Theorem 2, that gives

TGC =
1

2

(

t +
F (t) + ∆Fff (k))

ȧ
− ts(k)

)

(4.13)
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However, as the GC cycle must still end before the available memory
is exhausted, another condition is that

F (t) − (te(k) − t)ȧ ≥ 0 (4.14)

which, by using te(k) = TGC + ts(k) and reorganizing gives

F (t) − ∆Fff (k) + (t − ts(k))ȧ ≥ 0 (4.15)

But if ȧ is constant, F (t) + (t − ts(k))ȧ = Fs(k) and thus (4.13) is safe if
∆Fff (k) ≤ Fs(k).

Otherwise, as any reclaimed memory will not be made available un-
til in the next GC cycle, the compensated GC cycle will be too long, and
the system will run out of memory. Therefore, if ∆Fff (k) > Fs(k), the
compensating term must be limited. (4.2) is an upper bound on the fea-
sible GC cycle times. I.e., the GC cycle time must satisfy the constraint

TGC =
1

2

(

t +
F (t) + X

ȧ
− ts(k)

)

≤ t +
F (t)

ȧ
− ts(k) (4.16)

where X is the compensating term. Reorganizing gives

X ≤ F (t) + (t − ts) ȧ (4.17)

and, for a constant allocation rate, that is equivalent to

X ≤ Fs(k) (4.18)

which obviously is satisfied for

X = min(∆Fff (k), Fs(k)) (4.19)

Thus, the amount of memory reserved for cycle k + 1 can safely be re-
duced by min(∆Fff (k), Fs(k)).

Given information about the behaviour of the application, the amount
of floating garbage can be estimated, and Theorem 2a can be applied in
order to reduce conservatism in the GC cycle time.

Theorem 3. Let ∆L(k) be the net change in live memory during GC cycle k.
For ts(k) ≤ t < te(k), a safe upper bound on the GC cycle time is

T̂GC(t) =











t+
F (t)+min(∆G(k−1),Fs(k))

ˆ̇a(t)
−ts

2 ; ∆G(k − 1) > 0

t+ F (t)+
ˆ̇a(t)

−ts

2 ; otherwise

(4.20)

where
∆G(k) = Fs(k) − Fs(k + 1) − ∆L(k) (4.21)
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Proof. First, consider the change in floating garbage. The heap contains
live objects, garbage, and free memory: H = L+G+F . As the heapsize,
H , is constant, comparing the heap state at the start of GC cycles k and
k + 1, respectively, gives

Ls(k) + Gs(k) + Fs(k) = Ls(k + 1) + Gs(k + 1) + Fs(k + 1) (4.22)

Introducing the symbols ∆L and ∆G and rearranging gives (4.21). Now,
for the GC cycle time:

(i) If ∆G(k − 1) > 0, the total amount of floating garbage in cycle
k − 1 must have been at least ∆G(k − 1). As floating garbage will
be reclaimed in the following cycle, the amount of memory made
available before the start of cycle k +1 must also be greater than or
equal to ∆G(k − 1), and the result follows from Theorem 2a.

(ii) If ∆G(k − 1) ≤ 0, nothing is known about the absolute amount of
floating garbage, and TGC must be estimated according to Theo-
rem 2.

Remark. Equation (4.21) estimates the amount of floating garbage based
on knowledge about changes in the amount of live memory and the dif-
ference in free memory in two GC cycles. That estimate can be improved
by using a longer time horizon: If the system is in steady state, a high-
water mark of the amount of free memory at the start of a cycle since
the system entered steady state gives a minimum for the sum of live and
floating objects. Thus, by comparing the current amount of free memory
with the high-water mark, a less conservative estimate of the amount of
floating garbage is obtained. I.e., if the system has been in steady-state
since cycle j < k, (4.21) can be replaced by

∆G(k) = max
i∈[j,k]

{Fs(i) − Fs(k + 1)} (4.23)

If feed-forward information about changes in the live memory amount
is available, the high-water mark must be adjusted correspondingly.

4.2.3 Estimating allocation rate

In the preceding discussion, it was assumed that the allocation rate, or
a conservative estimate of it, was available. We will now briefly exam-
ine some properties of allocation rate measurement and how such an
estimate can be obtained.

As allocations are discrete events, there is, by definition, no instan-
taneous allocation rate that can be measured, so for any discussion, an
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average allocation rate must be used. Allocations are carried out at ar-
bitrary places in the mutator code, so on a short timescale the allocation
rate will vary with very high frequency. The GC cycle tuner will typi-
cally run at a much slower rate than this, and therefore the allocation rate
measurements can be viewed as slow sampling of a signal with high-
frequency components. Thus, there is a risk that those high-frequency
components introduce low-frequency noise into the allocation rate mea-
surement, through aliasing. Also, if there are multiple processes, and the
variations happen to be aliased into frequencies that are close, the effect
can be exagerrated by interference beating [AW97].

The allocation rate estimate is used to determine the GC cycle time,
so the estimate must not be too low as that may cause the application to
run out of memory. Therefore, using simple averaging or a normal low-
pass filter is not suitable, as it may smooth out steps in the allocation
rate, leading to temporary under-estimation. One method that is simple
to implement and has proven to work well in practical experiments is
to periodically measure the amount of allocated memory, and filter by
using the maximum (averaged over a certain time window) allocation
rate, combined with a forgetting factor for the max value, to give suitable
responsiveness to changes.

By using feed-forward, the estimation can be improved. If threads
are periodic, and execute the same code in each invocation, the alloca-
tion rate (expressed as allocations per period) can be measured exactly
by simply recording the allocations performed by each thread from one
release to the next. In that case, there will be no aliasing, as the sampling
is synchronized with the allocations. By measuring the allocation rate
seperately for each periodic thread, interference effects are eliminated.
If there are small variations, that can be detected and handled by some
filtering (max + a forgetting factor). In addition, if the memory man-
ager is informed about changes to the allocation rate, measurements can
be low-pass filtered in order to reduce noise, while still reacting quickly
to actual changes. Also, if it is known that a particular allocation is a
one-time occurence (e.g., allocating a large persistent data structure at
start-up), it should not affect the allocation rate estimate (although it
may affect the amount of live memory).

4.2.4 Feed-forward from the application

The results in Section 4.2.2 are based on having information about the
operation of the application. In order to satisfy that requirement, this
section sketches a set of feed-forward operations for both qualitative and
quantitative information about the memory usage of the mutator.
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Qualitative feed-forward

The feed-forward has to be provided by the mutator code, where the
feed-forward instructions have to be inserted manually or, perhaps, au-
tomatically by a tool. In order to be practically feasible, the amount of
analysis required for finding the feed-forward information must be kept
at a minimum, and therefore, a model requiring only qualitative infor-
mation about the mutator behaviour is desirable. As we have seen, the
simple information about whether the application is in steady state or
not is quite valuable to the on-line auto-tuner.

If all threads are in steady state, the amount of live memory is con-
stant (i.e., ∆L = 0), and Theorem 3 may be used. If one or more muta-
tor threads are in a transient state, the GC cycle time estimate must be
done according to Theorem 2 until the finish of the GC cycle after the one
where all threads had returned to steady state. Conversely, during the
GC cycle when a thread enters the transient state, the amount of floating
garbage from the cycle before is known, and is known to be reclaimed
at the end of the cycle, and the GC cycle time may be calculated using
Theorem 3.

Mode changes can cause transients in the memory usage pattern of
an application. As discussed, the only continously available measure-
ments the GC auto-tuner can use is allocation rate and amount of allo-
cated memory. Large one-time allocations e.g. at the start-up of a thread
or at a mode change may cause spikes in the allocation rate measure-
ment, leading to changes in the GC scheduling. Such effects can be mit-
igated with information that a certain memory allocation is a one-time
occurrence.

If the GC scheduler knows that a thread is executing periodically,
that can be used to improve allocation rate estimations. That informa-
tion is often available, as many real-time operating systems has a spe-
cial type of thread or process for periodic tasks. Additionally, threads
which are not periodic in the usual real-time programming sense, may
execute periodically. One example of such a thread is a controller in a
distributed control system, receiving measurements from a remote node,
over a network, as sketched in Figure 4.5. In the code, the controller is
not a periodic thread, it is simply blocked waiting for the next package
on the network. However, if the sampling thread on the remote node
is periodic, network packages will arrive periodically and the controller
will effectively be periodic. The period time can either be measured, by
recording release times, or explicitly fed forward from the application.
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while(!interrupted()) {
Sample s = receiveSample(); // Blocking call
Control c = compute(s);
output(c);

}

Figure 4.5: Simple example of a main loop of a controller thread in a distributed
control system. This code is not periodic per se. However, if samples arrive at
a fixed rate, it will be effectively periodic.

Quantitative feed-forward

For a thread that is known to be periodic, the period time is also often
known, either at design time, or — in a feedback scheduling system —
at run-time. For effectively periodic threads, where the period time isn’t
known locally, it is useful to explicitly state this information which is
available somwhere in the system. Also, if period times are changed at
run-time, it is better to feed forward this information at the time of the
change than waiting for it to show up in measurements.

If a mode change is known to affect the amount of live memory, that
information can be used to improve the GC scheduling, as in Theorem 3.
As discussed, in embedded systems development, the programmer is
often required to know the memory requirements of an application to
ensure that there is enough memory in the system. The memory usage
figures could also be obtained by a worst case analysis tool. Using the
approach taken e.g. in [Per99], annotations can be used to perform the
analysis for the different modes of operation.

4.3 GC workload prediction

As discussed in Chapter 3, using semi-concurrent GC in a fixed-priority
system requires good estimates on the total amount of GC work that
must be performed to complete a GC cycle as the scheduling of GC in-
crements depends on it7. Also, in feedback scheduling systems, on-line
schedulability analysis is performed and the allowed CPU time utiliza-
tion of the application threads is tuned to keep the total requested CPU
utilization at the setpoint. Therefore, in such systems, it must be possible
to determine how much CPU time that is required in order to complete

7However, for the real-time performance of high priority threads, it is enough that it is
conservative; over-estimating the CPU requirement of the GC only leads to (temporary)
starvation of background threads.
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a GC cycle. It is important that the GC work estimates are not too low
since this might cause us to allocate too large a fraction of the CPU time
to the mutator, causing the GC thread to miss its deadline, which might,
in turn, cause an out-of-memory situation and stop-the-world GC. The
estimates should also not be too high in order to avoid unnecessarily
low CPU utilization and undue disturbance of low priority threads.

Thus, in an adaptive system, the role of the workload estimation is
to feed-forward information about changes in required CPU utilization
to the scheduler, so that any necessary change in scheduling parameters
may be done before the measured CPU utilization gets too high. Also,
in an adaptive system, there are no absolute guarantees, but rather a
trade-off between safety and performance, and GC work prediction can
be more or less conservative. Techniques for producing both tight and
conservative CGC estimates will be discussed.

In many cases, the occasional under-estimation is not a problem; As
stated, feedback scheduling works on the principle of measuring actual
CPU utilization and changing scheduling parameters in order to handle
overload conditions, and is therefore inherently robust to overload. This
is reinforced by the fact that the TGC estimates are based on worst case
assumptions and therefore usually are conservative, giving some slack
in the schedule. Conversely, if a conservative CGC estimate is used, the
resulting slack in the schedule is not wasted, but can be utilized by the
mutator if the FBS is aware of when the GC is running and when it is
idle.

4.3.1 Black box estimation

A black box model doesn’t use any information of the internals of the
memory manager and only tries to predict the future execution times
based on the history. This has the advantages that it is fairly easy to
implement and that it, by design, is independent of the actual garbage
collector used.

A simple scheme which has been experienced to work fairly well in
practice is to estimate the GC cycle execution time with the highest value
during the last n cycles. Another alternative is to use e.g. a moving av-
erage filter, but that has a greater risk of under-estimating the execution
time, where using the max value tends to be conservative.

The main drawback of any such approach is that it cannot take ad-
vantage of any information the memory manager has about application
behaviour or system state and thus will react poorly to transients.
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4.3.2 Clear box prediction

In a clear box approach, the principle is to measure a number of param-
eters of the memory system, and, using some automatic system identi-
fication technique, determine how they affect the execution time of the
GC. That requires a more detailed interface between the GC scheduler
and the memory management system.

In order to predict the amount of GC work, a GC work metric is
required, expressing GC work as a function of the state of the heap

CGC = f(Sh). (4.24)

Given the structure of GC algorithms, it is reasonable to approximate
the work required to perform a GC cycle with a linear combination of
the components of Sh. For instance, the time required to mark all ob-
jects is proportional to the number of live objects, the time required to
evacuate live objects depends on the size of the live memory, initializa-
tion of memory depends on the amount of dead memory, etc. Thus, an
approximation of the GC workload can be expressed as

CGC = K Sh (4.25)

for some vector K , which is identified on-line. Given a function f , or
coefficient vector K, the GC work estimate only depends on the heap
state, and not on any internal state of the GC. This facilitates the devel-
opment of a well-defined interface between the memory manager and
the GC scheduler, which makes it possible to separate the two problems
and, hence, implement a generic GC scheduler that can be automatically
tuned to fit different GC algorithms.

In order to estimate the amount of CPU time required to perform the
GC work needed to finish a GC cycle, there are a number of problems;
we need to

Measure and predict the heap state: In its most simple form, only the
amount of available memory is measured. A more detailed model
would take into account the amount of live memory, dead objects
and other quantities that affect the execution time of the GC (e.g.,
the number of pointers that need to be traversed, the number of
objects that will be relocated, etc.).

Measure the amount of performed GC work: This can be done in a quite
straight-forward manner if we use time as the GC work metric,
provided that we have control over the process scheduler and have
access to a high resolution timer. Some operating systems also pro-
vide execution time statistics.
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Identify a GC work function: In order to predict the amount of GC work
required to complete a GC cycle, a function from heap state to
GC execution time has to be identified. If a linear model is as-
sumed, the problem becomes on-line estimation of the elements of
K, given past measurements of CGC and Sh, which can be done
e.g. with a recursive least squares algorithm [AW89].

Estimate the total amount of GC work in a cycle: Finally, based on the
other estimates, the total amount of work required to complete a
GC cycle is estimated by inserting the predicted heap state into the
identified work function.

Measuring and predicting heap state and predicting CGC will now be
discussed in more detail.

Measuring and predicting heap state

Of course, it is not practically feasible to use the state of the heap per
se when calculating the amount of GC work and therefore an abstract
model is required. Objects allocated on the heap are either live or dead,
but may float for one cycle, which leads us to the following abstract
representation of the heap state:

Sh =

















# live objects

# live bytes

# dead objects

# dead bytes

# floating objects

# floating bytes

















(4.26)

A problem with garbage collection is that some aspects of the heap
state, like for instance the amount of live or dead memory, can only be
observed at the end of GC cycles. Even worse, with an incremental GC, it
is not possible to distinguish between live memory and floating garbage.
Therefore, the heap state cannot be measured directly, but must be cal-
culated based on what can be measured. It is possible to formulate a
dynamic system that, under certain assumptions, is observable. How-
ever, for a system with n states, it takes at least n samples for the error
to reach zero. In this case, samples equals GC cycles, meaning that the
model would be quite slow. Combined with the noisy measurements
(e.g. due to floating garbage) such a detailed model would be problem-
atic in practice.
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Also, (4.26) fails to capture two important factors; the actual place-
ment of the objects on the heap, and the distribution of references in
objects. The placement of objects affect the GC workload since it affects
which objects needs to be moved in a compacting collector or the degree
of fragmentation in a non-moving GC. However, taking object place-
ment into account would essentially mean using the entire heap itself as
the heap state representation. The reference content of objects affects the
time required to trace the live object graph, with the extremes being data
arrays at one end of the spectrum, and reference arrays at the other.

Therefore, using (4.26) as an abstraction of the heap state and at-
tempting to predict it by simulating a dynamic system appears prob-
lematic for two reasons. Using an observer to reconstruct many states
limits how quickly the model can react to changes, and the approxima-
tions done still leaves out important aspects that affect the GC workload.

We need some way of predicting Sh based on quantities that can be
measured. Therefore, the approach taken here is to use a simplified heap
state representation, only using the number of live (L) and dead (D)
bytes and not taking object sizes into account8.

Sh =

[

L

D

]

(4.27)

Then, in principle, the heap state can be predicted by finding the prob-
ability of a memory cell being live or dead, respectively, and applying
that to the total amount of allocated memory (A):

L̂ = P (Live) · A (4.28)

and
D̂ = P (Dead) · A (4.29)

That has the advantage that while L and D cannot be observed directly,
A can be measured at any time. However, what is interesting for predict-
ing CGC(k) is a prediction of the amount of allocated memory at the end
of the GC cycle, Ae(k), which can be predicted by extrapolation similar
to that in the TGC calculation:

Âe(k) = As(k) + TGC(k) · ȧ (4.30)

The prediction of L and D is then given by inserting that value into (4.28)
and (4.29).

8The terms live and dead memory are actually not very accurate in this context; what is
interesting for the amount of GC work is what the garbage collector thinks is live and dead
memory. In this presentation, the terms live and dead should be understood as synonyms
for retained and reclaimed, respectively.
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Now, P (Live) and P (Dead) must be found. Excluding startup, typ-
ical embedded or other long-running programs with a well-defined set
of tasks can be expected to behave quite similarly from one GC cycle to
the next. For such systems, the fraction of live (dead) memory in the
previous GC cycle(s) can be used: P (Live) = L

A . Robustness against
variations in live and dead memory due to e.g. floating garbage can be
achieved by adding low pass filtering using the maximum, median or
mean observed value, and responsiveness to actual change by using a
forgetting factor for reducing the weight of old measurements.

A potential problem with using only the amount of live and dead
memory is that if the GC work function have been identified on-line,
based on past measurements of L, D, and CGC, there is no guarantee
that the function will be valid if the distribution of objects changes, as if
does not take the number of objects, pointer density, or placement, into
account. Therefore, an extreme change in object distribution like, e.g.,
from the heap being dominated by a highly connected linked structure
of small nodes to consisting mainly of huge data arrays, might cause
a large error in the work estimate, until the work function identification
has had time to react. In practice, this is unlikely to be a problem. Firstly,
while mode changes often occur, they are seldom as drastic as that, and
with many threads, effects are likely to even out. Secondly, previous
work has shown that e.g. the variation in pointer density and fraction of
non-null pointers between the different SPECjvm benchmarks is quite
low [BCR03a].

Predicting GC work

Now, we need to put it all together into a prediction of the amount of
CPU time required to complete a GC cycle. With the simple heap state
model, the GC work function is

CGC(L, D) = α L + β D (4.31)

where the coefficients α and β are identified on-line using e.g. a recur-
sive least-square algorithm based on previous measurements of L, D,
and CGC.

With the heap state prediction of (4.28) and (4.29), (4.31) can be writ-
ten

CGC ≈ (α P (Live) + β P (Dead))A (4.32)

which, according to (4.30), can be extrapolated:

CGC(k) = (α P (Live) + β P (Dead)) ((As(k) + TGC(k) · ȧ) (4.33)
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4.3.3 Conservative prediction

The heap state prediction, as presented in Section 4.3.2, depends on
P (Live) and P (Dead), in addition to the identified GC work function.
For programs with a random, or highly varying, memory usage pattern,
the estimates of P (Live) and P (Dead) will contain little information, re-
ducing the quality of the prediction. In such cases, or when robustness
is a higher priority than efficiency, a conservative estimate of CGC can
be useful. Based on (4.31), it is observed that

α L + β D ≤ max(α, β)(L + D) (4.34)

and L + D is the total amount of allocated memory. Thus, a conserva-
tive prediction of CGC is given by extrapolating the amount of allocated
memory at the end of the GC cycle, using the amount of memory at the
start of the cycle, the GC cycle time, and the allocation rate:

CGC(k) ≤ max(α, β)(As(k) + TGC(k) · ȧ) (4.35)

The main drawback with (4.35) is that the estimate may be very con-
servative if α and β or L and D are of different magnitude. E.g., if L = D,
the conservative estimate will be at most twice the true value of (4.31),
for any α and β. If, however, the fraction of live memory is only 10%,
this method may give an over-estimation of 10 times (in the worst case,
β = 0.) However, for embedded applications it is likely to be reason-
able; having very low memory utilization is typically avoided for cost
efficiency reasons (and due to the fact that software tends to eventually
use all available resources), while a very high memory utilization should
be avoided as it causes GC thrashing and poor efficiency [JL96].

4.4 Summary

An approach to making a time-triggered garbage collection scheduler
auto-tuning was presented, based on the observation that we need to
estimate the two scheduling parameters deadline and execution time. It
was shown how a GC cycle time that ensures that the application never
runs out of memory can be determined at run-time, and how it is robust
against variations in floating garbage. It was also shown how having
information about the mutator can be used to reduce the conservativism
of the TGC tuning.

Different approaches for on-line estimation of CGC was presented
and discussed: first, a black box, “yesterday’s weather”, approach that
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is simple and does not require any information of the state of the mem-
ory manager; second, a clear box method based on identifying a GC
work function and predicting the state of the heap based on the alloca-
tion rate and GC cycle time; and third, a conservative variant of the clear
box approach, based on an identified GC work function and worst case
assumptions. For the clear box approaches, a simplified representation
of the heap state was suggested in order to make implementation prac-
tically feasible. Finally, the degree of conservativism in the conservative
approach was discussed and it was argued that, for typical embedded
systems, it will be within reasonable limits.

On-line estimations of the scheduling parameters for the GC task
makes it possible to take the GC overhead into account when doing on-
line schedulability analysis, e.g. in a feedback scheduling system. It also
makes it possible to make a semi-concurrent garbage collector adaptive
in order to minimize the disturbance of low priority threads. Integrat-
ing the scheduling of garbage collection and the scheduling of mutator
processes is an important step towards making safe object-oriented lan-
guages like Java practically feasible for many real-time applications in
automatic control and embedded systems, without requiring a huge en-
gineering effort to tune the GC.





CHAPTER 5

PRIORITIES FOR MEMORY

ALLOCATION

This chapter presents a novel approach of applying priorities1 to mem-
ory allocation and it is shown how this can be used to enhance the ro-
bustness of real-time applications. The proposed mechanisms can also
be used to increase performance of systems with automatic memory
management by limiting the amount of garbage collection work.

A way of introducing priorities for memory allocation in a Java sys-
tem without making any changes to the syntax of the language is also
proposed and this has been implemented in an experimental Java virtual
machine and verified in an automatic control application.

5.1 Introduction

With the recent development in small, cheap and fast processors for em-
bedded systems and the emerging trend of writing embedded applica-
tions in high level object oriented languages, the performance limiting
bottleneck may no longer be CPU time but rather memory and memory
management. This is accentuated by the high relative cost of memory in
embedded systems and systems on chip.

Memory management is a system-global problem and currently puts
a great responsibility on programmers. For instance, a memory leak or
excessive memory allocation in one module, or component, of a system
will eventually cause the entire system to run out of memory and fail.
Therefore it is interesting to study whether it is possible to apply priori-
ties to memory as well as CPU time allocation; just as we don’t want an

1Here, we use the words “memory priority” in a sense that may correspond better to
the RTSJ notion of “importance” than the real-time sense of the word priority.
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important process to be delayed because a less important one is execut-
ing we don’t want an unimportant memory allocation to cause a critical
process to fail or be delayed, because the system runs out of memory or
has to do a large amount of garbage collection work to satisfy its alloca-
tion needs.

Therefore, a novel approach is proposed which addresses two prob-
lems: firstly, how to increase program robustness by avoiding out-of-
memory problems and secondly, how to increase application perfor-
mance in systems with automatic memory management by reducing the
garbage collection workload. Section 5.2 briefly describes both aspects,
whereas the rest of the chapter will focus on the robustness issue.

While this chapter focuses on object oriented systems with garbage
collection, especially Java, the robustness issues should be equally ap-
plicable to any memory allocator. Similarly, the presentation focuses on
real-time systems, but the proposed mechanisms can be useful in any
system where robustness to variations in workload, or isolation between
different parts, is required.

A note on terminology; in order to avoid confusion we will use the
terms high priority (HP) and low priority (LP) to denote the CPU time
priority of a process and the terms critical and non-critical (NC)2 for our
new notion of priorities for memory allocations.

5.2 Applying priorities to memory allocations

It is desirable to be able to view memory allocation as any other resource
allocation. The goal of this work is to provide run-time system support
for doing the most important memory allocation if the system has lim-
ited memory in analogy with how the process scheduler makes sure that
the most important process is run and less important ones are delayed if
CPU time is scarce.

5.2.1 Avoiding out-of-memory situations

A high priority process in an embedded system may perform other tasks3

in addition to its core functionality. For example, a digital controller pro-
cess may produce log data in addition to calculating and outputting its

2The terms critical and non-critical correspond to the terms mandatory and optional some-
times used in the safety critical systems community.

3The word task is used in the sense “a piece of work to be done” and not in any stringent
real-time programming sense. For the latter, the words process and thread are used.
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control signal. In such a process, memory allocations by the less impor-
tant tasks (e.g., producing log data) must never interfere with the core
functionality (calculating the control signal).

This can be achieved by manually ensuring that the amount of log
data never exceeds a certain value, for instance by using a bounded
buffer for delivering it to the logger process. Doing this manually has
the drawback that the size of the buffer has to be calculated and this cal-
culation is highly platform and application dependent. (I.e., each time a
change that affects the application’s memory allocation behaviour or the
amount of memory available to the application is made, the maximum
amount of non-critical memory has to be recalculated.) If more than one
process does unrelated non-critical memory allocations, the complexity
of managing this increases rapidly. Thus, manual solutions require a lot
of work and risk being unnecessarily conservative, error prone, or both.

The proposed approach to this problem is to transfer the responsibil-
ity for making the decisions about when to allow non-critical memory
allocations from the programmer to the run time system. Then, the only
a priori calculation that has to be done is to calculate the amount of criti-
cal allocations done by each (high priority) process during its period and
this depends only on the application and not on target platform proper-
ties like memory size.

This approach can also be used to provide a “limp home” mode — a
mode of operation with lesser performance but radically lower memory
consumption that will allow the application to continue executing in an
low-on-memory situation, facilitating a more graceful degradation. This
may be useful for adding some amount of predictability to applications
with non-predictable memory requirements.

Finally, non-critical memory allocation gives programmers the pos-
sibility to add more features to a system without risking that these ad-
ditions cause the system to run out of memory and jeopardize the core
functionality of the system even if it is moved to a smaller platform. E.g.,
a low priority process with only non-critical memory allocations cannot
cause a system to fail since, if the CPU load is dangerously high it will
not get any CPU time and if the amount of memory is too low, it will
not be allowed to allocate any memory. This also has the advantage that
it makes it easier to make hard real-time guarantees since worst case
and schedulability analysis only has to be done on the critical parts of
the system. Such analysis still has to be done using existing techniques
[JP86, SRL94, Per99].
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5.2.2 Improving performance by reducing GC work

Another reason to limit non-critical memory allocations is to reduce the
amount of garbage collection work needed and thereby increasing the
amount of CPU time available to the application. This can, in turn, im-
prove the application’s performance by, e.g., allowing more advanced
algorithms to be used. Furthermore, in a real-time GC system, such
as semi-concurrent GC scheduling, additional memory allocations in a
high priority process may cause starvation of low priority processes; ei-
ther directly, through increased execution time, or indirectly, due to the
increase in GC work caused by these allocations (since the garbage col-
lector for the high priority processes run at a higher priority than the
system’s low priority processes). In complex systems, however, the LP
process may be more important for good system performance than a
secondary task of the high priority process.

With priorities for memory allocations, an application may be writ-
ten so that, if the system runs low on memory, the primary tasks of both
the HP and the LP processes are performed, but the less important task
of the HP process is not. Hence, for the quality of service of the system,
performance can be tuned in a more flexible and appropriate manner.

5.3 Non-critical allocations

The semi-concurrent garbage collection scheduling model introduces a
special garbage collection scheduling for the high priority processes in
order to guarantee that they are never delayed. Here, this is taken one
step further by also considering the behaviour of the memory alloca-
tor and the risk of running out of memory, due to, for instance, unpre-
dictable application behaviour or even wrong worst case estimates. This
is done by introducing the notion of non-critical memory allocation re-
quests, i.e., requests for memory that the run-time system may choose to
deny without causing the program to fail.

Ultimately, what we want to do is to keep the amount of live non-
critically allocated memory below a certain limit in order to make guar-
antees that critical allocations never will fail. Unfortunately, live mem-
ory amount is not a very suitable measurement, since keeping track of
this is not always practically possible.

Particularly, in automatically managed memory systems, where we
have the problem with floating garbage4, there is no real way of knowing

4Floating garbage is memory that is no longer reachable from the application but has
not yet been reclaimed by the garbage collector.
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how much live memory there is in the system. The only factor we can
be sure of is the amount of memory available for allocation, so we need
to base our decisions on that.

5.3.1 Non-critical allocation limit

The decision whether to grant or deny a non-critical memory allocation
request has to be as simple as possible if it is to be used in high per-
formance applications. That is accomplished by introducing an alloca-
tion limit for non-critical allocations; if there is less free, or allocatable5,
memory than this limit, no non-critical allocations may be done. This
limit will vary over time; at the start of a GC cycle, we have to reserve
memory for all the (critical) HP memory allocations needed during this
GC cycle and then, as the HP process runs and does its allocations, the
amount of reserved memory is reduced accordingly. Figure 5.1 shows
schematically how the amount of allocated, reserved and free memory
varies over a GC cycle.

When deciding whether to grant or deny a non-critical memory re-
quest, we look at how much allocatable memory there is, and how much
memory we need to reserve for the HP process so that all its remaining
memory allocations during this GC cycle will succeed. Let n be the num-
ber of HP periods in a GC cycle, and mHP the amount of critical memory
allocated during each period by the HP process. Then, i HP periods into
a GC cycle we need to reserve RHPi

= (n− i) mHP bytes for the remain-
ing HP periods during this GC cycle. Non-critical memory allocations
should only be allowed if they won’t cause the amount of allocatable
memory to drop below RHP .

5.3.2 Fixed GC cycle length

In order to be able to guarantee that the HP process always will get the
memory it requests, we need to make sure that the GC always keeps up
with the application. I.e., after each invocation of an HP process, the GC
must do enough GC work so that all the allocations during the next HP
process invocation will succeed. Given the amount of memory allocated
by the HP process each period and the amount of memory reserved for

5Allocatable memory is memory that is immediately available for allocation. We prefer
the term allocatable memory to free memory since, depending on the memory allocator
or garbage collection algorithm used, the term free memory may be difficult to define or
even irrelevant. E.g., in a non-compacting system, the amount of free memory may be
much larger than the amount of allocatable memory due to fragmentation.
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Figure 5.1: Schematic illustration of the limit for non-critical allocations. The
dotted lines indicate the times where the non-critical limit is equal to the amount
of allocatable memory, i.e., when the system starts to deny non-critical alloca-
tion requests.
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HP allocations, we can calculate the GC cycle time expressed in number
of HP process periods. We call this time the nominal GC cycle time.

To ensure that no HP allocation fails, we need to complete each GC
cycle within this time, even if the actual amount of allocations done dur-
ing the current GC cycle are less than the worst case. Otherwise, the
situation may arise that there is allocatable memory left, but not enough
for another complete HP process invocation. If a HP process is started
at that time, it will require more memory than currently available and
thus, that HP process will be delayed by panic garbage collection.

5.4 Detailed description

This section describes the suggested approach in more detail. We dis-
cuss how the garbage collection cycle length can be calculated, how the
decisions about when to deny non-critical memory allocation requests
are taken, how the scheduling can be done and finally we give an exam-
ple of how such a system may work.

5.4.1 Calculating the GC cycle length

Since we want to be able to make guarantees that the application never
will run out of memory while still having hard real time constraints, we
need a simple model so that we can make e.g., schedulability analysis.
This is done by using a fixed GC cycle time which is calculated at appli-
cation design-time.

The GC cycle time, the allocation rate of the HP process and the
amount of memory available for non-critical allocation all affect each
other and there are several ways to calculate the cycle length. One ap-
proach is to define how much memory should be reserved for HP alloca-
tions each GC cycle, MHP . If the HP process allocates mHP each period
we get the GC cycle length expressed in HP periods:

TGC = n · THP ; n =
MHP

mHP
(5.1)

Here, the GC cycle length will be the same regardless of how much total
memory the system has and changes to the amount of memory will only
affect how much non-critical allocation that can be made.

Another way is to define the ratio of memory reserved for HP pro-
cesses to non-critical memory. This has the advantage that the appli-
cation will behave in the same way, with respect to non-critical alloca-
tions, independent of how much memory the system it is running on
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has. This is preferable since while non-critical allocation cannot cause
an out of memory situation, they add to the amount of GC work that
has to be done and thus affect the schedulability analysis. Using the ra-
tio of critical to non-critical memory instead of a fixed amount for one of
the quantities has the property that the (amortized) amount of GC work
per allocated object is independent of the total size of the memory —
the memory size only affects the length of the GC cycles. Thus, this ap-
proach reduces the platform dependency of the schedulability analysis.

5.4.2 Live memory and floating garbage

In all calculations we must account for the amount of memory that lives
across GC cycle boundaries and floating garbage that may exist in the
worst case. This can be viewed as a reduction of the (usable) heap size
with a constant. If this isn’t taken into account, there will be less avail-
able memory at the start of each GC cycle than we have calculated with
and the application will run out of memory.

Less obviously, it is also a problem if there is more allocatable memory
at the start of a GC cycle than in the worst case, since this leads to the
amount of memory available for non-critical allocations becoming too
large, which could cause problems later. Therefore, we need to compen-
sate for this, so that we always assume the worst case (i.e., we reserve
a portion of memory to allow the amount of live memory or floating
garbage to increase in the future).

With this taken into consideration, the least amount of free memory
required in order to allow non-critical allocations during period i can
now be expressed as

LNCi
= (n − i)mHP + f(Astart, C) ; 1 ≤ i ≤ n (5.2)

where Astart is the amount of allocated memory at the start of this cycle,
C the maximum amount of live and floating objects, and

f(x, y) =

{

y − x , x < y;
0 , x ≥ y;

(5.3)

5.4.3 GC for the low priority processes

We will now discuss LP processes in a system with semi-concurrent GC.
When LP processes are added to the system, they will also allocate mem-
ory but the GC work corresponding to their allocations will be done at
allocation time using traditional incremental GC. When LP allocations
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are done, the actual GC cycle time will be less than the nominal cycle
time. In a traditional incremental garbage collector, this is intrinsic to
the scheduling principle; the extra GC work done by the LP process ad-
vances the current GC cycle.

In our system where GC work is triggered by time, however, we have
to explicitly shorten the current GC cycle. Furthermore, the new, shorter
cycle time still has to be a whole number of HP process periods to ensure
that there always is enough allocatable memory for one full HP process
invocation. This is done by decreasing the current cycle time by l HP
periods, where

l =

⌈

ALP

mHP

⌉

(5.4)

and ALP is the amount of memory allocated by the low priority pro-
cesses. Thus, if the nominal GC cycle length is n HP periods, the effec-
tive GC cycle length due to LP memory allocations will be n′ HP periods,
where n′ = n − l.

Note that this should only affect the effective GC cycle length (i.e.,
the scheduling) and not the NC limit calculations. If we were to adjust
the NC limit accordingly when the GC cycle was shortened, it would
be possible for non-critical allocations in a HP process to “steal” the GC
work done for a critical allocation in a LP process, and that is not what
we want. On the other hand, we do need to change the NC limit due
to the actual critical LP allocations made, because if we don’t, we would
effectively reduce the amount of memory available for NC allocations.
This may seem counter-intuitive but bear in mind that the purpose of
the NC limit is to limit the amount of non-critical allocations and has
nothing to do with controlling the critical allocations in LP processes.

As described above, when an allocation is made in a LP process, the
corresponding GC work is done incrementally and the GC cycle is short-
ened so that there still will be memory for a whole number of HP process
activations. Also, when a LP allocation is done, the amount of allocat-
able memory is decreased and in order to maintain the same amount of
memory available to non critical allocations we have to reduce the NC
limit with the same amount as the size of the LP allocation.

If we have allocated ALP bytes of critical memory in the LP processes
during this GC cycle, the NC limit can be written

LNCi
= (n − i)mHP + f(Astart, C) − ALP . (5.5)

Non-critical allocations in LP processes, on the other hand, should not
be included in ALP . That means that, if NC LP allocations are made,
LNC > 0 at the end of the GC cycle, and the total amount of non-critical
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allocations allowed during the cycle is not affected by the decrease in
cycle time. Just as in the case when there is more available memory
than in the worst case, it is not enough to ensure that all HP critical
allocations succeed in the current cycle — the ultimate objective is to
limit the amount of live non-critical memory.

5.4.4 Non-critical limit calculations in the real world

In all the previous calculations in this chapter, we have assumed that a
GC cycle can easily be divided into a number of HP process periods and
that the memory allocations of each period are done instantaneously at
the start of the period. This model is well suited for reasoning about
systems and off-line analysis but doesn’t lend itself well to actual imple-
mentation.

In real systems, the high priority processes often have different pe-
riod times, and real programs do allocations more or less sporadically
during their execution rather than at the start of a well defined period.
For these reasons, among others, a NC limit based on the number of
elapsed HP periods is not a very practical one for run-time calculations.
Instead, we will use the following algorithm:

• At the start of each GC cycle, the amount of memory needed by all
the critical allocations by HP processes is calculated6. This is the
amount of memory reserved for HP allocations (compensated for
floating garbage, etc), RHP = MHP + f(Astart, C)

• Whenever a critical HP allocation is done, RHP is decreased by
the size of the allocated object. When a critical allocation is done
by a low priority process, ALP is increased. The non-critical limit
is then updated; LNC = RHP − ALP .

• If the amount of allocatable memory is less than or equal to LNC ,
non-critical allocation requests will be denied.

This way, the NC limit will always be correct, regardless of how much
memory the HP processes actually allocates and at what time during
their execution they perform the allocations.

Another implementation issue is that our calculations assume that
the garbage collector only frees memory at the very end of each GC cy-
cle. This simplifies the non-critical limit calculations as each cycle can be

6The actual calculation of the worst-case memory requirements for each process could
be done either manually or at compile time. Another possibility for soft real time systems
is that it could be estimated by the run-time system based on measurements from previous
GC cycles.
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viewed independently but when implementing support for non-critical
allocations, care must be taken to assure that this assumption holds.

Mark-sweep collectors, of course needs some attention as they, by
nature, free memory continuously during the sweep phase. A copying
collector has this behaviour in principle, but still might have to be mod-
ified; it does free all memory after the last object has been moved, but
this could happen before the full GC cycle time has elapsed.

Thus, in any case the memory manager must be designed so that it
does not make any memory available to the allocator until at the start of
the next GC cycle. Otherwise, too many non-critical allocations might
be allowed in the current cycle, which might cause problems later. This
also means that if the GC work metric is conservative and the garbage
collector finishes early, the freed memory should not be made available
to the allocator until at the start of the next cycle.

5.4.5 Time-based GC scheduling

Traditionally, incremental garbage collectors have been implemented so
that GC work has been triggered by memory allocation, and done in
proportion to the amount of allocated memory. I.e., when half of the
memory available at the start of the cycle has been allocated, half of the
GC work required to complete the cycle has been done and when all the
memory has been allocated the GC cycle is completed.

That approach to GC scheduling does not fit well into a system with
non-critical allocations. The problem is that it may cause low memory
utilization; If the application does less critical allocations than its worst
case the GC cycle will be longer. The limit for non-critical allocations,
on the other hand, is not affected, so when the amount of allocatable
memory reaches the non-critical limit, no more non-critical allocations
are allowed during that GC cycle. Thus, the less critical memory the ap-
plication allocates, the longer the GC cycle gets and the less non-critical
allocations are allowed, which is not what we want.

Therefore, we use time, rather than allocation, as the trigger for GC
work and do GC work in proportion to how large a fraction of the GC
cycle time has elapsed. I.e., when half of the GC cycle time has elapsed,
the GC should have done (at least) half the work needed to complete
the cycle. This ensures that each GC cycle finishes within the fixed time,
even if there is allocatable memory left. Thus, time-triggered GC ensures
the same non-critical memory behaviour regardless of how much critical
memory the application actually allocates (as long — of course — as the
allocated amount is less than the assumed worst case).
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5.4.6 Example

As an example, we take a system with one high priority process doing
both critical and non-critical memory allocations and a set of low prior-
ity processes doing critical memory allocations.

In figure 5.2 you see how the amount of allocated and allocatable
memory, respectively, varies over three GC cycles. In the first GC cycle,
the amount of memory reserved for critical HP allocations (or rather, the
non-critical limit) is larger than in the other two. This is because we must
compensate for the fact that there is less than the maximum amount of
allocated memory at the start of the GC cycle (see Section 5.4.2).

The second GC cycle shows how the system behaves when there are
no allocations (and thus no incremental GC work) done by the low pri-
ority process. The first and third cycles are shorter than the nominal
cycle length since low priority allocations are done.

Since we have a fixed nominal GC cycle length and use time, rather
than memory allocation, to trigger GC work the GC cycles may end be-
fore all available memory has been allocated. This can happen if the
application uses less memory than in the worst case or due to quantiza-
tion when low priority allocations are made (see section 5.4.3).

5.5 Non-critical memory in Java

The main objective when implementing these ideas in a Java environ-
ment was that no changes to the syntax of the Java language should
be made, and that programs written for our system should work on
any Java platform (but, of course, without the added semantics of non-
critical memory allocations).

The proposed approach is to use the exception mechanism of Java,
so we define an exception class, NoNonCriticalMemoryException,
with the added special semantics that all allocations that are done in a
block which catches that exception are non-critical. Figure 5.3 shows
a simple program which does both critical and non-critical memory al-
locations. This program will run on any Java platform with the only
addition of an (empty) exception class.

Non-criticality is transitive. Memory allocations in a method that
is called from a non-critical region, like the calls to the methods foo()
and doSomething() on lines 6 and 7 in Figure 5.3, are also non-critical.
Note, however, that the first call to foo(), on line 3, is not non-critical
since the call is not made from a non-critical block. This behaviour is
preferable since an auxiliary function could be called both from criti-
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Figure 5.2: An example showing how the amounts of allocated and allocatable
memory vary over time. Allocation requests for non-critical memory are denied
when the amount of allocatable memory is less than or equal to the non-critical
allocation limit (RHP −ALP ). This happens at the end of the second GC cycle.
Note that the first and third GC cycles are shorter than the nominal length
due to low priority memory allocations. Also note how the non-critical limit is
lowered when LP allocations are done so that the amount of memory available
for non-critical allocations is not changed.
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1 void example(){
2 Object aCriticalObject = new Object();
3 foo(aCriticalObject); // do something important
4 try{
5 Object aNonCriticalObject = new Object();
6 foo(aNonCriticalObject);
7 doSomething();
8 // do something
9 // if the non-critical
10 // allocation was successful
11 } catch(NoNonCriticalMemoryException e){
12 // non-critical allocation failed
13 }
14 }

Figure 5.3: Small example program. The allocation of aCriticalObject
is always done, but the allocation of aNonCriticalObject may be denied.
If the allocation fails, a NoNonCriticalMemoryException is thrown and
may be handled in the catch-clause.

cal and non-critical contexts. In order to make such transitivity possi-
ble without having to litter the code with try and catch clauses, the
exception class NoNonCriticalMemoryException is an unchecked
exception. An instance of this class can be statically allocated to avoid
wasting memory.

An experimental implementation7 has been made using the IVM (In-
finitesimal Virtual Machine) [Ive03], a very compact real-time Java vir-
tual machine. Currently, non-critical allocations are explicitly turned on
and off using a native method IVM.setMemoryPriority(). This is,
however, not fundamentally different from our proposed approach since
those calls could be inserted automatically by the class loader as the ex-
ception table is set up (much in the same way as monitorenter and
monitorexit byte codes are inserted for synchronized methods).

5.6 Summary

It was observed that memory priority and CPU time priority need to be
treated separately. The logging example shows that a process having
high CPU time priority doesn’t necessarily mean that all of its memory
allocations are critical. The idea of applying priorities to memory allo-

7The experiments with priorities for memory allocations are presented in Section 8.5.
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cation was introduced and it was shown shown how this can be used
to enhance the robustness of real-time applications. The advantage this
approach gives is twofold: Firstly, it provides run-time support for pri-
oritizing memory allocations if there is not enough available memory
to safely accommodate for all allocation requests. Secondly, but equally
important, it makes it easier to provide hard guarantees since the worst
case memory usage calculations only has to be done for the critical parts
of the system as non-critical allocations cannot cause the system to fail.
Furthermore, it is suggested that the same mechanisms could be used to
increase performance by limiting the amount of memory allocation and,
consequentially, GC work.

The presented approach is based on the notion of non-critical mem-
ory allocation requests, which can be used by the programmer to indi-
cate that the memory allocations done in a certain part of the program
are less important than the rest. Such non-critical allocations may be
allowed to fail if the run-time system decides that that memory could
be of better use elsewhere or that the increased garbage collection work
would degrade system performance.

The incorporation of priorities for memory allocations in an object
oriented language is studied and a way of introducing non-critical mem-
ory allocation in a Java system without making any changes to the syn-
tax of the Java language is proposed. This has successfully been imple-
mented in the IVM experimental Java virtual machine.

Preliminary experiments show that the mechanism is fairly easy to
implement and can improve the robustness and performance of a con-
trol application by restricting its operation to the critical tasks if the sys-
tem runs low on memory. It allows the programmer to write a system
that performs better if run on a faster and larger system but whose crit-
ical tasks won’t fail if it is run on a system with less than ideal amount
of memory. Instead, the non-critical features of the system will automat-
ically be turned off if there isn’t enough memory for them to be safely
executed.





CHAPTER 6

MEMORY-AWARE

FEEDBACK SCHEDULING

Feedback control is a good way to cope with uncertainties, and has suc-
cessfully been used in process schedulers for real-time control systems
with non-deterministic execution times — a technique known as feedback
scheduling. Such scheduling is very suitable for systems which change
between different operating modes with different resource utilization
patterns, where using worst case assumptions would yield an unaccept-
ably low CPU utilization. A feedback/feed-forward system can adapt to
the changing requirements of the application and tune, for instance, the
period times of the tasks in order to keep the CPU utilization at a safe
level while optimizing the quality of service delivered by the system.

This chapter investigates how an auto-tuning time-triggered GC can
be incorporated in a feedback scheduling system in order to make the
memory management overhead explicit and let the process scheduler
take this into account when scheduling the application tasks.

It is also studied how the priorities for memory allocations presented
in Chapter 5 can be used, in a feedback scheduling system, to control the
allocation rates of the application threads in order to optimize the trade-
off between memory and CPU time consumption.

6.1 Introduction

Thus far, we have studied how to calculate the scheduling parameters
for a time-triggered garbage collector in two different cases. In the first
one, all parameters (Lmax, ai, etc.) were known and constant. In the sec-
ond case, the parameters were estimated based on run-time measure-
ments. In a feedback scheduling system, the GC scheduling problem
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comes in a third form. Here, the parameters of the mutator threads
are known at any particular instant, but may change as the scheduler
changes sampling rates in order to maximize the overall performance.

Previous work on feedback scheduling and automatic identification
of (soft) real-time systems [AP00] has showed how self-tuning regula-
tors can be used to control resource allocation without a priori know-
ledge about the task requirements. However, in existing feedback sched-
uling systems the memory management overhead is either ignored or
treated implicitly as a part of the application’s execution.

With traditional incremental garbage collectors, the memory man-
agement overhead is inlined in the application code, as a small amount
of GC work is performed at each allocation. Therefore the memory man-
agement overhead can be treated as part of the mutator’s execution time
and no special consideration is required (although doing so may still
improve performance).

With a concurrent garbage collector, that is no longer possible. As
the GC work motivated by the actions of the mutator is performed by a
separate task, the CPU utilization of that task must be handled explicitly
by the scheduler. The problem with GC scheduling is that the GC has
to finish each cycle before the available memory is exhausted or else it
will stop-the-world to complete the cycle, causing unacceptable delays
for the hard real-time tasks. Therefore, care has to be taken to make sure
that the GC is always given the CPU time (or bandwidth) it needs. This
implies that we cannot use standard feedback scheduling on the garbage
collection thread, as making the GC cycles longer (to reduce the GC’s
CPU utilization) may be fatal. In the proposed approach, the deadline
and CPU utilization calculated by the GC scheduler cannot be changed
by the feedback scheduler, but must be taken into account when the pe-
riod times of the application threads are calculated. This corresponds to
making the GC a rigid task in [BLA02].

This chapter studies how to take the memory management costs into
account in the period assignment problem of the feedback scheduler.
Section 6.2 derives approximative models for estimating and optimiz-
ing the GC scheduling parameters together with the period assignment.
Section 6.3 briefly discusses how slack in the schedule caused by con-
servative estimates of the GC utilization can be utilized when the GC
finishes its work before its deadline. Section 6.4 investigates how the
mechanisms for different priorities on memory allocation requests from
Chapter 5 can be utilized in a feedback scheduling context, where con-
trolling the allocation rate of processes gives another degree of freedom
when optimizing overall performance.
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6.2 GC-aware period assignment

Recall the period assignment problem from Equation (2.3),

min
h1...hn

n
∑

i=1

Ji(hi)

subject to

n
∑

i=1

Ci

hi
≤ Usp .

If the cost function, J , is (approximated by) a linear or quadratic func-
tion, it has been shown that a closed-form solution to the optimization
problem (2.3) can be found: With the cost function

Ji(hi) = αi + γihi (6.1)

or, equivalently,

Vi(fi) = αi +
γi

fi
(6.2)

the optimal frequencies, f?
i , are given by

f?
i =

(

γi

Ci

)

Usp
∑n

j=1(Cjγj)
1
2

(6.3)

and for a quadratic approximation of the cost function, a similar explicit
solution can be found [CEBÅ02].

In a system with a scheduled garbage collector, the required CPU
utilization of the GC, UGC, must be taken into account when assigning
task periods in order to keep utilization below the setpoint. To get the
total CPU utilization Usp, the reference utilization for the mutator tasks in
the feedback scheduler must therefore be reduced to

Uref = Usp − UGC . (6.4)

The utilization of the garbage collector is UGC = CGC

TGC
and thus, the con-

straint of the period assignment problem becomes

n
∑

i=1

Ci

hi
+

CGC

TGC
≤ Usp . (6.5)

Given the previously derived expressions for the GC cycle and ex-
ecution time, we get the the general expression for the required CPU
utilization for GC,

UGC =
CGC(Sh)

TGC(H, L, a1, . . . , an, h1, . . . , hn)
. (6.6)



100 6. MEMORY-AWARE FEEDBACK SCHEDULING

However, at run-time, all parameters are typically not known, and there-
fore an approximate model must be used. We will now formulate such
models for compensating for UGC in FBS period assignment. In the first
one, we will simply use a GC auto-tuner, as described in sections 4.2
and 4.3, as a reference generator to the feedback scheduler. In the sec-
ond, we will incorporate the GC tuning into the optimization problem
of the feedback scheduler, in the case where Lmax is known. In the third
one, we assume that Lmax is unknown and derive similar expressions
based on the previously described GC auto-tuning techniques.

As far as the optimization problem is concerned, we will assume that
CGC is constant. This just means that in the formulation of the optimiza-
tion problem, we assume that CGC is independent of the period times of
mutator tasks, and that the effects that changes to the schedule has on
CGC is captured by the feedback loop. The interaction between the GC
cycle parameter estimation and the feedback scheduling is done only
through the model for TGC.

6.2.1 Separate GC tuning and feedback scheduler

The most simple way of taking garbage collection work into account
is to use the GC auto-tuner as a reference generator for the feedback
scheduler. Figure 6.1 shows how the adaptive garbage collection sched-
uler from Chapter 4 fits into a general feedback scheduling system. The
GC thread is scheduled as a normal application thread, but with the im-
portant difference that it is allowed to set its own deadline whereas the
feedback scheduler changes the deadlines of the application threads in
order to optimize CPU utilization.

As mentioned, the special treatment of the GC thread is necessary
since the GC will stop all application threads if the system runs out of
memory and that must be avoided as it leads to long GC pauses and
unacceptable real-time performance. In this case, the GC tuner and
the feedback scheduler are independent of each other, and the feedback
scheduler simply uses Uref as in (6.4), where TGC and CGC are estimated
using some of the described techniques.

However, in general, the different tasks have different memory re-
quirements, and thus any changes to the scheduling will affect the GC
workload. As the GC scheduler is decoupled from the feedback sched-
uler, such effects cannot be taken into account in the period assignment,
and this is a limitation of the described approach. Instead, any changes
to the allocation rate — and, hence, to TGC and UGC — caused by the
changes in period times are compensated for by the feedback to the
GC tuner. That may, in turn, cause Uref to change, and therefore, this
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Scheduler Tasks Dispatcher

Memory manager and

GC auto-tuner

Usp {Ti} {jobs}

Ci, U

TGC , CGC job

CGC

Figure 6.1: Feedback scheduling of both application tasks and GC. The GC
task issues jobs which are dispatched just as any other jobs. The only difference
between the GC task and the application tasks is that the GC is allowed to set
its own period time while the feedback scheduler changes the application tasks’
period times in order to keep U ≤ Usp.

model may show oscillating behaviour. Such oscillations can, however,
be avoided by using conservative settings in the GC auto-tuner. For
instance, if the UGC prediction is filtered using the maximum value and
a forgetting factor close to unity, a well damped system can be achieved,
at the price of lower average utilization.

Another, and potentially more important, drawback of the separated
approach is that the measured GC overhead is divided evenly across all
mutator tasks. Thus, even if one task is responsible for the majority of
the memory usage, the sampling rates of all tasks will be affected. In
systems with competing (as opposed to cooperating) tasks, that may be
an issue, as far as fairness in the scheduling is concerned.

6.2.2 Integrated GC and feedback scheduling

If the GC estimation and tuning is incorporated in the feedback sched-
uler itself, the effects on the GC utilization of changing period times can
be taken into account in the period time optimization. In principle, we
want to be able to express the cost of garbage collection per task and
sample, in a way that the constraint in the optimization problem is on a
form that allows the existing closed-form solution to be used.

Under the previously stated assumption that CGC is constant, UGC

will be a function of the GC cycle time, which, in turn, depends on the
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allocation rate. Thus, we get a utilization constraint with one term for
the CPU requirement and one for the memory requirement of each task,

n
∑

i=1

Ci + KGC · ai

hi
≤ Usp (6.7)

where KGC can be viewed as the cost, in CPU utilization, of memory al-
location in CPU seconds per byte. With this formulation, the utilization
constraint is of the same form as (2.3), as the extra term is constant (as-
suming ai is independent of hi), and thus the existing explicit solution
to the optimization problem can be used. We will now see how the uti-
lization constraint can be expressed when the maximum amount of live
memory is known and unknown, respectively.

Using worst case live memory information

Given the maximum amount of live memory, Lmax, and the amount of
memory allocated per period of each task, ai, we can use Theorem 1 to
find the maximum allowed TGC and, hence, the CPU utilization:

UGC = CGC ·

∑n
i=1

ai

hi

H−Lmax

2 −
∑n

j=1 aj

. (6.8)

Inserting this expression for UGC into (6.5) gives the constraint

n
∑

i=1

Ci + CGC
H−Lmax

2 −
P

n
j=1 aj

· ai

hi
≤ Usp (6.9)

which, assuming that CGC and {a1 . . . an} are independent of {h1 . . . hn},
can be written as (6.7).

In practice, the period time of the GC will be much longer than that
of the mutator tasks, and thus

∑n
j=1 aj is typically very small compared

to H − Lmax. Further, if a conservative estimation of UGC is used, and
Usp < 1, there will always be some slack in the schedule. For these
reasons, sufficient safety margins can be achieved, making it reasonably
safe to approximate (6.9) with

n
∑

i=1

Ci + CGC
H−Lmax

2

· ai

hi
≤ Usp . (6.10)

I.e.,

KGC =
CGC

H−Lmax

2

(6.11)

which is precisely the GC CPU time per allocated byte.
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Without a priori analysis

The above discussion assumes Lmax to be known and that it is reason-
able to use the worst case live memory. If that is not the case, TGC can be
estimated using (4.3), and the constraint (6.5) becomes

n
∑

i=1

Ci

hi
+

2 CGC

F (t)
P

n
i=1 ȧi

+ t − ts
≤ Usp (6.12)

which, with ȧi = ai

hi
, gives

n
∑

i=1

Ci

hi
+

2 CGC

F (t)
P

n
i=1

ai
hi

+ t − ts
≤ Usp (6.13)

which can be reorganized as

n
∑

i=1

Ci + 2 CGC

F (t)+(t−ts)
P

n
i=1

ai
hi

ai

hi
≤ Usp . (6.14)

I.e.,

KGC =
2CGC

F (t) + (t − ts)
∑n

i=1
ai

hi

(6.15)

Unfortunately, the constraint (6.14) is not linear, meaning that the ex-
isting closed-form solution is not directly applicable. Worse yet, in this
form, we get an optimization problem where both the objective function
and the constraint are concave, and that makes it practically useless.

In order to remedy that, an approximation that turns (6.14) back into
a linear constraint is sought. It is observed that, if ȧ is constant, the
denominator in (6.15) is equal to F (ts) = Fs. If that is used to linearize
the constraint, we get

n
∑

i=1

Ci + 2 CGC

F (ts) ai

hi
≤ Usp (6.16)

and

KGC =
2CGC

Fs
. (6.17)

The error in the TGC approximation of (6.16) will increase with increas-
ing changes in ȧ and the effect will be greater if the change occurs later
in the GC cycle. Figure 6.2 shows how the approximation error depends
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on the change in ȧ and the time of change. For instance, if the alloca-
tion rate is doubled half-way into the GC cycle, the relative error in the
TGC approximation will be 20%. However, as the total GC utilization
typically is 5–20 %, the overall impact of the error in the approximated
utilization will only be a few percent. For robustness, a safety margin to
accommodate such uncertainties can be added when setting Usp.
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Figure 6.2: Relative error in TGC approximation as function of change in ȧ

and time of switch. The lines represent changes in ȧ from a factor of 0.5 to a
factor of 2. An increase in ȧ causes underestimation of UGC.

Thus, with suitable approximations, the CPU requirement of the GC
task can be included in the period assignment, while keeping the opti-
mization problem on a form that allows the existing closed-form solu-
tions to be used.

6.3 Utilizing slack

By making the costs of memory management explicit and taking them
into account in the period time optimization, it is possible to use a con-
current garbage collector in a feedback scheduling system. In order to
get a system that is robust to variations in execution times, the utilization
setpoint is typically set below 100%. Also, to get stable estimates of GC
scheduling parameters, the estimation needs to be conservative. That
means that, in the average case, there will be some slack in the schedule,
allowing the GC to finish before its deadline.

The feedback scheduler reserves a fraction of the CPU time for garbage
collection. However, when the GC is not running, this CPU time could
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be used for mutator threads. In a system with a time-triggered GC, it
is known that when the GC has finished a cycle it will not need to run
again until at its next release time. If the feedback scheduler is aware of
the state of the GC, this means that when the GC has completed a cy-
cle, a higher mutator utilization can be allowed until the next GC release
time. That is, if the GC finishes at time tf ; ts < tf < te,

Uref (t) =

{

Usp − UGC, ts ≤ t ≤ tf
Usp, tf < t < te − δ

(6.18)

where δ is used to take into account the fact that increasing the mutator
utilization may increase the allocation rate and, hence, shorten the time
until the next GC release.

The GC cycle time, and consequentially, the start time of the next
GC cycle, was estimated based on worst case assumptions about float-
ing garbage, but when a GC cycle has finished, it is known how much
memory was actually reclaimed. Thus, δ depends on both the amount
of free memory and the allocation rate. We know that the amount of free
memory at the time the GC has completed the cycle, F (tf ) ≥ Fmin. The
requirement is the same; when the next GC cycle starts, the amount of
free memory must be no less than Fmin. Therefore, the adjusted release
time of the next GC cycle must satisfy

R′

GC(ȧ) ≤ tf +
F (tf ) − Fmin

ȧ
(6.19)

and, with equality, we get

δ = te − R′

GC(ȧ) = te −

(

tf +
F (tf ) − Fmin

ȧ

)

. (6.20)

Thus, a sufficient degree of conservatism can be used to give robust-
ness against inaccuracies in the GC scheduling parameter estimates due
to variations and approximations, without the low average CPU utiliza-
tion normally associated with such conservative scheduling.

6.4 Controlling the allocation rate

As we have seen, the fraction of CPU time that must be reserved for
garbage collection depends on the allocation rate of the mutator, which,
in turn, depends on the period times of the individual threads. There-
fore, in a system with garbage collection, the feedback scheduler controls
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the CPU usage of a thread directly, through the period assignment, but
also indirectly as the period time affects the allocation rate.

The notion of priorities for memory allocations, introduced in Chap-
ter 5, suggests that it may be possible to, to some extent, directly control
the allocation rates of the individual threads. Having such a mecha-
nism may be used to increase the flexibility of a feedback scheduler, by
making it possible to separate allocation of memory and CPU time. As
higher memory usage means more GC work, that allows the scheduler,
or resource manager, to trade off memory usage for CPU time.

Assuming that each task has a critical and a non-critical part, with

memory requirements of a(c) and a
(nc)
max, respectively, we extend the cost

function with a term corresponding to the increase in quality from the
non-critical parts

J(h, a(nc), . . .) = . . . ; 0 ≤ a(nc) ≤ a(nc)
max (6.21)

which gives the optimization problem

min
h1...hn

∑n
i=1 Ji(hi, a

(nc)
i , . . .)

subject to
∑n

i=1

Ci+KGC·

“

a
(c)
i

+a
(nc)
i

”

hi
≤ Usp (6.22)

The motivation for introducing different priorities for memory al-
locations as presented in Chapter 5 was primarily to provide isolation
between critical and non-critical parts of a system. Now, we focus on op-
timizing the performance of the application, and thus it becomes more
important to take which allocations that should be preformed into ac-
count. The memory manager can, however, only limit the amount of
non-critical allocations per time unit (typically, per GC cycle); as the
run-time system doesn’t have any information about the purpose of the
application threads it cannot make any detailed decisions about exactly
which allocations to allow or deny.

In order to maximize the quality of service, it is therefore better to
actually communicate how much non-critical memory it is currently al-
lowed to use to each thread. In the application, this can then be trans-
lated into performing some parts every nth sample, or something sim-
ilar. Thus, while the hard limit used to ensure robustness may be en-
forced by the run-time system, the programmer can make more fine-
grained decisions about how make best use of the memory available to
each thread.

In an actual implementation of these ideas in a feedback scheduled
system, the memory non-critical limit must be set individually for each
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thread and thus the interface between the feedback scheduler and mem-
ory manager must contain operations for that. Or — if the threads are
cooperating — it can be expressed directly in the code.

In the general formulation, (6.22) might prove hard to solve on-line.
In order to test the fundamental principle, we will now investigate a
simplified case, where the problem is reduced to either allowing all or
no non-critical allocations of a thread in each sample.

Case study: Ball-and-beam

As an example, we take the ball-and-beam process1, controlled by a LQG
regulator. It is assumed that the angle can either be measured (which
requires a measured-value object to be allocated and passed to the con-
troller) or estimated by using an observer. I.e., the allocation of the angle
measurement is non-critical. Depending on the state of the memory sys-
tem, KGC — and hence, the total available CPU utilization — will vary.

Using Matlab-based tools, the effects of the scheduling on control
performance in the described scenario is analysed and simulated. For
control performance analysis, the Jitterbug toolbox is used. Jitterbug is
a tool for studying how timing affects the performance of a computer-
controlled system [LC02]. The simulation was done using the TrueTime
real-time kernel simulator in Matlab/Simulink, with simulated heap, a
separate GC thread, and one disturbance task. The simulator is pre-
sented in Chapter 8.

Theoretical analysis

The analysis is done for two versions of the ball-and-beam controller:
with or without angle measurements. The controller with the angle mea-
surement will allocate more memory per sample, and therefore, under
the discussed feedback scheduling, it will suffer a bigger penalty from
the GC overhead. On the other hand, for the same sampling rate, the
controller using angle measurements will perform better. In order to
optimize quality of control, the cost of memory management must be
balanced against the control performance, to choose which of the two
controllers to use, given a certain KGC.

Figure 6.3 shows the calculated total cost for a range of sampling
rates. Figure 6.4 shows the sampling rate for the two controllers as a
function of KGC. The controller without angle measurements has lower
memory requirement, and is therefore much less sensitive to KGC.

1The experiment setup is described in more detail in Chapter 8.
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Putting this together, using linear cost functions, Figure 6.5 shows J

as function of KGC for the two systems. The intersection of the lines is
the value of KGC where the system with observed angle starts outper-
forming the one with measured angle as a lower memory usage allows
a higher sampling rate — the optimal Kswitch.
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Figure 6.3: The calculated costs and the linear approximations.

Simulation

In order to measure the control performance of the LQG regulator, if qn

is the weight of the nth state (i.e., Q = diag(q1 . . . qn)), and x is the state
vector, we define the total cost as

Jtot =

∫ t n
∑

i=1

qix
2
i (t) dt . (6.23)

Running the system with different values of the switching point Kswitch

and measuring Jtot gives the plot shown in Figure 6.6, where the mini-
mum corresponds to the optimal Kswitch. The cost is the total cost of a
160s execution, and it is not normalized. The absolute values of the cost
are not very interesting, as a direct comparison with the analysis is not
possible as they show different things. The analysis calculated the cost
for different, constant, values of KGC. In the simulation, KGC varied
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Figure 6.4: Sample rate as function of KGC.
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Figure 6.5: Cost as function of KGC. For high values of KGC, the system with
the observer will outperform the one with measured angle, due to the large CPU
cost of memory allocation.
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throughout the execution and at each scheduling instant the controller
with the lowest cost was used. The GC was scheduled as described in
Chapter 4, and the feedback scheduler used UGC to adjust the utilization
reference, according to Section 6.2.1.
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Figure 6.6: Total cost as function of Kswitch.

In theory, the minimum in Figure 6.6 should be at the same KGC

value as the intersection of the lines in Figure 6.5. The discrepancy be-
tween the theoretical and simulated results can be explained by a combi-
nation inaccuracies in both the models and the run-time system. The the-
oretical results are based on an optimal feedback scheduler, but at run-
time, some approximations are required. Notably, in order to determine
the mutator utilization, both the GC cycle time and the GC execution
time has to be predicted. The GC cycle time is dependent on the allo-
cation rate and object distribution, which are both affected by the mode
changes. Also, in order to get a high enough KGC to reach Kswitch, the
system had to be quite stressed, with a UGC around 45 – 55 %. Thus the
impact of the discussed approximations and uncertainties, which would
be small in a system with lower UGC, became significant.

While the setup in this simple case study is not entirely realistic, it
still illustrates the fundamental idea that if memory usage can be con-
trolled, the total quality of control of a system can be improved by on-
line optimization of the trade-off between memory and CPU usage.
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6.5 Summary

In order to use scheduled garbage collection in a feedback scheduling
system, the required CPU utilization of the GC task must be known,
and as the GC utilization depends on the memory behaviour of mutator
tasks, it must be determined on-line. Also, as feedback scheduling is
typically used in systems where the workload of the mutator tasks (and,
hence, their execution pattern) is variable, the GC scheduling cannot be
static but must be able to react to such changes.

Different approaches to taking the GC into account in the period as-
signment of a feedback scheduler were suggested. In the first approach,
the GC auto tuner is used as a reference generator to the feedback sched-
uler, using feedback to adjust the utilization reference based on mea-
sured and estimated GC utilization. In the second approach, the GC
scheduling is incorporated into the period assignment of the feedback
scheduler.

Both approaches have similar performance2, and the major differ-
ences between them lie in implementation and fairness. The separate ap-
proach is easier to implement, as the communication between the feed-
back scheduler and the memory manager is kept at a minimum: the GC
utilization is accounted for by changing the utilization reference of the
feedback scheduler. The advantage of the integrated approach is that it
increases fairness of the schedule, as the memory usage is accounted for
as a part of the execution time of a task.

Feedback scheduling is a technique for on-line resource management.
It was suggested that overall performance can be enhanced if also mem-
ory usage could be included in the optimization. If a controller can be
run in different modes, with different memory requirements, the trade-
off between memory usage and CPU usage can be optimized on-line.

This chapter has presented different examples of how communica-
tion between the memory manager and feedback scheduler is, to some
extent, necessary, and, in other cases, opens new possibilities for opti-
mization of the performance of the complete system.

2Experiments are presented in Section 8.6





CHAPTER 7

GC IN AN UNCOOPERATIVE

ENVIRONMENT

Due to external requirements, run-time systems for embedded appli-
cations may have to operate in an uncooperative environment; for in-
stance, extra-functional requirements or historical reasons may stipulate
using an off-the-shelf C compiler and RTOS or including external, legacy
or automatically generated, C code. In such cases, one cannot rely on
detailed assumptions on the behavior of the back-end C compiler or the
thread scheduler, which makes implementation of a real-time GC more
challenging. For instance, it means that any synchronization required
between collector and mutator, needs to be done explicitly. It also means
that the generated C code must be written so that it ensures, in a portable
way, that no back-end optimization causes interference with the GC.

In particular, the combination of uncooperative compiler, uncooper-
ative scheduler, and tight real-time requirements (low latency) makes a
demanding challenge. Without control over the scheduling, some com-
piler optimizations cannot be allowed, as threads may be preempted at
any time. For instance, if we are using a copying or compacting GC al-
gorithm, pointers must always be read from memory, and not kept in
registers, as the collector may move objects at (from the mutator’s point
of view) any time. Furthermore, explicit synchronization with the col-
lector is required, which adds to the execution time overhead of memory
operations.

It is shown, and experimentally verified, how it is possible to imple-
ment an accurate, concurrent GC in an uncooperative environment, with
maximum latency times of a few microseconds, and acceptable run-time
overhead. Potential bottlenecks are identified, and compile-time and
run-time optimizations to mitigate the problems are suggested.
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After the introduction in Section 7.1, Section 7.2 discusses the problems
associated with concurrent GC in an uncooperative environment and
presents our approach. Section 7.3 briefly describes our GC API. Sec-
tion 7.4 investigates some potentially expensive performance bottlenecks
and Section 7.5 discusses how they may be mitigated.

7.1 Introduction

In a run-time system for real-time Java, or other safe languages with
automatic memory management, it is essential to have an accurate, or
exact, (i.e., non-conservative), concurrent garbage collector with ade-
quate real-time performance. Due to the external requirements discussed
below, the GC must also be able to function in an uncooperative environ-
ment, meaning that we must make sure that neither correct behaviour,
nor real-time performance, is jeopardized by compiler optimizations,
concurrency issues or interference from external code. The challenges
encountered when designing and implementing such a run-time system
include:

Real-time performance The collector should be fully concurrent in or-
der to make it possible to schedule GC in a non-intrusive way
[Hen98, RH03]. It should also have very fine-grained incremen-
tality to allow latency times of at most a few microseconds as re-
quired e.g. in automatic control applications.

Usability and flexibility Just as a system must make efficient use of sys-
tem resources, it must not require unreasonable amounts of engi-
neering effort in order to meet e.g. timing and space constraints.
Therefore, an important requirement on a run-time system that is
to be practically usable is that it is easy to use and offers sufficient
flexibility. This means, for example, that the interface to the mem-
ory manager must be fairly simple, and that it should be flexible
enough to allow migration between platforms, operating systems,
and GC algorithms with little, or no, effort.

Uncooperative compiler The major reason for using a non GC aware
compiler is availability; there are C compilers for practically all
computer platforms and therefore it is desirable to implement new
compilers for high level languages using C as intermediate code
and a standard C compiler as the back-end. This gives access to a
portable and highly optimized back-end without having to spend
the effort required to implement one. However, not having control
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over machine code generation makes it harder to implement accu-
rate garbage collection. Finding roots and identifying references
are more difficult as we do not have control over activation record
layout, register allocation, etc.

Uncooperative scheduler As with compilers, there are many reasons
for wanting to use an off-the-shelf real-time operating system. Also,
if there is a need to call external native code it is not possible to
rely on specific scheduling features like preemption points to en-
sure safe behaviour, as such external code does not contain pre-
emption points. For instance, a thread in a Java program may call
native functions in legacy libraries or code generated from a tool
(like Matlab/Simulink). As it must be possible to preempt a thread
during such native calls, if we want to make guarantees on latency,
preemption must be possible at any instant and not just at preemp-
tion points.

Furthermore, for the sake of portability (currently, our system runs
on posix1, Linux/RTAI2, STORK[AB91], and a locally developed
kernel for the Atmel AVR series of micro-controllers) the interface
to — and reliance on certain features in — the underlying OS must
be kept at a minimum.

In isolation, each of these aspects do not pose a large problem, but,
as we will see, the difficulty comes from the combination, which gen-
erates conflicting requirements. In particular, synchronization between
the mutator and collector can be a problem; full preemption in combi-
nation with a fully concurrent GC — especially a compacting one —
requires mutual exclusion and, to get short latency times, quite frequent
locking and unlocking, which may be a serious performance bottleneck.

Since we usually cannot expect to have control over every aspect of
the execution environment of an embedded control system, we need to
find a way to handle the conflicting requirements this places on the de-
sign of a concurrent GC. This includes finding out how to make a reason-
able trade-off between short latency and overall performance as well as
investigating what possibilities exist for reducing the impact of the de-
sign conflicts by applying a combination of compile-time and run-time
optimizations.

1Tested on Solaris on UltraSparc and Linux on Intel and PowerPC
2The DIAPM Real-Time Application Interface is an addition to Linux, making it possi-

ble to run hard real-time tasks at the kernel level, below Linux. Tested on Intel, PowerPC
and Axis ETRAX computers.
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7.2 Exact GC in an uncooperative environment

The desire to use standard real-time operating systems and standard C
compilers means that we will have to construct a GC that not only is
independent of operating system or compiler support, but will work de-
spite the way the operating system and compiler works. Designing a
concurrent GC for such an environment is a challenge. The GC must
be synchronized with the application threads and the operating system
such that the heap remains consistent no matter how the operating sys-
tem chooses to schedule the system. The compiler must also be pre-
vented from certain optimizations that could jeopardize the integrity of
the heap — especially in combination with a preemptive scheduler. We
must also provide some type of runtime type information in order to
make it possible for the GC to identify all references.

7.2.1 Uncooperative compiler

We must ensure that all references are traversed by the collector. This
includes finding references that reside in local variables as well as avoid-
ing that references are missed because of compiler optimizations. Refer-
ences may reside on stacks or on the heap (or in registers, but this must
be avoided). If the back-end compiler doesn’t know about references,
the code has to contain explicit instructions to inform the GC about the
location and scope of each reference.

A common way of implementing this is by pushing the location of
any local reference variable onto a root stack [Hen98]. Another alterna-
tive is to group all local variables for each function together into a C
struct and to link these structs together forming a shadow stack contain-
ing all references [Hen02].

Finding references on stacks

An accurate traversing GC must be able to correctly identify all refer-
ences outside the GC heap which reference objects on the heap. I.e. it
must find all the root references. Roots can consist of global variables
as well as variables located within method activation records on the C
stack. An efficient strategy for tracking these is required.

Keeping track of root references becomes especially hard when we
use a compiler or a back-end without support for GC, since we have
little or no control over activation record layout, register allocation, and
code optimization. In order to gain independence from the compiler, we
need to have a known — to the GC — format of references. Just storing
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references as C pointers is not possible, as any kind of optimization may
then be performed on them.

Our approach to tracking root references is to use an auxiliary root
stack, consisting of reference structures, as shown in Figure 7.1. The
reference structs also reside on the C stack and are linked together in a
singly linked list. Roots are registered by calling PUSH_ROOT(gc_root)
and de-registered by calling POP_ROOT(gc_root)3.

typedef struct gc_root {
GC___REF(ObjectHead) ref;
struct gc_root *next_root;

} gc_root;

Figure 7.1: The structure used to track references on stacks. The
GC REF(type) macro expands to type* for a non-moving GC, or to
type** for a moving GC (to accommodate the indirect table or forwarding
pointer of the read barrier).

In a multi-threaded system, each thread has its own stack, and we
use one root stack per thread. This makes things like popping all local
variables of a function and handling exceptions easier, and also reduces
the amount of required synchronization as the thread root stacks are in-
dependent. The roots of each thread are kept in a linked list (as above),
and the heads of each thread root stack (marked, in our implementa-
tion, by next_root==0) are kept in a doubly linked list. The structure
is shown in Figure 7.2, and Figure 7.3 gives an example of how the set of
root stacks are linked together.

Finding references in objects

In order to find references in objects (i.e., on the heap), we need to have
information about the object layout. This can be implemented in several
ways. One method is to associate a trace function with each object type
which calls a GC function for each reference in the object. Another alter-
native is to insert into each object a reference to another object that con-
tains information about the layout of the object. We call this information
GC info. The GC parses this information in order to find the references
to traverse.

3In our implementation, we use the root structure as a stack. As roots are typically
local variables, their lifetimes depend on the scope they are declared in, and thus, exhibit
a stack-like behaviour. However, as the roots are kept in a list, it is possible to register and
de-register roots in an arbitrary order.
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typedef struct gc_root {
GC___REF(ObjectHead) ref;
struct gc_root *next_root;
struct gc_root *top_root;
struct gc_root *next; // next thread
struct gc_root *prev; // previous thread

} gc_root;

Figure 7.2: The root layout for multi-threaded programs. The top root,
next and prev fields are not used for the actual root elements, so this memory
doesn’t need to be allocated for the roots, but having the same struct for both list
heads and list nodes simplifies the traversal code.
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Figure 7.3: Data structure for roots. One root stack per thread and one for
static (system) objects. For the thread root stack heads, ref == null.
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Each object in our implementation contains a reference to a template
object. The template object contains various runtime type information
about the object including the GC info and object size. The layout of
the GC info is a zero-terminated array [R0, D0, R1, D1, . . . , RN , DN , 0],
where R is the number of references and D the number of data bytes,
as is shown in Figure 7.4. In addition, we use special escape codes to
indicate that the size of a variable size array of either references or data
is stored in the object itself. This makes it possible to use the same GC
info object for arrays that only differ in length.

By using an object layout convention which says that all objects should
start with a sequence of all references followed by all data fields of the
object, the total size of the GC info can be reduced to three integers. This
can be generalized to that the size of the GC info array is limited to 2N+1
where N is the depth of the inheritance hierarchy of that object.

gc_info

size
[3,8,1, 0]

gc_fields

ref1
ref2
ref3
long1
ref4

template

Figure 7.4: Object layout example: The object consists of three references
followed by eight bytes of data, and finally one more reference.

Ensuring safety

A problem for garbage collectors in uncooperative environments is that
compiler optimizations may make it harder to find roots. For instance,
if a reference variable is allocated to a register and never stored on the
stack, it will not be found by the garbage collector. A conservative col-
lector that relies on heuristics and assumptions on the stack frame layout
is vulnerable to this type of problems, but this is not the case in the pre-
sented approach.

As our GC uses its own auxiliary structures to find roots on the stack,
the only requirement is that all reference variables are stored in memory
when the GC runs. This can be expressed in standard C by taking the
address of any local reference variable (the &var construction). Then,
the compiler must allocate that variable on the stack (as it must have a
memory address) and ensure that it is written back to memory before
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function calls. As we have explicit instructions for linking local roots
into our root structure, this requirement is fulfilled. Depending on how
the read barrier is constructed, reference variables may also need to be
declared volatile to ensure that they are read from memory, as the
GC thread may have moved objects.

7.2.2 Uncooperative scheduler

With a fully concurrent GC, and without control over the thread sched-
uler, we must ensure that a context switch does not cause a process to be
left in an inconsistent state. For example, we must prevent that a thread
is preempted in the middle of the execution of a read- or write barrier.
A context switch may occur at any time, which means that the mutator
and collector must have mutually exclusive access to the heap in order
to prevent both that a process is preempted during reference operations
and that a reference or an object is read when the heap is in an inconsis-
tent state due to GC.

It should be noted that the need for synchronization between a con-
current GC and mutator threads described here is not a result of (ahead-
of-time) compilation; the same issues arise in e.g., a JVM using native
threads. An uncooperative compiler complicates things further as it im-
poses restrictions on the implementation, but the fundamental problem
is that certain memory accesses and reference operations must be atomic
to the mutator and collector even if they are not atomic from scheduler’s
point of view.

Locking the heap can be accomplished in various ways depending
on the current platform and operating system. A method that might be
advantageous on some platforms is to disable interrupts when exclusive
access is required in order to prevent context switches. In many situa-
tions disabling interrupts is not feasible; for instance the operating sys-
tem might prevent programs from doing so, or it might interfere with
other parts of the system. In such cases, the synchronization mecha-
nisms provided by the operating system must be used, e.g. a semaphore
or a monitor.

7.3 Garbage collector interface

Different GC algorithms require different interaction with the applica-
tion. For instance, a compacting or copying collector requires a read-
barrier, as objects may move, where a non-moving mark-sweep collec-
tor only requires a write barrier. These differences makes it error-prone
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and troublesome to write code generators supporting more than just one
type of GC algorithm, and it gets even worse considering hand-written
code, which would need a major rewrite for each supported GC type.

In order to separate, and hide, the GC implementation from the ap-
plication, we have specified a garbage collector interface (GCI) that pro-
vides heap access primitives to the application [IBE+02]. This includes
providing the necessary synchronization for reference and heap opera-
tions. The GCI is used both in the Infinitesimal Virtual Machine and in
the LJRT compiler, and with both concurrent and stop-the world ver-
sions of non-moving, compacting and copying collectors. By using the
interface, no changes to the compiler or VM is required, when a new GC
is added.

As the efficiency of a garbage collection algorithm is highly depen-
dent on the behaviour of the application, the choice of GC algorithm is
part of the configuration and tuning of a system. The separation pro-
vided by the GCI means that the intermediate C code generated by the
LJRT compiler doesn’t have to be re-generated in order to change GC,
only C compilation is required, which makes experimenting with differ-
ent GCs quicker and easier.

The varying requirements of different GCs, both on the set of mem-
ory access primitives and run-time aspects causes the interface to con-
tain quite many operations, which makes it less than ideal for manually
written code, but as the main intended use for GCI is generated code
(especially from our Java to C translator) or low-level routines in a vir-
tual machine, this is no major concern. As always, there is a trade-off
between keeping the interface small and limiting the power of expres-
sion as little as possible. Manually writing code that accesses the heap
through the GCI is, however, also quite doable.

The interface consists of primitives for initialization, object layout
declaration, reference variable declaration, object allocation, reference
access, field access, and function declaration and call, which adds up to
50 primitives. The GCI is implemented as C macros, and, as an example
of how the interface looks, we take the field reference operation: reading
a reference field from an object is done through the GC_GET_REF macro.
Figure 7.5 show how an expression of the type t = a.b.c, on an ob-
ject a, must be split up to fit the GCI. Note that a temporary variable
(tmp) is used and how it is pushed onto and popped from the root stack.
The first GC_GET_REF macro expands to executing the read barrier on
a (i.e., finding a pointer to the actual object), assigning a.b to tmp and
executing the write barrier.
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GC_REF(Type, tmp); // Type tmp;
GC_PUSH_ROOT(tmp);
GC_GET_REF(tmp, a, b); // tmp = a.b;
GC_GET_REF(t, tmp, c); // t = tmp.c;
GC_POP_ROOT(tmp);

Figure 7.5: Example of field access through the GCI.

7.4 Performance issues

This section discusses the run-time overhead incurred by the presented
approach and Section 7.5 presents some optimizations that reduce that
overhead. The problems described here are to a large part due to the fact
that we have conflicting requirements on our design. As stated earlier,
the design criteria behind our system is that it should

• cause very low latency

• not require compiler (back end) cooperation

• not require scheduler cooperation

• have low execution time overhead

A combination of any three is fairly easy. The problem is achieving all
these properties at the same time. If we add the requirement that the
implementation should have a simple interface and high flexibility, it
gets even more difficult.

As we cannot rely on cooperation from the scheduler, the applica-
tion4 code must provide the required synchronization. In order to keep
the latency low, tight synchronization with very small critical sections
is required, and our experiments show that the dominating part of the
overhead is introduced by frequent locking, so the discussion will fo-
cus on that. Furthermore, the requirement on simplicity and flexibility
must also be taken into account, which means that we cannot rely on
manual tweaking in order to meet the real-time requirements. However,
even if a very large engineering effort can be put into manual tuning,
there will still be an overhead due to the synchronization, compared to
a traditional non-real-time GC.

It is stressed that the discussion in this chapter is based on the above
assumptions, and that the performance problems described are caused
by the high degree of synchronization necessary when we require very

4From the operating system’s point of view; application includes the GC.
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low latency and are constrained by an uncooperative environment (in
particular the scheduler) and/or unknown external native code. If, on
the other hand, the scheduler and application allows it, preemption points
could be used; if preemption points are placed in a way that ensures
that preemption only may occur when the heap is in a consistent state,
no additional synchronization would be required. This is a commonly
used technique, but as it is not suitable for our applications, it is outside
the scope of this discussion.

7.4.1 Too frequent locking

As stated, in order to achieve short latency times, we need to make the
atomic GC operations as short as possible. As the heap must be locked
during GC operation (to provide mutual exclusion w. r. t. the mutator)
this requires frequent locking and unlocking. Even though each lock-
/unlock operation is really cheap, the number of lock/unlock operations
in the straight-forward implementation proved to be a serious perfor-
mance bottleneck. For the test application presented in the experiments,
the straight-forward implementation performed thousands of lock/un-
lock operations per sample. This was the major limiting factor on the
possible sample rate for the controller.

The assignment statement t = a.b.c of the example in Figure 7.5,
illustrates the problem with locks: if we expand the GC macros to show
the locking instructions, it looks like in Figure 7.6. In this example, there
are three pairs of gc_unlock(); gc_lock(); instructions, due to the
fact that many atomic operations are executed in sequence, and that each
operation has to contain the proper synchronization. This is obviously
quite inefficient. If the lock and unlock instructions could be placed ar-
bitrarily, the intermediate pairs could be removed in order to to increase
efficiency, resulting in the code as shown in Figure 7.7, reducing the lock-
ing overhead by 75%. Also, as no GC work may occur while the heap
is locked, the GC_PUSH_ROOT() and GC_POP_ROOT() operations may
also be removed, leaving us with just the code in Figure 7.8, which is
much more efficient and has almost as small critical section as each of
the original primitives. This is, of course, a very simple example. In a
real program the lock instructions could be placed at arbitrary intervals,
which allows the trade-off between latency and throughput. Nonethe-
less, the example illustrates the problem of big synchronization over-
head due to small atomic operations.

The optimization described in the above example, however, requires
both that the locking instructions are accessible in the interface and
either tedious manual placement of locking instructions or that we have
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tool support (in the compiler and/or in the run-time system) for au-
tomatically inserting lock/unlock instructions at suitable (for a certain
desired latency) intervals.

GC_REF(Type, tmp);
gc_lock(); GC__IMPL_PUSH_ROOT(tmp); gc_unlock();
gc_lock(); GC__IMPL_GET_REF(tmp, a, b); gc_unlock();
gc_lock(); GC__IMPL_GET_REF(t, tmp, c); gc_unlock();
gc_lock(); GC__IMPL_POP_ROOT(tmp); gc_unlock();

Figure 7.6: Example showing the expanded macros, revealing the lock instruc-
tions enclosing the implementation-layer macros.

GC_REF(Type, tmp);
gc_lock();
GC__IMPL_PUSH_ROOT(tmp);
GC__IMPL_GET_REF(tmp, a, b);
GC__IMPL_GET_REF(t, tmp, c);
GC__IMPL_POP_ROOT(tmp);
gc_unlock();

Figure 7.7: Example with bigger critical section

GC_REF(Type, tmp);
gc_lock();
GC__IMPL_GET_REF(tmp, a, b);
GC__IMPL_GET_REF(t, tmp, c);
gc_unlock();

Figure 7.8: Example with root operations removed

The heap synchronization is not trivial when really fine-grained in-
crementality is desired, and having explicit locking instructions increases
the risk of concurrency errors, as the responsibility would be moved
from the GC to the application code. It would also contradict the design
goal of GCI, that the details of the different GC implementations (in this
case, the synchronization) should be hidden from the user.

As one of the intentions behind the GCI is to make it possible to
switch GC algorithms without changing the application code, explicit
locking instructions are problematic, as the level of synchronization re-
quired depends on GC algorithm and implementation. E.g. a copying
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or compacting collector needs locking at both read- and write barriers,
while a non-moving mark-sweep only has a write barrier. Also, de-
pending on how root operations and function calls are implemented,
the required synchronization varies. This could be solved by having
a number of different locking instructions for different operations (for
instance, gc_lock_READ(), gc_lock_WRITE(), gc_lock_ROOT(),
gc_lock_CALL(), gc_lock_RETURN(), etc.) which would increase
the complexity of the interface, and the risk of programming errors, sig-
nificantly.

It would be possible to add a gc-lock optimization pass to the LJRT
compiler by e.g. performing analysis similar to the PMH placement in
[ACM+03]. However, explicitly placing lock instructions in the appli-
cation code has the drawback that their placement must depend on the
intended target platform and desired timing properties. That is, the pro-
grammer, or tool, must know that, for instance, a piece of code must
have critical sections that are less than 10 µs on a particular computer.
Thus, the analysis may need to be drastically different if we compile for
a small 8-bit 8 MHz micro-controller or a 2 GHz machine.

From our point of view, flexibility and portability are very impor-
tant, and therefore we believe that the application code should be as
generic as possible, and that low-level decisions regarding the real-time
behaviour and scheduling should be left to the run-time system. This is
motivated not only by portability but also by the fact that much more
information is available at run-time than statically at compile-time.

7.4.2 A read barrier requires locking

Copying and compacting garbage collection algorithms have, among
other things, the advantages that fragmentation is avoided and that al-
location is a constant time operation. This, however, comes at the cost
that a read barrier is required and this is potentially expensive. In our
implementations, the extra cost of the read barrier itself compared to a
non-moving GC is just an extra pointer dereference for each reference
access. In the context of concurrent GC, the main cost of the read barrier
is that it requires synchronization to avoid that the collector moves an
object while it is being accessed by the mutator.

The total synchronization overhead incurred by the read barrier has
two parts; the cost of each lock/unlock operation, and the number of
accesses. Typically, variables are read much more often than they are
written, (or at least as often, for most programs) and thus, any overhead
associated with the read barrier has a higher (or at least as high) impact
on overall performance than the write barrier overhead. This means
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that, for any application, the locking overhead will be at least twice as
high when using a moving collector compared to a non-moving.

7.4.3 Locking at method calls

Passing references as parameters to a function may need to be protected.
For instance, if a reference can exist only as a parameter (e.g., as in
foo(new Bar()) ), the GC must not run until the parameter has been
rooted (registered as a root) in the called context.

For functions returning references, it is possible (or likely) that the
object to be returned has been allocated in the called function. Therefore,
when the function returns, the only reference to that object is the return
value, which may have been referenced only by a local variable. This
means that the return value must be protected, both to make sure that
the object is retained and scanned, and to prevent the GC from moving
the object until a proper reference has been rooted and the write barrier
executed in the calling context.

7.4.4 Effects on optimization

Another important aspect of synchronization, which is not addressed
here, is the interaction with an optimizing back end. For instance, it
can make a big difference if the lock/unlock instructions can be inlined
by the compiler or if they have to be function calls. Specifically, if the
synchronization instructions break up basic blocks, this would severely
limit an optimizing compiler’s options.

7.5 Reducing the overhead

This section outlines some observations that can be used to drastically
reduce the overhead associated with heap locking. It is shown how the
cost of function calls and root operations can be significantly reduced
and how the overhead can be almost completely eliminated for highest
priority threads.

7.5.1 Reducing the need for synchronization

The level of required synchronization is affected both by the choice of
GC algorithm (e.g., if a read barrier is required or not) and by differ-
ent implementation decisions in the compiler and run-time system. This
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section gives examples of how those issues can be addressed in the com-
piler and in the run-time system, respectively.

Root alias analysis In a typical object oriented program, a large part
of local variables will be of reference types, and thus there will be many
root references. A special case is the temporaries used in LJRT programs.
As stated, the GCI requires complex constructs, such as foo = a.b.c, to
be split up into simple attribute accesses as shown in Figure 7.5. This
means that a lot of roots has to be pushed on and popped from the root
stack, causing a significant execution time overhead, primarily from the
required synchronization.

It can, however, be observed that in order to ensure correct GC be-
havior, it is enough that each live object is reachable from one root5.
This means that the amount of necessary root operations, and thereby
the overhead, can be reduced; if it can be statically determined that a
variable will only reference objects that are also referenced by another
variable with longer lifetime, the “inner” variable does not have to be
registered as a root. We call this root alias analysis, and the compile-time
analysis is trivial, as we do whole-program compilation. With this opti-
mization, the push and pop operations in Figure 7.5 would be removed,
which means that there will be no additional overhead of having the
temporary variables explicitly in the code. In a typical Java program,
the amount of “root duplication” is, in our experience, very high, as the
associativity between objects tend to be high — between 50% and 70%
of roots (including temporaries) were found to be statically redundant in
our experiments. A large portion of the local variables that really need
to be rooted are temporary references required to keep a newly allocated
object live before its constructor has completed. This is needed to keep
latency low; as the constructor can be of arbitrary length it cannot be
treated as atomic.

As an example of how the root alias analysis works, we take the code
fragment in Figure 7.9. There, f and b will (or may) reference objects
that are allocated in the context of main, so these variables must be reg-
istered as roots, as they are the only references to the new objects. On the
other hand, in proc, we know that the parameters have been registered
as roots in the calling scope. Local analysis in proc, can statically deter-
mine that t1 and t2 only reference objects that are reachable from (the

5This does not hold for moving collectors that use forwarding pointers in the objects,
as the roots are used for updating pointers as well as for finding live objects; for this op-
timization to work, the read barrier must be implemented using an indirect table outside
the object.
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void main() {
Foo f; Bar b;
...
f = new Foo();
b = new Bar();
...
proc(f,b);

}
void proc(Foo foo, Bar bar) {

Test t1, t2; Bar b1;
...
t1 = foo.test1;
t2 = foo.test2;
b1 = bar.x();
...

}
class Foo {

Test test1, test2;
...

}
class Bar {

Bar b;
...
public Bar x() { return b; }

}

Figure 7.9: Root alias example

attributes of) the parameters, and therefore it is not necessary to register
these variables as roots. In contrast, we cannot tell if b1 is an alias for
something already rooted, or not. By analyzing the method Bar.x() it
is seen that x only returns an object reachable from an attribute. There-
fore, b1 does not need to be registered as a root.

If we are doing whole-program compilation, all calls to functions re-
turning references can be analyzed and will finally boil down to either an
attribute access (which doesn’t require rooting) or an allocation (which
does). In a separate compilation context, it is not generally possible to
perform the whole-program root alias analysis, but the local analysis
may still be used to get rid of unnecessary roots caused by temporary
variables.

The implementation of the root alias analysis is quite simple, and the
majority of the code is shown in figure 7.10. This is code written for
JastAdd II, an aspect-oriented compiler compiler tool [Ekm04, NIEH04],
but it is basically Java code for evaluating the attributes of syntax tree
nodes. For example, the first method describes the evaluation of the
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isNewRoot attribute in VariableDeclaration nodes, which will evaluate
to true if there is any statement that may cause the variable to contain a
unique root.

In the case of class overloading, the analysis of whether a method call
may return a new root must analyze all overloaded implementations of
the method which may be executed, which may yield a conservative
result. For the sake of readability, that code has been left out from the
figure.

boolean VariableDeclaration.isNewRoot() {
boolean result = false; Stmt stmt = null;
ASTNode scope = getSurroundingScope();
foreach stmt in scope {

result |= stmt.isNewRoot(this); }
return result;

}
boolean ExprStmt.isNewRoot(VariableDeclaration varDecl) {

if (getExpr() instanceof AssignSimpleExpr) {
AssignSimpleExpr expr = (AssignSimpleExpr) getExpr();
return expr.getDest().isUse(varDecl) &&

expr.getSource().isNewRoot(); }
return false;

}
boolean MethodAccess.isNewRoot(){return decl().isNewRoot();}
boolean VarAccess.isNewRoot(){return decl().isNewRoot();}
boolean MethodDecl.isNewRoot(){ return returnsNewRoot();}
boolean InstanceExpr.isNewRoot(){return true; }

boolean Block.returnsNewRoot() {
boolean result = false;
for (int i=0; i<getNumStmt(); i++) {

result |= getStmt(i).returnsNewRoot(); }
return result;

}
boolean ReturnStmt.returnsNewRoot() {

boolean result = false;
if (hasResult()) { result = getResult().isNewRoot(); }
return result;

}
boolean MethodDecl.returnsNewRoot() {

// Native methods do not have bodies, so let’s be conservative
boolean result = true;
if (hasBlock()) { result = getBlock().returnsNewRoot(); }
return result;

}

Figure 7.10: Root alias analysis in the front-end
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Function calls For function calls, the level of locking required depends
on how reference arguments are passed — as references or as actual
pointers (i.e., if the read barrier is executed in the caller or in the callee).
In our implementation, reference structures are stack allocated and thus
will not be moved by the GC. Therefore, if references are called by ref-
erence (i.e., a pointer to the reference structure is passed) no new roots
are pushed in the callee and no heap locking is required. As the caller
will always out-live the callee, if parameters to functions are known to
be rooted in the calling context they don’t have to be rooted again in the
called context. Similarly, we know that the return value of a function
will be used in the calling function (or not at all). Therefore, the variable
that will receive the return value must already be rooted so if we pass a
reference to this variable to the called function, it can be assigned before
the return which removes the need to protect the return value. If func-
tion arguments and return values are handled in this way, no locking is
required for function calls.

Root stacks in multi-threaded programs Another example of over-
head caused by an uncooperative environment is the root stacks. In
multi-threaded programs, each thread has its own root stack, and there-
fore, all root operations (i.e. push and pop) requires a pointer to the
root stack of the current thread. In a system where the thread scheduler
is Java-aware, the root stack pointer is part of the execution context of
each thread and is saved and restored automatically.

In systems which cannot rely on scheduler cooperation, this has to be
handled in the application code. As the root operations are part of the
application code, and the current thread is not known at compile time,
this must be looked up at run time. Looking up the root stack at each
root operation is quite inefficient so this should be done once for each
function call and cached. Similarly, if no root operations are done in a
function (like in e.g. a typical math function of the standard library),
such lookup is unnecessary. Therefore, lookup of the thread root stack
is done lazily at the first root operation of each function and the result is
cached. This can be implemented quite efficiently.

Highest priority threads If a thread is known to have the highest pri-
ority it will never be preempted by another thread during its execution.
Therefore, it is enough to lock the heap (or rather, ensure that no other
thread has locked the heap) each time such a thread starts executing. For
a periodic thread, this could be implemented by placing a gc_lock();
at the start and a gc_unlock(); at the end of each sample. This almost
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completely removes the locking overhead for the (set of) highest priority
thread(s) without affecting the real-time behaviour of the application6.

Furthermore, it enables much more aggressive optimizations to be
applied to the code of HP threads, as it is known that no GC can occur
during execution and the heap only needs to be in a consistent state
when the HP thread stops executing. This means that also a part of
the read and write barrier calls can be removed, reducing the inlined
overhead and, as another consequence, allows more optimizations in
the back end, at the machine code level.

This assumes independent threads, which is a reasonable assump-
tion for the high priority threads in a control system. If a thread contains
blocking calls (e.g., semaphore or monitor operations) the heap must be
unlocked before each such call, or there will be a risk of deadlock.

7.5.2 Reducing the cost of synchronization

With fine-grained memory operations and heap-intensive applications,
such as Java programs, the heap is almost always locked, so whenever
preemption occurs, the probability that the heap is locked is high. As-
sume that a thread (T1) is executing and is in the middle of a memory
operation. Then, a context switch occurs; the thread that is scheduled
to run (T2) will probably try to lock the heap very soon after the con-
text switch and be blocked. Then T1, which is holding the heap lock,
is scheduled to run again until it releases the heap lock, allowing T2
to continue its execution. This means that there will be three context
switches instead of one, increasing the execution time overhead due to
such context switch chatter.

Low latency due to locking is a requirement, so just increasing the
size of the critical sections is not a viable solution. Therefore, we need a
solution that allows very fine-grained preemption without the overhead
of frequent unlocking and re-locking. We also need to make sure that
context switches are not performed when the heap is locked.

This section will sketch three possible solutions based on turning off
interrupts, preemption points, and a proposed technique, lazy locking,
respectively.

Turning off interrupts The straight forward solution is to simply im-
plement gc_lock() by turning off (clock) interrupts and gc_unlock()

6Assuming that no preemption takes place between threads of the same priority, as is
the common case in real-time systems. This is no restriction, as if the system is schedulable
the ordering between threads of the same priority doesn’t matter
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by turning them on again. On most architectures, interrupt requests that
arrive when interrupts are masked are latched, so that when the inter-
rupts are turned back on, any missed interrupt will be generated and the
corresponding interrupt routine is executed. On such an architecture,
this will give the desired semantics that if a time-slice ends, and pre-
emption should take place, when the heap is locked, the context switch
is delayed until the heap lock is released. Turning off interrupts may,
however, not be allowed by the OS, or have negative effects on other
parts of the system, e.g., interrupt-based drivers for peripherals, etc.

Preemption points By using a scheduler which only allow preemption
at certain, pre-determined points, we can avoid frequent locking/un-
locking. In fact, if the memory accesses are taken into account when
placing preemption points so that preemption is only allowed when the
heap is in a consistent state, no additional housekeeping or synchroniza-
tion is needed in order to ensure correct GC operation.

Preemption points are problematic for two reasons. The first is that
most standard real-time operating systems don’t support them. The sec-
ond one is that calling external native code (that doesn’t have preemp-
tion points) may cause priority inversion. An illustrating example is
a background thread calling an external routine with a long execution
time. As external code doesn’t have preemption points, high priority
threads may be delayed indefinitely. One solution is switching to “na-
tive” preemption when calling external code and then switching back
to preemption-points when executing known code. Drawbacks include
a more complex scheduler implementation, and increased latency for
external code due to the extra housekeeping required. The latter may
not be acceptable if the external code is run in timing-critical parts of
the application, e.g. if the external code is a controller generated from a
simulink diagram or low-level legacy code.

Lazy locking If turning off interrupts or using preemption points is
not possible or desirable, an alternative strategy for reducing the lock-
ing overhead is based on the observation that, while the frequent lock-
ing and unlocking is required in order to achieve low latency, in the
common case, the heap is unlocked, and then shortly re-locked by the
same thread. Thus, most of the locking operations are really unnecessary
and most unlock–lock pairs could be removed without changing the be-
havior of the program (other than reduced overhead). The problem is
just determining which lock and unlock operations that need to be per-
formed. This could be done statically, but the analysis would be difficult
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and highly dependent on the low-level scheduling, control flow based
on input data, etc. Therefore, a dynamic, on-line approach is preferable.

For example, take a code sequence like in Figure 7.11. If we are exe-
cuting in the marked region, and no clock interrupt has arrived (i.e., the
thread will not yet be preempted), it is unnecessary to perform the un-
locking and re-locking operations. Thus, if we could dynamically decide
whether to perform the unlock/lock operations (in a way that is much
cheaper than actually performing the locking), the overhead could be
reduced. Then, when a clock interrupt occurs, the heap should really
be unlocked at the next unlock instruction and the context switch per-
formed.

gc_lock();
...

--> gc_unlock();
--> gc_lock();
--> ...
--> gc_unlock();
--> gc_lock();

...
gc_unlock();

Figure 7.11: Locking example: Small atomic operations cause frequent locking.

One way of implementing this is by having two versions of the op-
erations: the actual lock/unlock operations (which are executed when
the locking is required) and “NOP” versions that are used when unlock-
ing and re-locking isn’t necessary. Then, the run-time system ensures
that the correct version is run at each time to both guarantee the correct
semantics and achieve the best performance. In principle, an implemen-
tation of this scheme looks like in Figure 7.12. This method gives similar
behavior as preemption points with regard to heap accesses, but with-
out requiring additional housekeeping in order to allow external native
code to be run with real-time guarantees.

In the sketched implementation, the reschedule function in the
scheduler is modified to include the lazy locking related operations. If
modifying the scheduler is not possible, or practically feasible, much of
the benefit of lazy locking can still be obtained if the OS has a call-back
hook for a method to be called at context switches. In fact, this is the
method used in our Linux/RTAI prototype, and it gives the same re-
duction of the number of locking operations, but does not address con-
text switch chatter. That may, however, be a reasonable trade-off for not
having to modify the scheduler.
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void (*gc_lock)(void);
void (*gc_unlock)(void);

void gc_lock_real(void)
{ lock(heap_mutex);

gc_lock = f_nop;
gc_unlock = f_nop;

}
void gc_unlock_real(void)
{ unlock(heap_mutex);

yield();
}
void f_nop(void) { return; }
void reschedule(void)
{ if(is_locked(heap_mutex)) {

gc_lock = gc_lock_real;
gc_unlock = gc_unlock_real;

} else {
/* perform actual context switch */

}
}

Figure 7.12: Lazy locking implementation sketch

There are, of course, many other small details that must be taken care
of when implementing such a scheme; e.g., the system must ensure that
the heap is always unlocked before a blocking call is made or before a
thread dies; otherwise there is a risk of deadlock.

7.5.3 Compiler optimization effects

Another problem with locking is that the lock/unlock operations are
function calls or inline assembler, and that tend to break basic blocks
and interfere with compiler optimizations. This is, partly, intentional as
many optimizations are not safe in the general case. For instance, we
must make sure that pointers (gotten through the read barrier) to ob-
jects are always read from memory. Otherwise, objects may have been
moved since the last access, and such race conditions will lead to mem-
ory corruption.

However, preventing such optimizations is really only needed when
a context switch actually has taken place; as long as the same thread is
executing, any optimization is legal, as long as the heap and all refer-
ences in memory are consistent at the next context switch. Thus, perfor-
mance could be improved significantly if it was possible to implement
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lazy locking in a way that the fast case did not break basic blocks. We
believe that this could be done with self-modifying code, injecting the
lock/unlock operations into the code where they are needed and modi-
fying the lock/unlock instructions so that they ensure heap consistency.
This, of course, requires detailed information about the inner workings
of the optimizing back-end and target architecture and cannot be done
in a simple or portable way.

7.6 Summary

An implementation of a framework for accurate, concurrent, real-time
garbage collection aimed at embedded systems was presented. It al-
lows very low latency and works for automatically generated C code,
a standard C compiler and a standard real-time operating system, and
we have evaluated its performance in a robotics application. The results
show that it is possible to use accurate garbage collection in an unco-
operative environment for real-time applications which require latency
times as low as a few microseconds.

However, due to the restrictions imposed by the uncooperative en-
vironment — especially scheduler — explicit synchronization between
mutator and collector is required, and this adds to the execution time
overhead of memory operations. That means that we get a trade-off be-
tween performance (throughput) and predictability (latency) since if we
require low latency the critical sections must be small, and that, in turn,
requires more frequent synchronization. The synchronization overhead
must also be taken into account when choosing GC algorithm; e.g., a
copying or compacting GC requires a read barrier (which requires syn-
chronization) and this may have a big impact on throughput as reads
are typically much more common than writes.

Further, optimizations, in both the Java compiler and in the GC im-
plementation, aimed at reducing both the cost of and need for synchro-
nization was presented. Experiments show that the overhead can be
significantly reduced without affecting the worst-case latency.

It is concluded that concurrent GC is feasible for use in hard real-time
systems, even in an uncooperative environment. The run-time overhead
can be kept at a reasonable level, and that cost may in many cases be
acceptable in order to get the safety and predictability of accurate GC
also in hard real-time threads.





CHAPTER 8

EXPERIMENTS

This chapter presents experimental support for the proposed techniques.
After a brief presentation of the applications and execution environ-
ments, experimental support for the presented techniques is presented.
Section 8.2 presents experiments with time-triggered GC and shows how
using different scheduling methods affect the scheduling of GC work.
Auto-tuning of the GC cycle time is studied in Section 8.3, and Sec-
tion 8.4 presents experiments illustrating the different approaches to GC
execution time estimation. Section 8.5 shows how priorities for memory
allocations can improve robustness and performance. Section 8.6 con-
tains experiments with memory-aware feedback scheduling. The per-
formance of the LJRT run-time system, illustrating an accurate GC in an
uncooperative environment, is examined in Section 8.7.

8.1 Experiment platforms

The experimental verification has been carried out in two control appli-
cations, the ball-and-beam, a simple control process, and motion control
of industrial robots. The execution platform has been the IVM virtual
machine [Ive03] and natively compiled Java using the LJRT platform.

The applications were chosen since we need benchmarks that are
representative for the kind of systems that benefit from a low-latency
GC, i.e. real-time control systems. Standard benchmark suites such as
SPECjvm98 don’t fit very well in this context because of their batch-
oriented character. In batch programs, incremental and concurrent GC
just adds overhead without yielding any benefit. Also, batch programs
and embedded control systems typically have drastically different mem-
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ory usage patterns; the former tend to build some data structure, do
some computations on it, and then deallocate it, whereas the latter typi-
cally run “forever” in steady state.

Ball and beam process

As a test platform, a simple control system for a lab process which bal-
ances a ball on a beam was used. The angular velocity of the beam is
controlled in order to roll the ball to a given position on the beam. A
photo of the lab process is shown in Figure 8.1.

Figure 8.1: The ball-and-beam process. The beam can be rotated to roll the ball
to the desired position. Sensors measure the position of the ball and the angle of
the beam.

The control was performed by a Java application consisting of three
threads; a user interface, a reference generator, and a controller. In ad-
dition to doing the actual control, the controller thread sends log data
back to the user interface thread as illustrated in Figure 8.2. The refer-
ence generator and controller are run at a much higher rate than the UI
thread.

The garbage collector used is an incremental mark-compact collec-
tor. The traces were collected by instrumenting the RT-kernel and the
Java virtual machine, respectively, with logging calls at memory opera-
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Figure 8.2: The ball-and-beam control application consists of three threads;
user interface, reference generator and controller. The data communicated be-
tween the threads is indicated by the arrows.

tions and context switches. Logging was done to a dedicated memory
area and uploaded via a serial line after each experiment. The time-
triggered and adaptive GC experiments were performed using compiled
Java [NEN02] on a 350 MHz PowerPC and the memory allocation prior-
ity experiments were done using the IVM virtual machine [Ive03] on a
STORK [AB91]/Linux platform.

Industrial robots

A recent master’s thesis project [Lin04] made a Java implementation
of the low-level servo controller for an ABB IRB-2000 industrial robot
(given a desired motor velocity for each of the six joints, suitable torque
values and the corresponding AC motor currents are calculated). Posi-
tion samples and control signals are received and sent to the robot over
a real-time network.

Also, a motion controller for an ABB IRB-6 was implemented. This
is a standard PI controller. On the IRB6, local I/O on the control com-
puter is used, making the control code simpler as sampling, calculation
and output of the control signal are all performed in the same thread.
With the exception of the drivers for the analog and digital I/O in the
target system, the complete applications were written in Java. The IRB-6
controller was developed as a case study on the multi-stage deployment
method presented in Section 2.4.3.
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TrueTime-based memory management simulator

The proposed techniques for adaptive GC scheduling has been tested in
a simulated environment. The simulations were carried out using True-
Time, a Matlab and Simulink-based system for studying embedded con-
trol systems by co-simulating the timing properties of a real-time kernel
and the continous time dynamics of the process under control [HCÅ02].
On top of this, a simulator for a concurrent GC was implemented. The
GC simulation is based on a generic heap model and a mark-sweep
garbage collector. The heap model is driven by the mutator’s allocation
of objects and pointer assignmnent, and the GC is used to determine the
number of live and dead objects (the mark routine) or to reclaim mem-
ory (sweep).

Based on the numbers and sizes of live and dead objects found by the
mark routine, the amount of GC work required to complete a GC cycle
is computed with a hand-written GC work function. That allows simu-
lation of different GC algorithms by simply changing the work function.
(currently, there is a mark-sweep, a mark-compact, and a copying col-
lector). In each invocation of the GC task, the heap state is measured,
and the GC work function is evaluated, and when the execution time of
the GC task is equal or greater than the total work of that cycle, the cy-

Figure 8.3: Screenshot of the TrueTime-based memory simulator.
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cle finishes. Thus, the simulation is fairly accurate, as the actions of the
mutator affects the CG workload of the current cycle. That also means
that the scheduling will affect the amount of floating garbage — if the
GC gets much CPU time early in the cycle, and finishes early, less objects
will have had time to die.

Figure 8.3 shows a screenshot of the memory simulator. The physi-
cal process and the control computer are simulink blocks, and both the
states of the process and different signals in the computer, such as the
schedule, amount of free memory, GC cycle time and execution time,
etc, are available as Simulink signals.

The application used in the simulations consists of two threads, a
controller for the ball-and-beam, and a disturbance thread that generates
garbage by allocating objects, filling and releasing buffers. It also causes
transients by switching between operating modes with different alloca-
tion rates (varying size of allocated objects) and live memory amounts
(varying buffer sizes).

8.2 Time-triggered GC

This section illustrates the run-time behaviour of allocation-triggered
and time-triggered garbage collection and shows the difference between
traditionally scheduled incremental GC, where each increment is sched-
uled individually and the work is spread evenly across the GC cycle,
and EDF-scheduled time-triggered GC. In the plots showing the thread
scheduling, the threads are numbered as follows: idle (-2), GC (-1), main
(0), controller (1), reference generator (2) and UI (3).

Figure 8.4 shows an execution trace of a run with allocation triggered
increments, in Figure 8.5 the same program is run with time-triggered
GC with metric-scheduled increments and Figure 8.6 shows the corre-
sponding trace with time-triggered, EDF scheduled garbage collection.
At the macro level, the executions are almost the same; the memory
traces are nearly identical and the mutator threads get to run when they
should. The big difference is between the versions where the individ-
ual increments are scheduled separately, in order to spread the work
evenly across the cycle, and the EDF-scheduled version. Figure 8.7 and
Figure 8.8 show a close-up view of the thread graphs. Note that the
allocation-driven garbage collector performs a much larger number of
miniscule increments as it spreads the GC work more evenly across the
GC cycle even though there is idle time in the schedule. The deadline-
scheduled version, on the other hand, finishes as quickly as possible,
which is shown by the longer GC invocation without any idle time.
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If the application has a bursty allocation pattern, the difference be-
tween allocation- and time-triggered scheduling gets more discernible.
A simple experiment where the low frequency UI thread was modi-
fied to allocate a large number of objects at each invocation was per-
formed. Memory traces of this execution is shown in Figure 8.9 and
Figure 8.10, and close-ups of the thread graph is shown in Figure 8.11
and Figure 8.12. In this case, both the memory trace and the scheduling
are different.

The difference between allocation-triggered and time-triggered GC
when it comes to handling bursty allocations is shown in the scheduling
graphs. When the UI thread (number 3) has executed and made the
large allocation, the following GC increment is much longer than the
other increments. Notice that, by necessity, the cycle length of the time-
triggered GC has been shortened in order to accommodate the higher
allocation rate.
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Figure 8.4: Memory trace and schedule for the ball on beam application using
allocation-triggered GC.
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Figure 8.5: Time-triggered with individually scheduled increments.
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Figure 8.6: Time-triggered, EDF scheduled.
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Figure 8.7: Thread scheduling with the allocation-triggered GC. As the al-
locations performed during each thread period is small, the corresponding GC
increment is also very short. The schedule of the time-triggered, metric-based
scheduler is quite similar as both schedulers spread the GC work evenly across
the cycle and the constant allocation rate of the application makes it possible to
tune the work metric used in the allocation-triggered GC.
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Figure 8.8: Thread plot with the EDF scheduled GC. When a GC cycle is
started, the garbage collector uses all idle time in order to perform the work
required to finish the GC cycle as quickly as possible and then remains idle
until the start of the next cycle. Each increment is, however, still very short in
order to avoid disturbing the application threads more than necessary. This can
be seen at t = 10 s. Here, the GC thread is released just before the application
threads. Thread number 2 preempts the GC, but since the GC has locked the
heap, when thread 2 attempts a heap operation it is blocked until the GC finishes
its current increment. Thread 2 was blocked for 0.4 milliseconds.
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Figure 8.9: Memory trace of an application with bursty allocations and
allocation-triggered GC.
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Figure 8.10: Memory trace of an application with bursty allocations and time-
triggered GC.
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Figure 8.11: Part of the thread graph corresponding to Figure 8.9. Note how
a large allocation in thread 3 causes a long GC increment.
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Figure 8.12: Part of the thread graph corresponding to Figure 8.10. As GC
work is not triggered by allocations, the GC work is spread evenly across the
GC cycle, and long increments are avoided.
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8.3 GC cycle time auto-tuning

This section examines the adaptive GC cycle time estimates described in
Section 4.2. Two sets of experiments are presented. The first one is an
actual application executing on a real computer, and the second one was
done in a simulator.

The first set of experiments show the ball-and-beam application
running on the PowerPC/STORK platform, using EDF scheduling for
threads. Figure 8.13 shows a memory trace of the system with the auto-
tuner enabled. The fast threads run at 100 Hz. Figure 8.14 shows how
the auto-tuner reacts to changes in allocation rate. At t = 10 s, the fre-
quency of the high priority threads is increased from 20 to 100 Hz and at
t = 20 s the frequency is lowered to 20 Hz. The GC is scheduled so that
it will work even if all the dead objects in one cycle would be floating
garbage. I.e., we reserve a part of the available memory for the next GC
cycle as expressed in Equation (4.3). Note the step in the TGC graph near
t = 2.5; no memory was freed during the first GC cycle, and therefore
TGC is halved.

As memory allocations typically are bursty, the measurement of the
allocation rate is filtered in order to keep the deadline estimates more
stable and reduce the update frequency for the scheduling parameters.
Care must be taken not to underestimate the allocation rate, as this might
lead to an out-of-memory situation, so we must react quickly to actual
changes in allocation rate while avoiding chatter due to bursty alloca-
tions. The rise time in the allocation rate plots are due to such filtering.

The second set of experiments were run in the simulated environ-
ment. Figure 8.15 shows how the TGC tuner responds to changing al-
location rates. Figure 8.16 shows the same experiment, using with the
steady-state ∆G compensation as of Theorem 3. At the start, one of the
threads run in an allocation-intensive mode with a random allocation
pattern. At t = 100, it changes to a steady-state mode with a lower
allocation rate, and at t = 200 it changes back to the random mode.
Note that the ∆G compensation reduces the amount of reserved mem-
ory, when the mutator is in steady state, and how this reduces the vari-
ations in GC cycle times.
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Figure 8.13: Memory trace of the system with adaptive GC cycle length.
The topmost plot shows the amount of available memory (in bytes), the mid-
dle plot shows the estimated GC cycle length (in milliseconds) and the bottom
plot shows the LP filtered allocation rate measurement (in bytes/second).
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Figure 8.14: How the GC scheduler reacts to changes in allocation rate; At
t = 10 s, the frequency of the high priority threads is increased from 20 to
100 Hz and at t = 20 s the frequency is lowered to 20 Hz.
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Figure 8.15: Operation of the adaptive GC cycle length tuner. The topmost
plot shows the amount of available memory (in bytes), the middle plot shows
the GC cycle length (in seconds) and the bottom plot shows the allocation rate
measurement (in bytes per second; the solid line is the actual samples and the
dashed line shows the filtered measurement used for the TGC calculation).
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Figure 8.16: Operation of the adaptive GC cycle length tuner with steady state
∆ G compensation. Note how TGC is held constant in spite of varying amounts
of floating garbage in the steady-state phase.
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8.4 GC work prediction

This section examines the performance of the different approaches to
CGC estimation. The same simulated setup, as in the cycle time tuning
experiments, was used. In these experiments, the change from the ran-
dom allocation mode to the steady-state mode was at t = 75s. Note
that, as a feedback scheduler was used, the period times of the mutator
threads, and thus the allocation rates, differ. As the CGC estimates are
based on the history of the GC thread, at start-up, the system is run with
default values for a number of GC cycles. Also, initial allocations per-
formed by run-time system and application threads affect the amount of
live memory and are therefore included in the simulation. No effort has
been made to handle start-up of the simulated system in a graceful way,
and in order to allow the effects of such transients to die out, the plots
start at t = 50 s.

Figure 8.17 shows the black-box approach, using the maximum value
of CGC of the last four GC cycles as the prediction. As no actual predic-
tion is done, this method occasionally under-estimates CGC.
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Figure 8.17: A trace of the amount of free memory and the CGC estimate using
max of the last 4 cycles. In the CGC plot, the solid line is the amount of CPU
time spent on the current GC cycle, and the dashed line is the CGC estimate.
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Figure 8.18: CGC estimate using P (Live) and P (Dead) according to Equa-
tion 4.33.

Figure 8.18 shows the clear-box prediction. Note how the CGC es-
timate is increased in the cycle after mode change, as the amount of
memory on the heap is increased due to the ∆G compensation, but the
estimates of P (Live) and P (Dead) are still at their old values (in this ex-
periment, the forgetting factor was 0.9, meaning that old values decay
with 10% each sample.

Figure 8.19 shows the conservative prediction. The fraction of live
memory was about 0.3, and the over-estimation was about a factor of
two. In the steady-state mode, the actual UGC was about 0.1, meaning
that the over-estimation caused 10% slack. In this experiment, the slack
was not made available to the mutator, which can be seen in the visibly
lower allocation rate (compared to the other two experiments), particu-
larly during the allocation-intense phase, at the beginning.

As discussed, using a GC algorithm where live objects account for
the greater part of the GC work, combined with a low fraction of live
objects may cause large over-estimation of CGC. This is illustrated in the
example of Table 8.1, where the same application was run with differ-
ent heap sizes. For this experiment, the application threads were sched-
uled with fixed period times (i.e., no feedback scheduling) in order to
study the affect of the heap size on the CGC prediction without having
the prediction affecting the scheduling. It should be noticed that even
if the conservatism increases as the fraction of live memory decreases,
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the required GC utilization still decreases. Therefore, using a smaller
heap to get better CGC prediction is, in general, not a good idea. It can
also be noted that the over-estimation in the experiment is less than the
worst case conservatism. That can be explained by the fact that floating
garbage makes the fraction of live objects – and, hence the GC work –
larger than the ideal best case. This effect is exaggerated by using the
same, fixed, period times for the application threads: as the GC utiliza-
tion decreases, the slack in the schedule increases, allowing the GC to
finish earlier and thereby causing more floating garbage.
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Figure 8.19: Conservative CGC estimate using Equation 4.35. In this experi-
ment, P (Live) ≈ 0.32 and α

β ≈ 2.6.

Heapsize 250000 500000 2500000

ĈGC 1.5 s 2.3 s 10 s

CGC 1 s 1.3 s 3.9 s

TGC 15 s 30 s 160 s

ÛGC 10% 7.7% 6.3%
UGC 6.7% 4.3% 2.4%

Table 8.1: Effects of heap size on the conservative CGC estimation and GC
overhead. While the degree of conservatism of the estimation increases as the
heap size increases (i.e., as the fraction of live memory decreases), the total GC
overhead (both estimated and real GC utilization) decreases.
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8.5 Priorities for memory allocation

It was claimed that introducing priorities for memory allocations and
run-time system support for denying unimportant memory allocations
if memory is scarce can help increasing both the robustness (by avoid-
ing out-of-memory situations) and performance (by limiting the amount
of garbage collection work) of real-time systems. This section presents
experimental support for those claims. Experiments were run on the
physical ball-and-beam process.

8.5.1 Avoiding out-of-memory situations

Two scenarios where non-critical memory allocations can help making
sure that a change to a previously working system doesn’t risk breaking
it was encountered: increasing the sampling rate of the controller and
reducing the amount of memory available to the application.

When the sampling rate is increased, the controller both uses a larger
part of the CPU time and allocates log data at a higher rate until we get to
a point where the user interface thread doesn’t get the CPU time needed
for consuming all the log data and the application runs out of memory
and fails. By making the log data allocations non-critical, this cannot
happen and the control is not affected.

Reducing the available memory1 will, obviously, at some point cause
the application to fail. However, by making the allocation of log data
non-critical, the minimum memory requirement for the application may
be significantly reduced compared to the original version.

The following traces illustrate the first scenario. In these experi-
ments, the period of the reference generator and the controller was both
20 ms, and a log data object about 60 bytes. Figure 8.20 shows a run of
the ball-and-beam system without non-critical memory. The high allo-
cation rate causes a large GC workload and the UI process is starved,
eventually leading to failure.

In the first half of the run the controller(1) and reference generator(2)
threads run unimpeded, and the control was OK until t = 90. After that
the frequent panic stop-the-world GC cycles caused so long delays that
the controller dropped the ball. The CPU load is almost 100% and the
idle thread (0) is not run except in the very beginning. The reason that
the maximum amount of allocatable memory increases in the middle is
that when the GC cycles get shorter there is less floating garbage.

1This could occur either by actually running the system on a smaller platform or, per-
haps more likely, by adding more threads to the system.
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Figure 8.20: A sample run of the ball-and-beam system without using memory
priorities. The UI thread (3) doesn’t get enough CPU time to consume all plot
data that is produced. After t = 75 it is totally starved by the GC. Then, less
and less memory is available and more and more CPU time is spent doing panic
GC.

Figure 8.21 shows the same system where the allocation of log data
has been made non-critical, and the log data allocation is kept at a sus-
tainable level. In this experiment, more than half of the log data alloca-
tion requests were allowed. Figure 8.22 shows a close-up of Figure 8.21
where you can see the non-critical behaviour more clearly.

8.5.2 Improving performance

The experiments also indicate that it is possible to achieve better control
performance by limiting the amount of non-critical memory allocations.
The plots in Figure 8.23 show two runs of the ball-and-beam application
without and with non-critical memory allocations enabled, respectively.
The position of the ball is in the interval [−10, 10].

In the version without non-critical allocations, the high allocation
rate occasionally forces the garbage collector to do a full garbage col-
lection cycle in order to reclaim enough memory to satisfy the allocation
needs. This delays the high priority controller process so that it misses
its deadline which, in turn, degrades the control performance.

When the allocation of log data is made non-critical, the allocation is
kept below the safe limit and the system runs as designed, with more
consistent control performance.
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Figure 8.21: A run of the ball-and-beam system with log-data allocations
made non-critical. In the thread plot you see that the UI thread gets CPU time
throughout the run. The third plot shows the amount of memory allocated by
low priority processes during this cycle. The fourth plot shows if non-critical
allocations succeed or not; high level means success and low level is deny.
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Figure 8.22: Close-up to show the non-critical memory behaviour. The dotted
line in the free memory plot is the non-critical limit. Note how the GC cycles
are shortened when low priority allocations are made.
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a) log data objects are always allocated 

b) allocation of log data is non−critical 

Figure 8.23: Plots showing the reference value and the measured position
for the ball-and-beam process. Plot a shows the system without non-critical
memory allocations and plot b shows the system where the allocation of plot
data is non-critical. The irregular behaviour in a, around samples 2500, 4000,
6000, and 8500, is caused by the controller process being delayed by the garbage
collector due to the program running out of allocatable memory and forcing a
complete garbage collection cycle.

8.6 Feedback scheduling

This section presents simulations illustrating the behaviour of the differ-
ent approaches to memory-aware feedback scheduling. The application
is the TrueTime version of the ball-and-beam controller, and a distur-
bance task.

Three simulations are shown, with parameters and resulting control
performance according to Table 8.2. Figures 8.24, 8.25, and 8.26 show the
reference utilization for the mutator, and the sampling period of the con-
troller task, under both the separate and the integrated feedback sched-
uler. In all plots, the solid line represent the integrated scheduler, and
the dashed line is the version with separate GC tuner. The integrated
scheduler used the simplified constraint, (6.17). As the approximation
introduces errors, for a better comparison, the resulting period times of
the integrated scheduler were scaled to get a mutator utilization of ex-
actly Uref .

These experiments show similar performance for both the separate
and integrated versions. That supports the claim that the most impor-
tant difference is the fairness issue, as in the integrated version, the
amount of allocation affects the period assignment. This is apparent in
Figure 8.26, where the difference in sampling period for the controller
(h1), differs more between the two schedulers, than in the other experi-
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ments, due to the bigger difference in memory usage. It can also be seen
that as the GC utilization decreases, the variation in Uref also decreases.

Heap size a1 a2 Cost, separate Cost, integrated
100000 300 640 474 468
200000 300 640 473 426
200000 300 64 312 395

Table 8.2: Parameters and control performance (cost, less is better) for the
different experiments. a1 is the allocation per sample of the controller, and a2 of
the disturbance task.
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Figure 8.24: Uref and h1, a1 = 300, a2 = 640, H = 100000
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Figure 8.25: Uref and h1, a1 = 300, a2 = 640, H = 200000
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Figure 8.26: Uref and h1, a1 = 300, a2 = 64, H = 200000
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8.7 Performance evaluation

In order to study the overhead due to GC in LJRT applications, the IRB-
2000 slave controller was used. The program was compiled to C using
the LJRT compiler, to native code with gcc and executed on a 350 MHz
PowerPC G3 with 32 MB RAM running Linux/RTAI, and real-time per-
formance and throughput (latency caused by memory operations and
max possible sampling rate) was measured.

It should be noted that no attempt is made to compare the suitabil-
ity of different GC algorithms for real-time systems; the implementa-
tions of the two collectors presented here are quite different, and should
be considered as proof-of-concept prototypes, so a direct comparison is
not meaningful. The aim of the experiments is to verify the feasibility
of very fine-grained incremental garbage collection in an uncooperative
environment.

8.7.1 Inlined overhead

This section studies how the choice of GC algorithm and the proposed
optimizations affect the inlined overhead (e.g., read and write barri-
ers, heap synchronization, GC housekeeping, etc) and, consequentially,
throughput. Here, the inlined overhead is estimated by measuring the
maximum possible sample rate.

The maximum sample rate measurements don’t include the actual
time to perform GC work, but only the inlined overhead, as the amount
of time spent on GC work depends heavily on both the GC implemen-
tations and the allocation pattern of the application. Another reason for
not taking the actual GC work into account in the throughput measure-
ments is that our GC scheduling model is based on scheduling GC work
so that it doesn’t disturb the real-time tasks. Making sure that there is
enough time for the GC to execute and meet its deadlines is a separate
issue.

The sample rate measurements show that, in this application, the
overhead of a moving collector is about twice that of a non-moving
mark-sweep collector. The additional overhead comes from the addi-
tional locking for the read barrier. This is almost the best case as many
of the objects in this application are very short lived (they only live for
one sample) and only accessed once. Table 8.3 shows the number of
locks per sample, the time spent in mutex operations and, based on this,
the maximum possible sample rate if the actual computation took zero
time.
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Algorithm locks/sample time (µs) max rate (Hz)
Non-moving 2980 715 1298
Moving 6088 1461 684

Table 8.3: Frequency of heap locking and maximum possible sample rates
based on lock overhead using mutex locking and no optimization.

Figure 8.27 shows how the choice of locking primitive and the root
alias optimization affects total throughput, i.e. the maximum possible
sample rate. As a base line, using the batch-copy collector, without lock-
ing allowed 4317 Hz without the root alias optimization and 11038 Hz
with. As the batch-copy collector doesn’t have any read or write bar-
riers, this also gives a rough indication of the performance that can be
expected from applying the optimization of eliminating all GC synchro-
nization for highest priority threads2.

The big difference between the mark-sweep and the mark-compact
collector is caused by the extra synchronization required for the read
barrier in the mark-compact case. With synchronization turned off3,
there is no big difference between a moving and a non-moving collec-
tor. In this example, the overhead of the read barrier is compensated by
the cheaper allocation4. For an application with a larger number of reads
per write, the impact of the read barrier would be bigger.

8.7.2 Latency and jitter

In order to estimate how the GC synchronization affects thread latency,
the gc_lock() and gc_unlock() instructions were instrumented to
measure the time the heap was locked. The heap locking method used in
this experiment was interrupt masking, which prevents context switches
between gc_lock() and gc_unlock(). Thus, handling of any clock
interrupt arriving when the heap is locked is delayed until gc_unlock()
is executed. This delay is the added thread latency due to GC synchro-
nization. Table 8.4 shows max, mean and median numbers for two GC
algorithms. This gives an estimate of the worst case latency due to GC
locking, which would occur if a high priority thread were released just
after the heap was locked.

2This is a conservative estimate, as knowing that a HP thread will run uninterrupted
also enables much more aggressive optimizations to be applied.

3Of course, running without synchronization is not safe and may cause race conditions
and memory corruption, so this is done for reference only and is not practically usable.

4In the mark-compact collector, allocation is done by simply incrementing a pointer,
whereas in the mark-sweep case, freelist search and block splitting is done.
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Figure 8.27: The effect on throughput of different locking primitives and root
optimization. The configurations are 1) Mutex locking, 2) Mutex locking with
root alias optimization, 3) Lazy mutex locking, 4) Lazy mutex locking with
root alias optimization, 5) Interrupt masking (cli/sti), 6) Interrupt masking
with root alias optimization, 7) No locking and 8) No locking with root alias
optimization
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The amount of added latency depends on how large the atomic op-
erations is. Lower latency can be achieved by making the atomic opera-
tions smaller at the cost of more frequent locking and lower throughput.
Keeping the locking time short is most challenging in the implemen-
tation of the GC, especially in a moving GC for which it is non-trivial
to achieve shorter locking times than the time it takes to move one ob-
ject. This is possible, however, either by detecting that moving an object
failed [Hen98] or by limiting the size of individual heap objects [Sie02].

Algorithm Max Average Median
Mark-sweep 12.3 2.7 2.6
Mark-compact 14.8 3.6 3.6

Table 8.4: Heap locking times (µs) for the two GCs.

A second experiment measured the actual latency of a thread with
highest priority. In this experiment, the IRB-6 motion controller was
used, as in that application the controller thread is explicitly periodic.
Figure 8.28 shows the real-time performance of the controller thread, on
the target system, and you can see that the jitter is quite low, typically
below ± 3µs.
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Figure 8.28: Measured sampling intervals for 1000 consecutive sampling in-
stants; the nominal sampling period was 500 µs, and the jitter was typically
less than ± 3µs, with a maximum of ± 10 µs. The right plot shows a close-up
of the first 100 samples.
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8.7.3 Lazy locking

This experiment investigates the impact of lazy locking on the number
of lock operations that are actually performed. Figure 8.29 shows the
frequencies of locks in the vanilla version and real and lazy locks in the
lazy version. This shows that only a small fraction of the locks actually
need to be performed and thus that the locking overhead can be sig-
nificantly reduced. For instance, in the receiver thread, which performs
most of the computations, only 0.03% of the lock instructions in the code
actually cause a mutex operation.

Figure 8.29: Comparing the vanilla version (left) to the one with lazy locks
(right), showing the frequencies of real and lazy locks for each of the application
threads. Please note that the scale is logarithmic. In this experiment, the mark-
compact collector was used. The application was run for a fixed amount of time;
the vanilla version ran 17191 samples and the lazy version 23672 samples, so
the numbers should not add up.



CHAPTER 9

FUTURE WORK

This chapter outlines open problems and possible directions for future
research in areas discussed in, or related to, this thesis.

9.1 Adaptive GC scheduling

The proposed approaches to CGC prediction must be regarded as prelim-
inary. Using a more detailed model of the heap state and predicting heap
state by simulating a dynamic system was dismissed as not practically
feasible. However, for application with small variations in memory us-
age and long periods between mode changes, and GC algorithms where
different size distributions, etc., have large impact on the workload, it
may be interesting to further explore that approach.

In the simplified clear-box workload prediction, the probabilities of
live and dead cells are quite simplistic. Here it would be interesting to
study how modelling the mutator as a stochastic process could improve
the quality of the prediction.

The experimental evaluation of the presented techniques for auto-
tuning GC scheduling has been limited to a small number of applica-
tions, and while they are representative for embedded control systems,
a bigger set of benchmarks — including applications outside the field of
automatic control — is desirable. The GC execution time prediction has
to date only been tested in the simulated environment, and will require
evaluation also in an actual run-time system.

An interesting research issue is raised by the difference in how the
GC increments are scheduled in the fixed priority and EDF systems de-
scribed in this thesis: Is it desirable to spread GC work evenly across
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the cycle even if that means leaving idle time at the start of the cycle?
One advantage of that approach is that it may give objects allocated at
the start of the cycle time to die, which decreases the average amount of
floating garbage when using an incremental-update collector. The major
drawback is that it leaves less slack in the schedule towards the end of
the cycle and therefore makes the system more vulnerable to changes in
CPU utilization. This may be of particular importance in an adaptive
system where robustness to variation in resource utilization is one of the
key factors.

Another interesting situation is a system with a few hard real-time
threads which requires a certain CPU percentage and a set of soft real-
time threads. Then, after allocating the required CPU time to the hard
real-time threads, the remaining CPU bandwidth should be divided be-
tween GC and soft real-time threads. Solving Equation 3.4 or 3.18 for a

instead of TGC would yield a safe allocation rate and hence, period time,
for each low priority thread.

9.2 Priorities for memory allocation

Preliminary experiments indicate that having run-time support for di-
viding memory allocations into critical or non-critical can increase both
robustness and performance of real-time software. However, more ex-
periments on larger systems and systems with high performance re-
quirements (e.g. low latency) will have to be done.

In the presented work, only two levels of priority for memory alloca-
tion (critical and non-critical) are used. That has the advantages of being
easy to handle, both at design time and in the run-time system, where
the former is the more important. For the programmer, it makes the de-
sign decision quite clear: is a certain piece of code critical or not? Hav-
ing more levels of priority would increase the power of expression of the
model but, at the same time, make the meaning of a priority level less ob-
vious. Nonetheless, an interesting direction of further study is whether
there are applications where additional advantages may be gained from
having an arbitrary number of memory priority levels.

9.2.1 Configurable behaviour

Models for controlling when to fail non-critical allocations should be
studied. In the logging example the optimal behaviour of the system
depends on what the intended use of the log data is; if it is for system
identification we want as long consecutive series of data as possible but
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the amount of time between the series is of less importance. Therefore,
in such an application, we want every non-critical allocation request to
be granted up to a point where no more non-critical requests are granted
during that cycle. On the other hand, if the data is to be used for plotting
or supervision, we want the samples to be equally spaced, i.e., every nth
non-critical allocation request should be granted. Furthermore, usually
a set of allocations is needed in order to perform a certain task. If the last
allocation of such a set is denied, the whole task has to be abandoned
for that time. That should also be taken into account when deciding
whether to grant or deny an allocation request.

Also, would it be possible to have different profiles to let the pro-
grammer choose among to get the one that fits a particular application
best? Could such profiles co-exist in one application, i.e., different parts
of the application having different non-critical memory policies?

9.2.2 Non-critical memory using aspects

In this work, focus is on embedded real-time systems and the approach,
as presented here, relies on the fact that we can modify the memory
allocator. For systems without hard real-time constraints, however, it
may be possible to achieve the same advantages without having to do
any modifications to the Java platform. One way of doing this could
be by using aspect oriented software development[AOS]. The cross-
cutting concern in this case is the handling of low-on-memory situa-
tions. It should be investigated whether it is suitable to e.g. divide the
tasks into critical and non-critical aspects and dynamically weave in the
non-critical parts only if the system has enough memory. We believe
that it is possible to use e.g., the property-based cross-cutting of AspectJ
[KHH+01] to insert a test whether an allocation should be done before
each call to a constructor.

9.3 GC scheduling interface

The experimental platforms were implemented using the garbage col-
lection interface (GCI) [IBE+02] developed by our research group. The
GCI is a programmer’s interface consisting of a well-defined set of mem-
ory operations and the goal of the GCI is to make it possible to separate
the GC implementation from its usage even in a hard real-time system
and in an uncooperative environment like an optimizing compiler back
end that is unaware of garbage collection. The GCI makes it possible
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to change GC algorithms without making any changes to the rest of the
run-time system or the code generation.

This scheduling principles presented in this thesis makes it possible
to separate the GC scheduling from the GC implementation. When a
black box approach to on-line GC scheduling is used in the current pro-
totype implementation it is possible to change garbage collector without
modifying the scheduler. However, if we want to allow a clear box ap-
proach, it is necessary to specify a GC scheduling interface that defines
how the communication between the GC algorithm and the GC sched-
uler is done and that requires further investigation. Furthermore, the
communication between the process scheduler and the GC scheduler
must be studied and formalized.

9.4 Feedback scheduling and QoS

The results in Chapter 6 have only been tested in a simulated environ-
ment, and further evaluation on real implementations is required. In
particular, the proposed idea of controlling the allocation rate of pro-
cesses has to be developed further. In the presented case study, the
change of allocation rate was implemented by switching between dif-
ferent controllers, and while suitable for some control systems, it is no
general solution. This also motivates further research on how to make
the behaviour of non-critical memory allocations configurable.

9.5 Distributed hard real-time systems

Another area where the presented techniques may have impact are tem-
porally predictable distributed systems. In a distributed system, the
nodes can be seen as components and the whole system as being con-
structed by composition of node components. When designing such sys-
tems, one important factor is the ease of composing systems out of com-
ponents, composability. The time-triggered architecture [Kop02, KB03]
addresses the composability problem and its important features include
time-triggered communication and temporal firewalls — interfaces be-
tween the components specifying what data should be available or com-
municated at what time. Such interfaces makes it possible to guarantee
that if the individual components conform to their specified interfaces,
the resulting system will work as intended. They also solve problems of
safety critical systems like, for instance, maintaining a global time base
and determining data validity.
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In order utilize automatic memory management in such temporally
predictable components, it seems as it would be helpful, if not necessary,
to be able to guarantee that also the memory manager is temporally pre-
dictable. As time-triggered GC scheduling has the property that it has an
explicit deadline and therefore makes it possible to guarantee that a GC
cycle finishes and makes a certain amount of memory available at a cer-
tain time, it would be interesting to study the impact of time-triggered
GC in this field of application.

For the same reasons, time-triggered GC scheduling might also be
useful together with the linear control server model [CE03], which uses
time-triggered I/O in order to avoid degraded control performance due
to scheduling jitter.





CHAPTER 10

RELATED WORK

This chapter presents work, related to the contributions of this thesis,
in the areas of GC scheduling, memory management for real-time Java,
and worst case analysis.

10.1 Time-based garbage collection scheduling

The fundamental idea of the presented work is that a deadline is as-
signed to the GC, and then the GC is scheduled as any other thread
in the system using an arbitrary scheduling policy. I.e., as stated, the
presented time-triggered approach to scheduling differs from other GC
scheduling strategies (including the Metronome, the deferrable server
approach, and semi-concurrent scheduling) in that it does not address
the scheduling of the individual GC increments but leaves that to the
normal process scheduler. As a consequence, the time-triggered ap-
proach contains no explicit rules for the relative priorities of GC and
mutator threads.

However, in a typical application of time-triggered GC, the GC will
seldom or never preempt mutator threads. If rate-monotonic scheduling
is used, the period time of the GC will typically be much longer than that
of mutator threads. If earliest deadline first is used, the deadline of the
GC will be a relatively long time into the future most of the time. If there
is some slack in the schedule, the GC will finish its work before being so
close to its deadline that it actually preempts mutator tasks.
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Henriksson

Using time as the GC work metric was discussed in [Hen98] as this
would solve the problem of traditional GC work metrics failing to cap-
ture the temporal behaviour of the garbage collector. The approach was,
however, dismissed as impractical, since it requires a high resolution
clock. However, most current embedded platforms (even smaller ones,
such as the Atmel AVR) have timers with resolution of the same magni-
tude as the CPU clock, which is more than adequate for these purposes.
Thus, on such platforms, using time as the fundamental GC work metric
is practically possible, and offers advantages over ad hoc metrics.

Bacon et al

The problems of allocation-triggered GC scheduling in real-time sys-
tems, particularly the uneven GC overhead and consequentially, muta-
tor CPU utilization, caused by variances in allocation rate, are addressed
by David F. Bacon et al and their Metronome collector[BCR03b, BCR03a].
To achieve even and predictable mutator CPU utilization, time-based
scheduling, where the collector and mutator are interleaved using fixed
time quanta, is proposed.

The work of Bacon et al is largely motivated by the same concerns
and has much in common with the work presented in this thesis. One
fundamental feature of time-based GC scheduling common to both ap-
proaches is that they turn garbage collection into a periodic activity in-
stead of a sporadic one as allocation-triggered GC does.

The main difference between the model proposed by Bacon et al and
the time-triggered GC scheduling model presented in this thesis lies in
the level at which GC scheduling is considered; the period time of their
model is at the quantum level while the period of the time-triggered GC
is the GC cycle. Also, the fixed time quanta of the Metronome explicitly
state how the GC work should be scheduled while the time-triggered
model specifies a deadline and leaves the actual scheduling decisions to
the underlying process scheduler.

The behaviour of the approach of Bacon et al is, at a large time scale,
similar to that of a semi-concurrent GC or a time-triggered GC in that
the CPU utilization of the mutator is predictable and consistent and in-
dependent of bursty allocation rate of the mutator. 1 However, at a more

1The interleaving of GC and background processes in the semi-concurrent model may
be almost identical; quantization effects due to atomic GC primitives make a GC sched-
uled according to Equation (3.20) behave as a time-based GC with small GC and mutator
quanta.
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fine-grained level, the garbage collector may still preempt the mutator
as the GC is scheduled to run for one GC quantum after each muta-
tor quantum. Also, the Metronome time quanta are in the millisecond
range, whereas the atomic operations of the collectors in the LJRT run-
time system are a few microseconds. Here, the design goals behind their
collector differ from the ones driving the work presented in this the-
sis; they focus on low overhead and consistent utilization while non-
intrusiveness and low GC induced latency and jitter — possibly at the
cost of higher inlined overhead — are the key issues behind this thesis.

Qian et al

Time-triggered GC was also proposed in [YSaSC02] as a means to spread
GC work more evenly and minimize the number of GC invocations and
heap usage when the application’s allocation pattern is bursty. The focus
on that work is on measuring object lifetimes but they note that similar
concerns are relevant in server applications.

Previous object life span studies have used an allocation-triggered
approach, calling the GC every n KB of allocation. Qian et al supplement
this with a time based approach by periodically performing a GC cycle,
e.g., every 100 ms. In their paper, no effort is made to ensure that the
collector keeps up with the mutator since this is not a problem in their
application; it is sufficient that the GC cycle time can be manually tuned
to suit a particular application.

They also hint that the time-triggered approach can be applicable to
embedded systems by using the timing information of the processes to
run the GC when the number of live objects is small. The focus is still
on efficiency and minimizing the number of GC invocations and they do
not address any real-time issues.

Xian and Xiong

Work on GC scheduling aimed at minimizing the memory requirement
was presented in [XX05]. That approach is based on minimizing the
response time of the GC, and thereby the memory required to satisfy
allocation requests while the GC is running, and the technique used is to
treat the GC as an aperiodic task and run it in a deferrable server [SLS95].

Embedded systems are typically quite predictable, including mem-
ory usage. Thus the GC really is a periodic task, and by making this ex-
plicit in the model, standard thechniques for scheduling periodic tasks
can be used. Treating the GC as aperiodic and allowing it to interrupt
mutator tasks at arbitrary times will lead to increased jitter.
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10.2 Adaptive GC scheduling

An approach to adaptive GC scheduling aimed at minimizing the GC
overhead is suggested by Henriksson [Hen96]. The idea is that at the
start of the GC cycle, garbage collection is performed at a rate that will
allow the GC to finish on time in the average case. Then, at a certain
(a priori calculated) point, if the GC workload in the current cycle was
more than the average, the GC rate is increased to the maximum rate
in order to finish on time. Thus, this adaptive GC rate improves the
average performance while still guaranteeing that the GC will not stop
the application from meeting its deadlines in the worst case.

That approach is particularly useful if the difference between the
worst and average case GC work is large, and the worst case is rare.
As the conservative CGC prediction presented here may, under some
circumstances, be very conservative, a similar approach might be very
useful in the applications discussed in this thesis. By using both a con-
servative estimate and a record of average UGC, the GC could be sched-
uled according to the average case at the beginning of each cycle. Then,
at a certain point in time (determined by the maximum allowed UGC) if
the GC hasn’t finished its work, UGC is raised to the maximum.

Engelstad and Vandendorpe [EV91] mention using a heuristic for
controlling the “steal rate” of their garbage collector. A GC increment
is performed every n allocations and GC progress is measured. If for-
ward progress is not made, n is decreased and vice versa.

Siebert [Sie02] also use use an adaptive scheme to minimize GC over-
head; based on the current memory utilization, a proper value for how
much GC work to be performed for every allocated byte is determined.
The fundamental difference between that work and the adaptive sched-
uling presented in this thesis is that Siebert requires an upper bound
on the fraction of allocated memory to be known and the adaptivity is
an optimization to avoid unnecessarily long GC increments if the actual
amount of allocated memory is less than the worst case. The adaptive
scheduling presented in this thesis requires no a priori analysis and is
purely based on measuring the state of the memory system. This gives
increased flexibility at the cost of a priori guarantees.

10.3 Memory Management in Real-Time Java

There are two specifications for real-time Java; The Real-Time Specifica-
tion for Java (RTSJ) [B+01] and the Real-Time Core Extensions (RTCE)
[JC00]. Both try to solve the real-time garbage collection problem by
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avoiding it. They assume that garbage collection is not feasible in real-
time systems and instead propose region-based approaches to memory
management for the real-time threads. The non-real-time threads do
their memory allocation on a heap with traditional garbage collection.

RTSJ uses scoped memory areas for high priority threads. Objects allo-
cated in scoped memory areas are not garbage collected but instead the
whole memory area is reclaimed when the program exits the scope in
which the memory area was allocated. The access restrictions associated
with scoped memory (e.g., objects allocated on the heap may not refer-
ence objects in scoped memory, and real time threads aren’t allowed to
access the heap2) make inter-thread communication more difficult. Real-
time threads, however, may share scoped memory areas.

In RTCE, real-time objects are allocated in core memory, and may not
access objects on the garbage collected baseline heap. Objects on the heap
may, with some restrictions, access core objects through special method
calls. Core objects are allocated in an allocation context. When an alloca-
tion context is released, all objects in it may be eligible for reclamation
but, since there might be references from the baseline heap, the actual
reclamation is done by the baseline garbage collector when all of the
objects in the allocation context are unreachable. Thus, a non-real-time
garbage collector is used to reclaim the memory used by the real-time
processes.

In RTCE, there are no limitations on which allocation contexts objects
may reference so it is up to the programmer not to release an allocation
context when it is still referenced. RTCE also specifies stack allocation of
real-time objects, which are to be automatically reclaimed as the scope
is exited. To allocate stack objects, a set of restrictions apply and the
reference must explicitly be declared stackable.

Under both of these specifications, behaviour similar to our non-
critical allocations can be achieved by using one memory area (or al-
location context) for critical memory and another (or the heap) for the
non-critical objects. The drawbacks of these approaches compared to
the one proposed in this thesis are firstly that a much higher responsi-
bility is placed on the programmer by removing the safety that garbage
collection provides, from the most critical parts of the system. Secondly,
the access restrictions between the different types of memory make com-
munications between low and high priority threads more complicated.

2Since the heap is garbage collected, real-time threads with hard time constraints must
be of the type NoHeapRealTimeThread in order to avoid interference from the garbage col-
lector.
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10.4 Soft references

The notion of non-critical allocation is somewhat related to the soft refer-
ences found for instance in Java [J2S] in that they both aim to prevent out
of memory errors due to too many objects not absolutely needed for the
correct operation of the program. In analogy with the Java terminology,
non-critical allocations could be called “soft allocations”.

The difference lies in when the system decides that it is running low
on memory and starts trying to limit memory usage. With the approach
presented here, the decision is taken at allocation time, preventing a low
on memory situation from arising. When using soft references, on the
other hand, all allocations are carried out, and the decision about when
to reclaim softly reachable objects are left to the garbage collector. There
is also a difference in the intended usage; soft references were introduced
to facilitate the implementation of e.g. caches, where objects’ lifetimes
are nondeterministic (i.e., you never know whether a cached value will
be accessed again in the future or not, but it’s best to keep it as long as the
memory permits). Thus, while soft references may be used to achieve a
logical behaviour similar to our non-critical allocations, the increase in
the amount of required GC work when the system is already low on
memory makes this use of soft references unsuitable for for real-time
applications.

10.5 GC in an uncooperative environment

The work presented here focuses on hard real-time systems for which
we want to use standard C compilers and to run our application un-
der a standard real-time operating system. This means that we have to
find a way to deal with an uncooperative environment. The standard
way to introduce GC in uncooperative environments is to use conser-
vative garbage collectors such as the one devised by Boehm and Weiser
[BW88]. Such GC algorithms are, however, not suitable for the types of
real-time systems we are interested in, since we need the GC to be both
accurate and predictable.

An algorithm which is accurate and which works well with standard
C compilers is the one presented by Henderson [Hen02]. His aim was to
refute the “common wisdom” that accurate GC is not possible without
support from the compiler back-end by presenting such a GC for single-
threaded applications and stop-the-world GC. The work presented in
this thesis also illustrates that GC is possible without special compiler
support. An important part of the contribution is to show that accurate
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GC without support from the compiler or scheduler is possible also for
concurrent GC and multi-threaded applications with strict real-time re-
quirements.

10.6 Worst case and schedulability analysis

Good worst case estimates for execution time and memory usage are
crucial for making any kind of real-time guarantees. In order to make
such analysis feasible in industry, tool support is required.

Alan C. Shaw has developed a technique, timing schema [Sha89], for
formalizing execution time analysis. A timing tool for a subset of C has
also been developed [PS91].

In order to give continuous feedback to the developer, an interactive
programming environment with worst case analysis functionality is de-
sirable. The experimental tool Skånerost developed at our department
provides interactive worst case execution time and memory consump-
tion analysis based on timing schema and source code annotations for
(currently a subset of) the Java language [PH99, Per99, PH00].

The WCET group at Uppsala University has presented research on
and tool support for worst case analysis on C code without the require-
ment for programmer annotations based on flow analysis and pipeline
simulation [EES01, Eng02].

Another approach to schedulability analysis and automatic verifica-
tion of real-time systems based on timed automata has been developed
in the UPPAAL project [LPY97, Pet99].

Current approaches to worst case analysis are often highly complex
when applied to life-size programs. A different approach to temporally
predictable software is proposed by Puschner [Pus02]. That approach
is based on trading off performance for predictability by writing (or au-
tomatically transforming) programs in a way that they are inherently
predictable; single path programming. It is not clear how this approach
affects dynamic memory management.

For systems where threads execute with fixed period times, off-line
assignment of GC scheduling parameters can be used. To facilitate this,
a framework for performing static (compile-time) analysis of allocation
rates was presented by Mann et al. [MDLC05].





CHAPTER 11

CONCLUSIONS

Motivated by the desire for greater flexibility in real-time systems, and
the need to handle non-determinism and variations in resource utiliza-
tion, new approaches to memory management have been presented.

A model for scheduling garbage collection work, time-triggered GC sched-
uling, that has several benefits compared to previous techniques is pro-
posed. The single scheduling requirement that the garbage collector
must finish before its deadline makes it especially suitable for earliest
deadline first (EDF) systems, for which we have not seen any similar
systems.

The handling of non-determinism, and the desire to enable the run-
time system to provide real-time performance without requiring worst
case analysis, motivated two approaches to adaptive memory manage-
ment. Firstly, techniques to accomplish auto-tuning of a concurrent,
real-time, time-triggered garbage collector were examined. Adaptive
GC scheduling contains two problems: to determine the scheduling pa-
rameters of the GC process and to keep a task set with varying resource
utilization schedulable. Both problems were addressed. Methods for
on-line estimation of both period and execution time of the GC were de-
veloped, and an approach to taking the CPU utilisation of the GC into
account in a feedback scheduler were suggested.

Another approach to handling non-determinism and enhancing ro-
bustness, applying priorities to memory allocation, was presented. It was
observed that often, systems contain parts that are not critical to the core
functionality. Thus, if the computer is running low on memory, we want
run-time system support for selecting the most important memory allo-
cations, just as the process scheduler makes sure that the most important
processes get precedence over less important ones if CPU time is scarce.
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11.1 Contributions

Time-triggered garbage collection scheduling

A number of problems related to GC scheduling was addressed:

• Using time rather than allocation as the trigger for GC work solves
the problem of bursty allocations causing long GC pauses. It also
allows us to spread the GC work evenly across the GC cycle. In
essence, by turning GC work into a periodic activity rather than a
sporadic one, the scheduling of GC is simplified.

• The metric used to measure GC work has a big impact on the GC
scheduling. The optimal GC work metric is the CPU time required
to perform the GC work and it is proposed that it is practically
possible to use time as the GC work metric at run-time.

• Implementing non-intrusive concurrent GC with guaranteed pro-
gress in an EDF scheduled system has been problematic. Time-
triggered GC scheduling provides an explicit deadline for each GC
cycle and therefore fits nicely into an EDF system.

• Time-triggered GC makes it possible to schedule the GC thread as
any other thread. The GC work metric is only used for schedula-
bility analysis and therefore, the problems of poor real-time per-
formance caused by a poor metric are avoided.

These ideas form a novel approach to non-intrusive, concurrent garbage
collection scheduling in real-time systems.

Adaptive garbage collection scheduling

As the time-triggered approach to garbage collection scheduling allows
us to make scheduling decisions at the GC cycle level rather than in-
dividual increments, it lends itself well to auto-tuning. Techniques for
estimating both the GC cycle time and the amount of GC work required
to complete a cycle was presented and their applicability was experi-
mentally verified.

The proposed techniques can facilitate the implementation of more
flexible real-time systems as they make is possible to use GC in a real-
time system without the need for tedious manual tuning.
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Priorities for memory allocations

Based on the observation that, often, not all of the code in a hard real-
time system is critical, the idea of applying priorities to memory allo-
cation was presented. This can be used to enhance the robustness of
real-time and embedded systems in two ways:

• It provides run-time support for prioritizing memory allocations if
there is not enough memory for all allocation requests and thereby
facilitates development of robust applications.

• It makes it easier to provide hard guarantees since the worst case
memory usage only has to be analyzed for the critical parts of the
system as non-critical allocations cannot cause the system to fail.

Furthermore, experiments also show that the same mechanisms can be
used to increase performance by limiting the amount of memory alloca-
tion and, consequentially, garbage collection work.

Memory-aware feedback scheduling

In order to use scheduled garbage collection in a feedback scheduling
system, the required CPU utilization of the GC task must be known,
and as the GC utilization depends on the memory behaviour of mutator
tasks, it must be determined on-line. It was investigated how an auto-
tuning time-triggered GC can be incorporated in a feedback scheduling
system in order to make the memory management overhead explicit and
let the process scheduler take this into account when scheduling the ap-
plication threads.

It was also suggested that non-critical memory allocations can be
used, in a feedback scheduling system, to control the allocation rates of
the application threads in order to optimize the trade-off between mem-
ory and CPU time usage.

Accurate real-time GC in an uncooperative environment

An implementation of a framework for accurate, concurrent, real-time
garbage collection aimed at embedded systems was presented. It allows
very low latency and works for a system including legacy and auto-
matically generated C code, and an off-the-shelf compiler and operating
system. Restrictions imposed by the uncooperative environment — es-
pecially the scheduler — makes explicit synchronization between mu-
tator and collector necessary, adding to the execution time overhead of
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memory operations. The sources of that overhead were analyzed, and
possible remedies presented.

Experiments show that it is possible to use accurate garbage collec-
tion in an uncooperative environment for multi-threaded real-time ap-
plications which require latency times as low as a few microseconds, and
that the run-time overhead can be kept at a reasonable level.

11.2 Reflections

In the introduction, it was stated that an important property of a mem-
ory manager to be used in a flexible real-time system is that the real-time
performance at run-time must be independent of a priori schedulability
analysis. That is, if the total requested CPU utilization of mutator and
collector is low enough that the system is schedulable, the actual sched-
ule produced by the run-time system will allow all tasks to meet their
deadlines. The inherent robustness of the time-triggered GC schedul-
ing model and the property that low-level scheduling decisions are left
to the process scheduler, combined with the presented approaches to
adaptive GC scheduling and memory allocation, help resolve the mem-
ory management issues of flexible real-time software.

The second goal was to develop a model that makes it possible to
schedule garbage collection as any other task while still guaranteeing
sufficient progress. This thesis shows that time-triggered GC scheduling
has this property under both fixed priority and EDF scheduling.

The fundamental idea behind time-triggered GC scheduling is to
turn garbage collection into a periodic activity that can be scheduled us-
ing standard scheduling techniques. It is my belief that adding a special-
ized scheduler for the individual GC increments merely adds overhead:
if the system (including GC) is schedulable, there is no point in running
the GC with a higher priority than the mutator — that just increases jit-
ter. If the system is not schedulable it is better to explicitly limit the CPU
usage of the mutator (using e.g. constant bandwidth servers, feedback
scheduling, or some such approach) rather than running the GC at the
highest priority with a specialized scheduler — the result is the same:
the mutator threads are delayed and the GC is given enough CPU time
to ensure sufficient progress.

On-line resource management through adaptive techniques and ap-
proaches to handling overload is an important part of the presented
work. Based on the observation that not all hard real-time systems — or
not all parts of a hard real-time system — are safety critical, techniques
that transfer some resource-management tasks from the programmer to
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the run-time system were proposed and discussed. While adaptive sys-
tems cannot give absolute guarantees, the presented mechanisms work
together in enhancing robustness and providing isolation between dif-
ferent parts of a system. Their lack of hard guarantees can also be a
strength as it forces the engineer to consider, and provides tools for man-
aging, the uncertainty that is unavoidable in increasingly complex em-
bedded systems.

Automatic memory management is essential to the use of safe object
oriented languages and the presented contributions are a step towards
making real-time garbage collection practically feasible.
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