EDAA75 Exam

EDAA75-2023 Exam \#2

2023-08-22

Things you CAN use during the exam:

Any written or printed material is fine. Textbook, other books, the printed slides, handwritten notes, whatever you like.

In any case, it would be good to have a source for the relevant definitions, and also for notation, just in case you don't remember the precise definition of everything we discussed in the course.

Things you CANNOT use during the exam:

Anything electrical or electronic, any communication device: computers, calculators, mobile phones, toasters, ...

WRITE CLEARLY. If I cannot read/decipher/make sense of something you write, I will make the least favourable assumption about what you intended to write.

A sheet with common symbols and notations and with information about grading is attached at the end.

Possible solution or hints: This version includes a reference solution, marked like this paragraph. Note: the reference solution often offers additional explanations / proof sketches beyond what the question asked for, to help students who use it to study for future exams. Students were not required to explain their answers unless the question explicitly requested an explanation.

Good luck!

| Question: | 1 | 2 | 3 | 4 | 5 | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Max Points: | 16 | 16 | 16 | 18 | 18 | 84 |
| Points Reached: | | | | | | |

Question 1 (16 Points)

In this question, all intervals of the form $[a, b]$ are subsets of \mathbb{Z}.
If you encounter unfamiliar notation, make sure to check the notation table on the last page.
(a) Let $S=\left\{s \cdot n^{2} \mid s \in\{-1,1\}, n \in \mathbb{Z}\right\}$. Give a function $g: \mathbb{N} \rightarrow S$ such that g is injective, but not surjective.

$$
g=x \mapsto x^{2}
$$

(b) Which of the following formulas hold? For each row, determine if the formula always holds, never holds, or is contingent. If the formula always holds, write always in the Positive column. If the formula never holds, write never in the Positive column. Otherwise give one example of a truth value assignment (e.g., $a=\mathbf{T}, b=\mathbf{F}$) that ensures that the formula holds (in the Positive column) and one example of a variable assignment that ensures that the formula does not hold (in the Negative column).

Formula	Positive	Negative
$b \wedge \neg b$	never	
$b \vee \neg b$	always	
a	$a=\mathbf{T}$	$a=\mathbf{F}$
$(a \vee b) \rightarrow \neg a$	$a=\mathbf{F}, b=\mathbf{T}$	$a=\mathbf{T}$
$a \vee \neg(b \rightarrow \neg a)$	$a=\mathbf{T}$	$a=\mathbf{F}, b=\mathbf{F}, c=\mathbf{F}$
$\neg(\neg a) \wedge(b \vee \neg a))$	$a=\mathbf{T}, b=\mathbf{T}$	$a=\mathbf{F}, b=\mathbf{T}$
$(a \leftrightarrow b) \wedge(a \leftrightarrow \neg b)$	never	

Note on grading: Each row (except for the three example rows) is worth two points, one per column. Omitting a column counts as ± 0. Answering a column incorrectly counts as -1 . The answers always/never count for both columns. A negative points total on this table counts as zero points total for the table.
(c) Are the following formulas ϕ and ψ equivalent for every $S \subseteq \mathbb{Z}$? Explain your answer.

$$
\begin{aligned}
\phi & =\forall x \in S .(\exists y \in S .(x \cdot y \in S)) \\
\psi & =\exists y \in S .(\forall x \in S .(x \cdot y \in S))
\end{aligned}
$$

Possible solution or hints: No. Counter-example: $S=\{-2,-1,2\}$.

- For $\phi, x \in\{-2,2\}$ are covered by $y=-1$. With $x=-1$, we can select $y=2$.
- For ψ, there is no single y that is suitable. $y=-1$ does not work with $x=-1$. $y \in\{-2,2\}$ do not work with $x=2$.

Question 2 (16 Points)

In this question we examine and characterise nodes that share ancestors. As an example, consider the following directed tree:

Siblings: $\quad\{c, d\},\{b, e\}$

First Cousins: $\{c, f\},\{d, f\}$

Here, c and d are siblings, since they have the same parent, namely b. b and e are also siblings, with the same parent, a . Meanwhile, c and f are first cousins, since they share the same grandparent (parent-of-their-parent), namely a. Nodes d and f are also first cousins. However, a node is never its own sibling or its own first cousin, and two nodes that are siblings are not first cousins.
When we look at arbitrary directed trees (which may be of any size), we can generalise this idea to nth cousins: two nodes are second cousins when they share a great-grandparent, third cousins when they share a great-great-grandparent, and so on. In this format, a "0th cousin" is a sibling. As before, no node is its own nth cousin, and two nodes cannot be nth cousins if they are already m th cousins and $m<n$.
For an arbitrary (directed) tree $\langle T, R\rangle$, answer the following sub-questions. You may re-use definitions from earlier sub-questions (only), even if you have not solved those sub-questions.
(a) Define three relations $I \subseteq T \times T, S \subseteq T \times T$, and $Q \subseteq T \times T$, where $x I y$ iff x and y are the same element, $x S y$ whenever x and y have the same parent, and $x Q y$ whenever x and y have the same grandparent (= parent of their own parent).

$$
\begin{aligned}
& I=\{\langle t, t\rangle \mid t \in T\} \\
& S=R \circ R^{-1} \\
& Q=R \circ R \circ R^{-1} \circ R^{-1}
\end{aligned}
$$

(b) Now generalise S and Q. Recursively define a family of relations $P_{n} \subseteq T \times T$ with $n \in \mathbb{N}$ such that for all $n \geq 1$, the following holds: $x P_{n} y$ iff x and y share some ancestor z, there exists a path from z to x of length n, and there exists a path from z to y of length n. In particular, $P_{1}=S$ and $P_{2}=Q$.
(Hint: you can choose P_{0} freely, and it won't affect your grade. You may want to pick something that makes your life easy.)

$$
P_{n}= \begin{cases}I & \text { if } n=0 \\ R \circ P_{n-1} \circ R^{-1} & \text { if } n>0\end{cases}
$$

(c) Why is your recursive definition well-founded (i.e., why does it not loop infinitely)? Explain in your own words.

Possible solution or hints: Each P_{n+1} for $n \in \mathbb{N}$ references P_{n}, and P_{0} does not reference any P_{i} for any $i \in \mathbb{N}$. Hence, each P_{n+1} will have precisely n recursion steps, as we can see by induction.
(d) Define another family of relations C_{n} with $n \in \mathbb{N}$ such that $x C_{n} y$ iff x and y are nth cousins. (E.g., C_{0} should describe the sibling relation.) Do not define C_{n} recursively. You may re-use any existing recursive definitions.

$$
C_{n}=P_{n+1} \backslash P_{n}
$$

Question 3 （16 Points）

In this question we develop a chess－like game that we call VChess，short for variant chess．You don＇t need to know anything about chess to answer the sub－questions below．
A VChess game involves different game pieces p that can move across the tiles of a game board． We can describe the game pieces＇possible moves as vectors in two－dimensional Euclidean space． For example，the game piece below（茞）can move exactly one tile up，down，left，or right，and we can represent each of these movements as an element $\left\langle d_{x}, d_{y}\right\rangle \in \mathbb{Z}^{2}$ ，where d_{x} is the horizontal （left－right）movement and d_{y} is the vertical（up－down）movement：

We call the set of all possible moves of some game piece p the move set of $p, M_{p} \subseteq \mathbb{Z}^{2}$ ．For example，a piece r that can move diagonally left－and－down has $\langle-1,-1\rangle \in M_{r}$ ，and a piece q that can move arbitrarily far up has $\langle 0, n+1\rangle \in M_{q}$ for all $n \in \mathbb{N}$ ．For our example above，we have：

$$
M_{\text {昜 }}=\{\langle-1,0\rangle,\langle 1,0\rangle,\langle 0,-1\rangle,\langle 0,1\rangle\}
$$

Solve the sub－questions below without giving any recursive definitions．Your definitions below may re－use your own definitions from earlier sub－questions（only）．
（a）（Warm－up question）The game piece \mathbf{K} can make the same moves as a 置，or alternatively take one step in any of the four diagonal directions：

Give the move set of a \mathbf{K} ．

$$
M_{\mathbf{K}}=M_{\mathbf{z}} \cup\{\langle 1,1\rangle,\langle-1,1\rangle,\langle 1,-1\rangle,\langle-1,-1\rangle\}
$$

（b）Most game pieces＇move sets follow a form of rotational symmetry：if the game piece can move to the right $\left(\langle 1,0\rangle \in M_{p}\right)$ ，then the game piece can also move down $\left(\langle 0,-1\rangle \in M_{p}\right)$ ， or up，or to the left．Similarly，if the game piece can move diagonally up－and－left，it can also move diagonally in the other three directions．
Give a function $r_{90}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ that rotates a move by 90 degrees（clockwise or anticlockwise， your choice．You do not need trigonometric functions like sin and \cos here．）．

$$
r_{90}=\left\langle d_{x}, d_{y}\right\rangle \mapsto\left\langle-d_{y}, d_{x}\right\rangle \text { or }\left\langle d_{y},-d_{x}\right\rangle
$$

(c) Describe this rotational symmetry by giving a relation R with the property that $x R y$ iff x is rotationally symmetric to y, by which we mean that calling r_{90} repeatedly on x yields y (i.e., $y=r_{90}\left(r_{90}\left(\ldots r_{90}(x) \ldots\right)\right)$).

$$
\begin{aligned}
& R=\left\{\langle a, b\rangle \mid a \in \mathbb{Z}^{2}, b \in \mathbb{Z}^{2}\right. \\
& b \in\{ a, \\
& r_{90}(a) \\
&\left(r_{90} \circ r_{90}\right)(a) \\
&\left.\left.\left(r_{90} \circ r_{90} \circ r_{90}\right)(a)\right\}\right\}
\end{aligned}
$$

Possible solution or hints: Note that $r_{90} \circ r_{90} \circ r_{90} \circ r_{90}$ is the identity function $x \mapsto x$ (rotating by 360 degrees), so we don't need to consider rotating by 360 degrees, by 450 degrees etc.
(d) Construct a rotational closure function $c_{R}: \mathcal{P}\left(\mathbb{Z}^{2}\right) \rightarrow \mathcal{P}\left(\mathbb{Z}^{2}\right)$ such that $c_{R}(M)$ is the smallest superset of $M\left(c_{R}(M) \supseteq M\right)$ such that $m \in c_{R}(M)$ iff for all $m^{\prime} \in \mathbb{Z}^{2}$ with $m R m^{\prime}$, we have that $m^{\prime} \in c_{R}(M)$ holds.

$$
c_{R}=M \mapsto R(M)
$$

Question 4 (18 Points)

A small company uses four-digit codes to control access to their systems, and each employee can pick their own code. After a break-in caused by someone using code 0000 , the company is tightening security and considers the following policies:

- A: No digit may occur more than once per access code.
- B: No digit may be followed by a digit that is exactly one higher or one lower than the previous digit, and the sequences 09 and 90 may not appear anywhere in an access code.

When answering the questions below, you do not need to evaluate exponentials, factorials, products, sums, quotients, or subtractions.
(a) How many possible access codes are there without these policies?

Possible solution or hints: $10^{4}(=10000)$
(b) How many possible access codes would there be with policy A?

Possible solution or hints: $\frac{10!}{(10-4)!}(=5040)$
(c) How many possible access codes would there be with policy \mathbf{B} ?

Possible solution or hints: $10 \cdot 8^{3}(=5420)$. Explanation: first digit is free to choose, the next digits are always constrained to a choice of eight.
(d) The company has decided to make the following changes:

1. All access codes will now be made up of three symbols instead of four digits.
2. The set of symbols is $S=\left\{s_{1}, \ldots, s_{n}\right\}$, but we do not yet know how many symbols $\# S=n$ there will be. Several options are still being considered, including the letters of the Latin alphabet ($n=26, s_{1}=\mathrm{A}, \ldots, s_{26}=\mathrm{Z}$), For comparison, the decimal digits would have the form $n=10, s_{1}=0, \ldots, s_{10}=9$.
3. Policy A is modified, as follows: "No symbol may occur more than once per access code."
4. Policy B is modified, as follows: "No symbol s_{i} may be followed by symbol s_{i-1} (if $i>1$) or s_{i+1} (if $i<n$). Symbol s_{1} must not follow s_{n}, and symbol s_{n} must not follow s_{1}."

How many possible access codes will there be if both Policy \mathbf{A} and \mathbf{B} are implemented, for $n \in \mathbb{N}$ and $n>10$? Explain your answer. Focus on explaining your answer; you don't need to simplify the arithmetic term that you give. [NB: The exam as originally given asked a slightly different question; cf. the reference solution. The question above has been updated to make this exam more useful for studying / pre-exam practice.]

Possible solution or hints: The exam originally asked "How many possible access codes will there be now, for $n \in \mathbb{N}$ and $n>10$? Explain your answer." Thus, it was sufficient to answer separately for Policy A and B. Students who answered for both policies together got an extra +4 bonus points.
Answer for no policy (this was entirely optional):

$$
\# C=n^{3}
$$

where $C=S^{3}$ is the set of all three-symbol codes.
Answer for only Policy \boldsymbol{A} :

$$
\# C_{A}=\frac{n!}{(n-3)!}
$$

where C_{A} is the set of all three-symbol codes that follow the modified Policy A. As in subquestion (c), the boundary cases simply "wrap around", analogously to the "modulo" operation: for $x=1$, we simply replace s_{0} by s_{n}, and for $x=n$, we replace s_{x+1} by s_{1}. Thus, we don't need to treat the cases $x=1$ and $x=n$ any differently from the cases where $1<x<n$.
Answer for only Policy B:

$$
\# C_{B}=n \cdot(n-2)^{2}
$$

where C_{B} is the set of all three-symbol codes that follow the modified Policy B.
(Everything below is only relevant for the "bonus points" variant of the question.)
Answer for both Policy \boldsymbol{A} and Policy \boldsymbol{B} together: We are looking for $\#\left(C_{A} \cap C_{B}\right)$.
There are several approaches to this problem;
Approach 1: Perhaps the easiest approach (if we spot it) is to work out that for all codes $s_{x} s_{y} s_{z}$, we can see that s_{y} is restricted to $n-3$ choices (not in $\left\{s_{x}, s_{x-1}, s_{x+1}\right\}$), and z is restricted to $n-4$ choices, no matter what choice we make for y : since $y+1 \neq x$ and $y-1 \neq x$, the number of choices that we are not allowed to take for y is always 4 . Thus, we have the following number of choices:

$$
n \cdot(n-3) \cdot(n-4)
$$

Approach 2: Instead of working with the set of all codes that are allowed, we can also try to work out the set of all codes that are forbidden by both. Let $\overline{C_{A}}=C \backslash C_{A}$ and
$\overline{C_{B}}=C \backslash C_{B}$ (SLAM also writes this as $-C_{A}$ and $-C_{B}$, if the "universe" U is set to C, cf. SLAM, page 23). In this approach, we then want to transform $\#\left(C_{A} \cap C_{B}\right)$ into a term whose only unknown is $\#\left(\overline{C_{A}} \cap \overline{C_{B}}\right)$ This approach ends up being a bit more complicated, but will include it here, since it is a perfectly fine approach to try and demonstrates several useful principles.
First, we exploit that $C_{A} \cap C_{B}=C \backslash\left(\overline{C_{A}} \cup \overline{C_{B}}\right)$ (cf. SLAM exercise 1.4.3(e); we are applying DeMorgan's rules here). The term that we want to keep as the unknown, $\#\left(\overline{C_{A}} \cap \overline{C_{B}}\right)$, will then pop up as soon as we apply the Addition Principle. Specifically:

$$
\begin{aligned}
& \#\left(C_{A} \cap C_{B}\right)=\#\left(C \backslash\left(\left(C \backslash C_{A}\right) \cup\left(C \backslash C_{B}\right)\right)\right) \\
& =\#\left(C \backslash\left(\overline{C_{A}} \cup \overline{C_{B}}\right)\right) \\
& =\# C-\#\left(C \cap\left(\overline{C_{A}} \cup \overline{C_{B}}\right)\right) \\
& =\# C-\#\left(\overline{C_{A}} \cup \overline{C_{B}}\right) \\
& =\# C-\left(\# \overline{C_{A}}+\# \overline{C_{B}}-\#\left(\overline{C_{A}} \cap \overline{C_{B}}\right)\right) \\
& =\# C-\# \overline{C_{A}} \quad-\# \overline{C_{B}}+\#\left(\overline{C_{A}} \cap \overline{C_{B}}\right) \\
& =\# C-\#\left(C \backslash C_{A}\right) \quad-\# \overline{C_{B}}+\#\left(\overline{C_{A}} \cap \overline{C_{B}}\right) \\
& =\# C-\left(\# C-\#\left(C \cap C_{A}\right)\right)-\# \overline{C_{B}}+\#\left(\overline{C_{A}} \cap \overline{C_{B}}\right) \quad \text { (Subtraction Principle) } \\
& =\# C-\left(\# C-\# C_{A}\right) \quad-\# \overline{C_{B}}+\#\left(\overline{C_{A}} \cap \overline{C_{B}}\right) \quad\left(C_{A} \subseteq C\right) \\
& =\# C-\left(\# C-\# C_{A}\right)-\left(\# C-\# C_{B}\right)+\#\left(\overline{C_{A}} \cap \overline{C_{B}}\right) \text { (Subtraction principle) } \\
& =\# C-\# C+\# C_{A}-\left(\# C-\# C_{B}\right)+\#\left(\overline{C_{A}} \cap \overline{C_{B}}\right) \\
& =\quad \# C_{A}-\left(\# C-\# C_{B}\right)+\#\left(\overline{C_{A}} \cap \overline{C_{B}}\right) \\
& =\quad \# C_{A}-\# C+\# C_{B}+\#\left(\overline{C_{A}} \cap \overline{C_{B}}\right) \\
& \text { (Subtraction Principle) } \\
& \left(\overline{C_{A}} \cup \overline{C_{B}} \subseteq C\right) \\
& \text { (Addition Principle) } \\
& \text { (Subtraction principle) }
\end{aligned}
$$

- $c_{6}=s_{x+1}, s_{y}, s_{x}$, where $y=x$ or $y=x+1$

This gives us 12 different sequences. However, there is a pitfall here: while all of the above sequences are indeed codes that both violate Policy A and Policy B, they are not unique, so we don't actually get $12 \cdot n$ sequences in total. As an example, set $n=10$. Then,

- c_{1} with $x=5$ and $y=x-1$ would give the code $s_{4} s_{5} s_{4}$. However, c_{4} with $x=4$ and $y=x$ gives us the same code.
- c_{2} with $x=5$ and $y=x$ would give the code $s_{5} s_{5} s_{6}$. However, c_{5} with $x=6$ and $y=x-1$ gives us the same code.
- c_{3} with $x=5$ and $y=x-1$ would give the code $s_{5} s_{4} s_{4}$. However, c_{6} with $x=4$ and $y=x$ gives us the same code.

If we check all of c_{1}, \ldots, c_{6}, we find that we are counting every combination twice! To avoid this ambiguity, we can limit ourselves, for a given x, to only those combinations in which s_{x} appears exactly twice. That is analogous to fixing $y=x$. That leaves us at only one possible way to construct c_{1}, \ldots, c_{6} for any given x and brings us back to $6 \cdot n$.
To see that the two solutions are identical: While this goes beyond the exercise, we can show that our who solutions for $\#\left(C_{A} \cap C_{B}\right)$ are identical:

$$
\begin{aligned}
\frac{n!}{(n-3)!}-\left(n^{3}-n(n-2)^{2}\right)+6 n & =\frac{n!}{(n-3)!}-n\left(n^{2}-(n-2)^{2}\right)+6 n \\
& =\frac{n!}{(n-3)!}-n\left(n^{2}-\left(n^{2}-4 n+4\right)\right)+6 n \\
& =\frac{n!}{(n-3)!}-n\left(n^{2}-n^{2}+4 n-4\right)+6 n \\
& =\frac{n!}{(n-3)!}-n(4 n-4)+6 n \\
& =\frac{n!}{(n-3)!}-n(4 n-4-6) \\
& =\frac{n!}{(n-3)!}-n(4 n-10) \\
& =n \cdot(n-1) \cdot(n-2)-n(4 n-10) \\
& =n((n-1) \cdot(n-2)-(4 n-10)) \\
& =n\left(n^{2}-3 n+2-4 n+10\right) \\
& =n\left(n^{2}-7 n+12\right) \\
& =n(n-3)(n-4)
\end{aligned}
$$

Question 5 (18 Points)

In this question we analyse software with the help of graphs. A guarded graph is a tuple $\langle G, V, C, g, a\rangle$ where $\langle V, E\rangle$ is a graph of program statements V, with $x E y$ stating that y can execute directly after x. Some edges $e \in E$ represent 'if' statements, which we model with conditions $C \supseteq\{\mathbf{T}\}$ and functions $g: E \rightarrow C$ and $a: V \rightarrow C$. We say that an edge $e \in E$ is unguarded iff $g(e)=\mathbf{T}$, and that e is guarded by $g(e)$ iff $g(e) \neq \mathbf{T}$. We say that vertex $v \in V$ activates condition c iff $a(v)=c$.
For a guarded graph $\langle V, E, C, g, a\rangle$, a guarded path of length $n-1$ from v_{1} to v_{n} is a path v_{1}, \ldots, v_{n} in $\langle V, E\rangle$, where additionally for all $j \in[1, n), g\left(\left\langle v_{j}, v_{j+1}\right\rangle\right)=c$ implies that either $c=\mathbf{T}$, or there exists some $k \in \mathbb{N}, k \leq j$ such that $a\left(v_{k}\right)=c$.
As an example, the program below has $C=\{\mathrm{b}, \mathbf{T}\}$, and $\langle V, E\rangle, g$, and a as follows:

Program (for illustration only)	Graph $\langle V, E\rangle$	$g: E \rightarrow C$	$a: V \rightarrow C$
1 start ()	(1)	$g(\langle 1,2\rangle)=\mathbf{T}$	$a(1)=\mathbf{T}$
$2 \mathrm{~b}=$ true;	(2)	$g(\langle 2,3\rangle)=\mathbf{T}$	$a(2)=\mathrm{b}$
3 if (b) \{	$\stackrel{1}{ }$	$g(\langle 3,4\rangle)=\mathrm{b}$	$a(3)=\mathbf{T}$
4 secret () ;		$g(\langle 3,5\rangle)=\mathbf{T}$	$a(4)=\mathbf{T}$
5 \}	(5)	$g(\langle 4,5\rangle)=\mathbf{T}$	$a(5)=\mathbf{T}$

Here, the sequence $1,2,3,4,5$ is a guarded path because all adjacent vertices are edges, and because the only guarded edge, $\langle 3,4\rangle$, is guarded by b , which vertex 2 activates (i.e., $a(2)=\mathrm{b}$).
However, $3,4,5$ is not a guarded path, because $\langle 3,4\rangle$ is guarded by b, vertex 3 does not activate b , and there is no other vertex before 3 in this path that could activate b .
Answer the sub-questions below.
(a) Consider the following guarded graph with $C=\{\mathbf{T}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$:

Graph $\langle V, E\rangle$	$g: E \rightarrow C$	$a: V \rightarrow C$
	$g(\langle 1,2\rangle)=\mathrm{d}$	
	$g(\langle 1,3\rangle)=\mathbf{T}$	
	$g(\langle 2,3\rangle)=\mathbf{T}$	$a(2)=\mathrm{c}$
	$g(\langle 3,1\rangle)=\mathbf{T}$	$(3)=$
	$g(\langle 3,4\rangle)=\mathrm{e}$	$a(5)=\mathbf{T}$
	$g(\langle 3,5\rangle)=\mathbf{c}$ $g(\langle 3,6\rangle)=\mathbf{T}$	$a(5)=\mathbf{T}$ $a(6)=\mathbf{T}$
	$g(\langle 3,6\rangle)=\mathbf{T}$	

List all vertices that can be the last vertex of a guarded path that is of length n and starts at vertex 1.
[NB: in the exam as given, this was formulated as "List all vertices that you can reach with a guarded path of length n, starting at vertex 1 "]
Length Reachable vertices

$n=1:$	$\{3\}$ (with d)
$n=2:$	$\{6,1$ (with d) $\}$
$n=3:$	$\{2$ (with c, d), 3 (with d)
$n=4:$	$\{3$ (with c, d), 6 (with d), 1 (with d)
$n=5:$	$\{1,3$ (with d), $2,5,6$ (with c, d) $\}$

Possible solution or hints: The above (minus the "with ... bits") is sufficient as a solution. Since "reachable" (in the version of the original exam) does not specifically only talk about the final node in the path, it was also correct to list all nodes traversed by the path, as long as the interpretation of "reachable" was consistent, possibly including 1. Under this alternative interpretation, the set of reachable vertices grows monotonically, with $n=0$ implicitly being either \emptyset or $\{1\}$. Then, $n=1$ adds $3, n=2$ adds 6 and possibly $1, n=3$ adds $2, n=4$ does not add anything, and $n=5$ adds 4 to the previous set.
(b) We analyse guarded graphs $\langle E, V, C, g, a\rangle$ with the help of abstract program states:

Let $S=\{\langle v, A\rangle \mid v \in V,\{\mathbf{T}, a(v)\} \subseteq A \subseteq C\}$. Then any $s \in S$ with $s=\langle v, A\rangle$ is an abstract program state at vertex v, and s satisfies condition $c \in C$ iff $c \in A$.
Define a successor relation $N \subseteq S \times S$ such that $s_{1} N s_{2}$ if and only if s_{1} is at vertex v_{1} and s_{2} is at vertex v_{2}, and there is an edge from v_{1} to v_{2} that is either unguarded or guarded by some condition c such that s_{1} satisfies c.

$$
\begin{aligned}
N=\{ & \left\langle\langle v, A\rangle,\left\langle v^{\prime}, A^{\prime}\right\rangle\right\rangle \in S \times S \\
\mid & \left\langle v, v^{\prime}\right\rangle \in E \\
& \wedge g\left(\left\langle v, v^{\prime}\right\rangle\right) \in A \\
& \wedge\{\mathbf{T}\} \subseteq A \\
& \left.\wedge A^{\prime}=A \cup\{a(v)\}\right\}
\end{aligned}
$$

(c) Is N from sub-question (b) always, never, or sometimes a function? Explain your answer.

Possible solution or hints: Sometimes: if each graph node has precisely one successor and all edges are unguarded, then there is exactly one successor vertex for every vertex and hence $N(s)$ exists and is is unique for any s. However, N is not a function in our earlier examples.
(d) Use N from sub-question (b) to give a logical formula or a term in set theory that holds if and only if there is a guarded path from $v_{s} \in V$ to $v_{e} \in V$ for some $\langle E, V, C, g, a\rangle$.

Possible solution or hints: $\exists A \subseteq C .\left\langle v_{s},\{\mathbf{T}\}\right\rangle N^{+}\left\langle v_{e}, A\right\rangle$, which excludes paths of length 0 , as in class. Reflexive+transitive closure (N^{*}) was also acceptable for full credit.

Symbols and Notation

You may use any of the symbols and notation below in your own answers, in addition to any standard arithmetic notation and notation that we discussed in class. You may at any time introduce helper definitions.

\mathbb{Z}	The integers
\mathbb{R}	The real numbers
\mathbb{N}	The natural numbers, starting at 0
$\mathcal{P}(A)$	The power set of the set A
\#S, $\|S\|$	The cardinality of set S
$\operatorname{dom}(R), \operatorname{dom}(f)$	The domain of a binary relation R or a function f
range (R), range (f)	The range of a binary relation R or a function f
R^{-1}, f^{-1}	The inverse of a relation R or a function f
$R \circ S, f \circ g$	The composition of relations and the composition of functions
R^{+}	The transitive closure of relation R
$R[X], f[X]$	closure of a set X under a relation R, a set of relations R, or a function f
[a,b]	closed interval from a to b (including $\{a, b\}$)
(a, b)	open interval from a to b (excluding $\{a, b\}$)
$(a, b],[a, b)$	half-open intervals from a to b
$\lfloor x\rfloor$	rounding down x
$\sum S$	sum of all elements of S
ΠS	product of all elements of S
$\bigcup S$	union of all elements of S
$\bigcap S$	intersection of all elements of S
$\bigcup_{a \in S} E(a), \bigcap_{S \in S} E(a)$	generalised union / intersection of all sets $E(a)$ for every $a \in S$
a $\left.\begin{array}{c}a \in S \\ n \\ k\end{array}\right)$	Binomial coefficients: $\quad\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Answers to common questions about grading:

- In any question, if sub-question x refers to sub-question y with $x \neq y$, then grading for subquestion x assumes that you answered sub-question y correctly, even if you did not. However, what the correct answer for sub-question x is may depend on your answer to sub-question y.

