





## relations

Mathematical *relations* are about connections between objects.

relations between numbers a divides b, a is greater than b, a and b are prime to each other relations between sets subset of, same size as, smaller than relations between people customer/client, parent/child, spouse, employer/employee

We will focus on relations between two things. Often, they have distinct roles in a relation (superset/subset, parent/child, ...), i.e. we cannot model them simply as unordered pairs (a, b).

In order to properly model relations, we first need to introduce ordered pairs.

3

| ordered pair    | (a,b)                                |    |
|-----------------|--------------------------------------|----|
| ( <i>a</i> ,    | (b) = (x, y) iff $a = x$ and $b = y$ |    |
| corollary:<br>( | $(b,b) \neq (b,a)$ if $a \neq b$     |    |
| n-tuple         | $(a_1,, a_n)$                        | 23 |
|                 |                                      |    |







| (binamy dyadia) valation D from 4 t                                                                                                                                     | c R                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| (binary, by a a c) relation $k$ (roll $A$ )<br>or over $A \times B$                                                                                                     | $R \subseteq A \times B$                                       |
| s a subset of the cartesian product:                                                                                                                                    |                                                                |
| f A and B are the same, i.e. $R\subseteq A$ :                                                                                                                           | imes A , we also say that                                      |
| if A and B are the same, i.e. $R \subseteq A$ :<br>t is a binary relation <i>over A</i> .<br>Of course, this generalizes to                                             | imes A , we also say that                                      |
| If A and B are the same, i.e. $R \subseteq A$ :<br>is a binary relation over A.<br>Of course, this generalizes to                                                       | imes A , we also say that                                      |
| If A and B are the same, i.e. $R \subseteq A$ :<br>is a binary relation over A.<br>Of course, this generalizes to<br>In <i>n-place relation R over</i><br>$A_1 X X A_n$ | $	imes A$ , we also say that $R \subseteq A_1 	imes 	imes A_n$ |

|  | <br> |
|--|------|
|  |      |
|  |      |



examples



| For binary relations $R \subseteq A \times B$ :<br>A is a source                                    | B is a target                                                                                       |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Note that for any R, source and target $R \subseteq A 	imes B$                                      | are not uniquely determined                                                                         |
| for any $A'\supseteq A$ and $B'\supseteq B$ , we have $R\subseteq A	imes B\subseteq A$              | $A \times B \subseteq A' \times B'$ .<br>$A' \times B'$                                             |
| By contrast, these are uniquely determ<br>the domain of R: $dom(R) =$<br>the range of R: $range(R)$ | ined:<br>$\{a : (a, b) \in R \text{ for some } b\}$<br>$= \{b : (a, b) \in R \text{ for some } a\}$ |
|                                                                                                     |                                                                                                     |

## example

$$\begin{split} R_{\text{Charlie}} &= \{\text{Violet}, \text{LRHG}, \text{Peggy}\}, R_{\text{Limus}} = \{\text{Sally}, \text{Mrs. Othmar, Lydia}\}, \\ R_{\text{Lacy}} &= \{\text{Schroeder}\}, R_{\text{Party}} = \{\text{Charlie}\}, R_{\text{Sally}} = \{\text{Limus}\} \\ P &= \{\text{Charlie}, \text{Linus}, \text{Lucy}, \text{Party}, \text{Sally}, \text{Violet}, \text{Peggy}, \text{Lydia}, \text{Schroeder}\} \\ Q &= \{\text{Charlie}, \text{Linus}, \text{Lucy}, \text{Party}, \text{Sally}, \text{Violet}, \text{Peggy}, \text{Lydia}, \text{Schroeder}\}, \text{RHG}, \text{Mrs. Othmar}\} \end{split}$$

We can represent the same information as a relation from  $\mathsf{P}$  to  $\mathsf{Q}\mathsf{:}$ 

 $\heartsuit\subseteq P\times Q$ 

 $\label{eq:alpha} \begin{array}{l} \forall = \{ ( \wedge q ) \\ \forall \in \{ ( \mathrm{Charlie}, \mathrm{Violet}), (\mathrm{Charlie}, \mathrm{LRHG}), (\mathrm{Charlie}, \mathrm{Peggy}), \\ (\mathrm{Linus}, \mathrm{Sally}), (\mathrm{Linus}, \mathrm{Mrs. Othmat)}, (\mathrm{Linus}, \mathrm{Lydia}), \\ (\mathrm{Lucy}, \mathrm{Schroeder}), (\mathrm{Patty}, \mathrm{Charlie}), (\mathrm{Sally}, \mathrm{Linus}), \\ (\mathrm{Violet}, \mathrm{Violet}), (\mathrm{Peggy}, \mathrm{Charlie}) \end{array} \right\}$ 





| relati        | ons     | s as              | tal          | bles  | 5     |                                |                                |                                  |                               |                               |                                  |                                                                    |
|---------------|---------|-------------------|--------------|-------|-------|--------------------------------|--------------------------------|----------------------------------|-------------------------------|-------------------------------|----------------------------------|--------------------------------------------------------------------|
| Ø             | Charlie | Linus             | Lucy         | Patty | Sally | Violet                         | Peggy                          | Lydia                            | Schroeder                     | LRHIG                         | Mrs<br>Othmar                    | <b>←</b> Q                                                         |
| Charlie       | 0       | 0                 | 0            | 0     | 0     | 1                              | 1                              | 0                                | 0                             | 1                             | 0                                |                                                                    |
| Linus         | 0       | 0                 | 0            | 0     | 1     | 0                              | 0                              | 1                                | 0                             | 0                             | 1                                |                                                                    |
| Lucy          | 0       | 0                 | 0            | 0     | 0     | 0                              | 0                              | 0                                | 1                             | 0                             | 0                                |                                                                    |
| Patty         | 1       | 0                 | 0            | 0     | 0     | 0                              | 0                              | 0                                | 0                             | 0                             | 0                                |                                                                    |
| Sally         | 0       | 1                 | 0            | 0     | 0     | 0                              | 0                              | 0                                | 0                             | 0                             | 0                                |                                                                    |
| Violet        | 0       | 0                 | 0            | 0     | 0     | 1                              | 0                              | 0                                | 0                             | 0                             | 0                                |                                                                    |
| Редду         | 1       | 0                 | 0            | 0     | 0     | 0                              | 0                              | 0                                | 0                             | 0                             | 0                                |                                                                    |
| Lydia         | 0       | 0                 | 0            | 0     | 0     | 0                              | 0                              | 0                                | 0                             | 0                             | 0                                |                                                                    |
| Schroeder     | 0       | 0                 | 0            | 0     | 0     | 0                              | 0                              | 0                                | 0                             | 0                             | 0                                |                                                                    |
| <b>↑</b><br>P | C       | $\Im \subseteq F$ | $P \times Q$ |       | ♡ = { | (Charlie<br>(Linus,<br>(Patty, | e, Violet<br>Mrs. O<br>Charlie | t), (Cha<br>thmar),<br>), (Sally | rlie, LR<br>(Linus,<br>Linus) | HG), (C<br>Lydia)<br>, (Viole | Charlie,<br>, (Lucy,<br>t, Viole | Peggy), (Linus, Sally),<br>Schroeder),<br>t), (Peggy, Charlie)} 12 |













































| $\begin{array}{l} \text{Consider} \leq \text{ and} \\ \text{in slightly differ} \end{array}$ | < on the natural numbers. Neither is symmetric, but<br>ent ways.                                                                |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| This is called asy                                                                           | where the case that $a < b$ and $b < a$ .                                                                                       |
| For $\leq$ , it some                                                                         | times is, but only when $a=b$ .                                                                                                 |
| This is called ant                                                                           | tisymmetry                                                                                                                      |
|                                                                                              | noymmen y.                                                                                                                      |
| Both relations ar                                                                            | re antisymmetric. Only < is asymmetric.                                                                                         |
| Both relations ar<br>A binary relation                                                       | re antisymmetric. Only $\leq$ is asymmetric.<br>$R \subseteq A \times A$ is asymmetric iff for all $a, b \in A$                 |
| Both relations ar<br>A binary relation                                                       | re antisymmetric. Only < is asymmetric. $R \subseteq A \times A$ is asymmetric iff for all $a, b \in A$ if $aRb$ then not $bRa$ |





















