
An Empirically Based Theory for Open
Software Engineering Tools

Hussan Munir

Doctoral Dissertation, 2018

Department of Computer Science
Lund University

ii

LU-CS-DISS 2018-2
Doctoral Dissertation 59, 2018

ISBN: 978-91-7753-738-0 (Printed)
ISBN: 978-91-7753-739-7 (Electronic)
ISSN: 1404-1219

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: hussan.munir@cs.lth.se
WWW: http://cs.lth.se/hussan_munir

Printed in Sweden by Tryckeriet i E-huset, Lund, 2018

c© 2018 Hussan Munir

ABSTRACT

Many companies and developers from OSS communities create open tools col-
laboratively in which software developers improve upon the code and share the
changes within the community. Open tools (e.g., Jenkins, Gerrit, and Git) of-
fer features or performance benefits that surpass their commercial counterparts in
the core product development. Participation in OSS tools communities greatly
dismantled the closed innovation model and lured organizations towards Open In-
novation (OI). Harnessing the external knowledge that OI offers, requires better
understanding regarding what to develop internally and what to acquire from out-
side the organization, how to cooperate with potential competitors, and when to
conceal or reveal code while working with OSS communities.

The aim of this thesis is to investigate how software-intensive organizations
utilize the external and internal knowledge from OSS tools communities using
Open Innovation to improve their core product development. First, this aim was
achieved by exploring and reporting the existing evidence of OI in software en-
gineering. Second, by providing a solution for software-intensive organizations
regarding how to choose the right level of openness while working with OSS tools
communities. Finally, we validated the proposed solution in multiple organiza-
tions.

The thesis followed an empirical approach by conducting a systematic map-
ping study, case study, design science based contribution acceptance model, theory
creation and validation of the theory. First, we conducted a systematic mapping
study to synthesize the existing evidence on OI in software engineering and iden-
tified the research gaps. Second, we conducted an exploratory case study at Sony
Mobile to explore how a software organization uses OSS tools communities to fa-
cilitate its core product development. Third, we proposed a theory of openness for
organizations which provides guidelines regarding how to work with OSS tools
communities. Fourth, we presented a contribution acceptance model and meta-
model to assist strategic product planning in what to develop internally and what
to share as OSS in the proprietary products.. Finally, we validated the proposed
theory of openness for tools in two automotive companies by conducting focus
groups.

iv

The main conclusion of the thesis is that software-intensive organizations need
to acquire external knowledge from OSS tools communities to accelerate their
internal innovation process. Improved and flexible development tools provide op-
portunities to shorten the development time, improves new product releases and
upgrades, frees up developers time, increased quality assurance, sharing the main-
tenance cost and steer communities to facilitate organization’s business models.
However, it can only be achieved if there are well-defined guidelines for devel-
opers and managers to operationalize working with OSS tools communities. This
thesis presents a theory of openness to facilitate managers on how to works with
OSS tools communities. The theory suggests that the top management needs to de-
velop new roles and legal procedures to educate developers regarding how to use
and contribute to OSS tools communities for a faster development environment.
This openness provides opportunities for the organizations to reduced develop-
ment cost, shorten development time and process and product innovation.

POPULAR SUMMARY

IT IS MORE BLESSED TO GIVE
THAN TO RECEIVE

HUSSAN MUNIR, DEPARTMENT OF COMPUTER SCIENCE

Open Innovation (OI) allows knowledge flow both inside-out and outside-in
the company, and may or may not be attached to monetary transactions.

OI penetrates several industries, as many companies discover that their busi-
ness may benefit from sharing knowledge with other companies. The use of pro-
prietary tools for software development has several drawbacks, e.g. expensive
licensing costs, lack of customizability, delayed implementation of requirements,
the inability of fixing things in-house, and difficulty in finding solutions that meet
current needs. On the other hand, the use of open Tools for software development
in the companies is an area which companies apply OI principles to. By using open
tools for software development companies share the innovation cost and rewards
and also risks.

Why should companies open up?

Software companies cannot afford to work in a closed way due to the continuous
need for automation and increased speed. Developing tools internally for software
development may entail significant costs and companies may miss the latest trends
in OSS tools ecosystem. Therefore, companies need to tag along with open tools
communities to extract the external knowledge in a timely manner. From two re-
search studies, we distilled a set of triggers that drive companies towards applying
OI strategies in sharing their tools openly. The triggers include aspects of access to
workforce, development speed, reduced license costs, work-flow flexibility, main-
tenance costs and increased quality assurance.

The key findings of this research entail how software companies may choose
the right level of openness in their proprietary products and open tools used for the
development of company’s internal products. First, the contribution acceptance

viii

model is presented for companies, which assists in what to develop internally and
what to share and take from open source software. Second, the theory of open-
ness helps organizations how to develop and use open tools communities. We
have presented different strategies for companies to choose the right level of open-
ness. While working with open tools, it is paramount not to share the source code
in order to avoid getting trapped into internal maintenance and integration cost.
Companies should strive for standard solutions and reduce the number of variants
of open tools by contributing their source code towards open source communities.

Implications for companies
Software companies use OSS tools communities as an implementation of OI to
create business value for their core products. Therefore, they may achieve OI by
choosing the right level of openness. Companies may assign dedicated resources to
work with open tools communities, with the goal to acquire and assimilate know-
ledge in the company’s core product development.

In order to create new open tools communities and steer them towards the
company’s business model, companies need to invest more of their employees’
time in open source communities. Then they may gain advantages, such as ac-
cess to skilled resources, better continuous integration integration process, faster
upgrades and releases, reduced development time, and share the maintenance cost
with other developers in the open source communities.

ix

to my father, the most honest man I know,
to my mother, the most patient and selfless lady I know,

to my sister, for all the support, guidance and love,
to my brother, for his insights and humor in growing up together

“There is no beauty better than intellect” - Prophet Muhammad (PBUH)

ACKNOWLEDGEMENTS

This work was funded by Synergies project, grant 621-2012-5354 from the Swedish
Research Council and partly funded by the EASE industrial excellence center.

First praise is to Allah, the Almighty, on whom ultimately I depend for suste-
nance and guidance. You have given me the power to believe in my passion and
pursue my dreams. I could never have done this without the faith I have in you,
the Almighty.

My sincerest thanks are extended to my supervisors Prof. Dr. Per Runeson
and Dr. Krzysztof Wnuk for the continuous support of my Ph.D. study and related
research, for their patience, motivation, and immense knowledge. Their guidance
helped me in all the time of research and writing of this thesis. I could not have
imagined having better advisors and mentors for my Ph.D. study.

The research presented in this thesis was conducted in close cooperation be-
tween academia and industry. Therefore, I am particularly grateful to Sony Mobile
and two anonymous case companies. I am also thankful to all of the Department of
Computer Science faculty members and the Software Engineering Research Group
for their support and research collaborations.

Finally, this journey would not have been possible without the support of my
family. I am eternally grateful for encouraging me in all of my pursuits and inspir-
ing me to follow my dreams. I always knew that you believed in me and wanted
the best for me. Thank you for teaching me that my job in life was to learn, to be
happy, and to know and understand myself; only then could I know and understand
others. You are indispensable. Heartfelt thank you.

Hussan Munir

LIST OF PUBLICATIONS

In the introduction chapter of this thesis, the included and related publications
listed below are referred to by Roman numerals.

Publications included in the thesis

I Open Innovation in Software Engineering: A Systematic Mapping Study
Hussan Munir, Krzysztof Wnuk and Per Runeson
Empirical Software Engineering, (2016) 21: 684-723.

II Open Innovation using Open Source Tools: A Case Study at Sony Mo-
bile
Hussan Munir, Johan Linåker, Krzystof Wnuk, Per Runeson and Björn Reg-
nell, Empirical Software Engineering, (2018) 23: 186-223.

III A Theory of Openness for Software Engineering Tools in Software Or-
ganizations
Munir, Hussan, Per Runeson, and Krzysztof Wnuk.
Information and Software Technology,(2018) 97: 26-45.

IV Motivating the Contributions: An Open Innovation perspective on What
to Share as Open Source Software
Linåker, Johan, Hussan Munir, Krzysztof Wnuk, and Carl Eric Mols.
Journal of Systems and Software, (2018) 135: 17-36.

V Open Tools for Software Engineering using the Theory of Openness : A
Validation Study in the Automotive Industry
Hussan Munir, Per Runeson, Krzystof Wnuk and Johan Linåker, Submitted
to ESEM 2018.

xiv

Related Publications

VI A Survey on the Perception of Innovation in a Large Product-
focused Software Organization
Johan Linåker, Hussan Munir, Per Runeson, Björn Regnell, Claes Schrewelius
6th International Conference on Software Business-ICSOB, 2015, pp
66-80.

VII Software Testing in Open Innovation: An Exploratory Case study
of Acceptance Test Harness for Jenkins
Hussan Munir, Per Runeson
International Conference on Software and System Process (ICSSP),
2015 , pp 187-191.

xv

Contribution statement
All papers included in this thesis have been co-authored with other researchers.
The authors’ individual contributions to Papers I-V are as follows:

Paper I
Hussan Munir is the lead author responsible for the designing the research plan and
executing the study followed by a validation and paper review from Dr. Krzysztof
Wnuk and Prof. Per Runeson. Hussan Munir was responsible for data collection,
analysis and writing the paper.

Paper II
Hussan Munir is the first author with the main responsibility for the research effort
together with Johan Linåker. Hussan Munir and Johan Linåker wrote a majority
of the text after performing the data mining and data analysis, and the co-authors
contributed with constructive reviews. Dr. Krzysztof Wnuk was also involved in
conducting the interviews with industry professionals.

Paper III
Hussan Munir is the lead author responsible for the research design and literature
analysis process in the creation of theory. Prof. Per Runeson and Dr. Krzysztof
Wnuk were involved in giving the feedback in all phases of the paper.

Paper IV
Johan Linåker is the lead author together with Hussan Munir and Dr. Krzysztof
Wnuk. I was responsible for designing, executing, validating and writing the re-
search work with other authors.

Paper V
Hussan Munir proposed the idea of using repertory grid analysis and designed the
validation study to conduct the workshops at the case companies. Prof. Per Rune-
son and Dr. Krzysztof Wnuk were involved in giving feedback in designing and
writing this paper. However, the workshops were conducted by Hussan Munir and
Prof. Per Runeson at the case companies.

CONTENTS

Introduction 1
1 Introduction . 1
2 Related work and terminology 4
3 Research goals . 6
4 Research methodology . 7
5 Results and synthesis . 10
6 Ethical aspects and threats to validity 15
7 Future work . 17
8 Conclusion and main contributions 17

Included papers 19

I Open Innovation in Software Engineering: A Systematic Mapping
Study 21
1 Introduction . 22
2 Related work . 23
3 Research methodology . 29
4 Results and analysis . 35
5 Discussion . 56
6 Implications for research and practice 59
7 Conclusions . 61

Appendix A Rigor and Relevance Criteria 63
1 Rigor . 63
2 Relevance . 64

Appendix B Database search strings 67

II Open Innovation through the Lens of Open Source Tools: An ex-
ploratory case study at Sony Mobile 69
1 Introduction . 70

xviii CONTENTS

2 Related work . 72
3 Case study design . 74
4 Quantitative analysis . 83
5 Qualitative analysis . 88
6 Results and discussion . 98
7 Conclusions . 105

Appendix C Supplementary interview questionnaire 107

III A Theory of Openness for Software Engineering Tools inSoftware Or-
ganizations 111
1 Introduction . 112
2 Background studies and related work 114
3 Research design . 117
4 Narrative synthesis . 119
5 Theory formulation . 130
6 Conclusion and future work . 140

Appendix D Survey design 141
1 Demographics . 142

Appendix E Why get organizations involved in OI using OSS? 145
1 Operationalization of Open Innovation in software engineering . . 147
2 Quality assurance . 148

Appendix F Who – Organizations involved in Open Innovation 149
1 Example of raw data collected from S1, S2 and S3 155
2 Rigor and relevance criteria . 157

IV Motivating the Contributions: An Open InnovationPerspective on What
to Share as Open Source Software 159
1 Introduction . 160
2 Related work . 161
3 Research methodology . 169
4 The Contribution Acceptance Process (CAP) Model (RQ1) 177
5 Operationalization of the CAP model (RQ2) 187
6 Combining the CAP Model and the Information Meta-model . . . 190
7 Case studies . 193
8 Discussion . 201
9 Conclusion . 204

CONTENTS xix

V Open Tools for Software Engineering using the Theory of Openness:
A Validation Study in the Automotive Industry. 207
1 Introduction . 208
2 Related work . 210
3 Research methodology . 211
4 Results and discussion . 218
5 Conclusions . 224
References . 225

INTRODUCTION

1 Introduction

The rising cost and the increased demand for delivering products with the faster
time to market have put extensive pressure on many organizations [27]. Software-
intensive organizations (SIO) are constantly reconsidering which strategies are
successful in generating ideas and bringing them to market. These strategies entail
harnessing external ideas while leveraging their in-house R&D outside their cur-
rent operations [31]. Organizations struggle to remain competitive using the ex-
isting models of innovation and need a shift in the ways of working by combining
the internal ideas with external ideas. One possible way to reduce the develop-
ment cost and shorter time to market is to use Open Innovation (OI) to harvest the
external ideas.

OI is an emerging management paradigm which originated from high tech-
nology industry practices in the US and Japan [30]. OI can be traced back to
Allen’s [6] collective invention in 1980’s. Two decades after Allen’s paper from
1983, Henry Chesbrough [30] coined the term Open Innovation as “a distributed
innovation process based on purposively managed knowledge flows across organi-
zational boundaries, using pecuniary and non-pecuniary mechanisms in line with
the organization’s business model”. This phenomenon is explained with the help
of Fig.1. The dotted line in the funnel shows the boundary of the company where
ideas can seep in and out. The bubbles represent the research projects and arrows
highlight the flow of ideas in and out of the companies. Furthermore, the vertical
line in Fig.1 separates the research phase from the development phase of the com-
pany. Ideas can originate from inside the company’s research process, but some
of the ideas may seep out of the companies, either in the research phase or later in
the development phase. These innovative ideas are utilized by companies to create
a new market or make use of the existing market. One typical example of idea
leakage is a start-up company, often initiated by some of the company’s own per-
sonnel. Ideas can also start outside the firm’s own labs and move inside. Google’s
Android was taken in by companies like Sony and Samsung to adapt it in a way

2 INTRODUCTION

which was more in line with their business model and thus a clear case of utilizing
an external project to access the existing Android market.

OI initiated an unabated interest among researchers in innovation manage-
ment [83], economics, psychology, sociology, and also Software Engineering [182].
The work initiated by Chesbrough inspired both scholars and practitioners to re-
think the design of the innovation strategies in a networked environment [83].
OI encompasses various forms of knowledge transfer such as inbound (outside-
in knowledge), outbound (inside-out knowledge), and coupled process (outside-in
and inside-out knowledge) [66].

Figure 1: Open Innovation

Research Development

Current market

New market

Research project

Firms boundaries Ref: Chesbrough 2003

The novelty of OI was questioned by an argument that closed innovation might
have been the exception in the history, characterized mostly by open innovation
practices [133]. In response, Chesbrough undercuts the logic of the Closed Inno-
vation model of R&D and developed the logic of the Open Innovation model due
to the changed conditions under which organizations innovate. For example, the
rise of the internet has made the knowledge access and sharing capabilities easier
using Open Source Software (OSS) [30].

In the field of software engineering, the success of Open Source Software
(OSS) indicates its existence before the term OI was coined [112]. The introduc-
tion of OSS in commercial settings have opened up new possibilities for innovation
in software-intensive organizations. This shift towards openness indicates that the

1 Introduction 3

internal R&D is no longer the only strategic asset for the companies in creating
products and services. Access to, and interplay with, external sources and actors
provide not only new opportunities but also create new challenges. One specific
type of OSS is software engineering tools used in the development of software-
intensive products. The tools themselves are not the source of revenue for the
software-intensive organizations, but they rely heavily on them to improve the
software development process. Further, the costs of improving the tools and keep-
ing them up to date may be significant, and thus software-intensive organizations
may want to share the costs with other organizations [27].

However, it should be noted that OSS is not equivalent to OI. OSS is used as
an example of OI in the studies included in this thesis [29]. Both OSS and OI
tend to favor the use of external knowledge together with internal knowledge as
a mutually beneficial measure for organizations and communities, however, there
is a distinction between OI and OSS. First, OSS and OI may differ by using dif-
ferent intellectual property rights (IPR) strategies. For example, when IBM cre-
ated the Eclipse platform, they invited competing companies to cooperate in an OI
ecosystem [187]. In OI, companies may retain the ownership of IPR as oppose to
OSS. Secondly, companies leading OI complement their internal closed innova-
tion process by acquiring external knowledge [137]. Thirdly, OI companies have
a business model influenced by the definition of OI, where differential assets are
kept secret to create value. Therefore, the degree of openness lies in the hands
of the companies in relation to OSS communities. Finally, companies try to gov-
ern and steer open tools platform to facilitate their internal product development by
co-developing development tools with other stakeholders in the ecosystem. There-
fore, OSS is a natural way of implementing OI in software-intensive product de-
velopment organizations, where OSS communities act as innovation catalyst.

Another example of OI can be explained by Linux development when IBM
donated hundreds of patents and invested more than $100 million a year to sup-
port the Linux OS. One of the OI advantages is that the risks and costs of de-
velopment can be shared among the stakeholders. Although IBM invested a sig-
nificant amount of money in the Linux development, other firms such as Nokia,
Hitachi, and Intel also made substantial investments as well [110]. By supporting
the Linux, IBM was strengthening its own business model in selling proprietary
solutions for its clients running on top of Linux. Additionally, the openness of
Linux also gave IBM more freedom to co-develop products with its customer [30].

As OSS matured and became commercially viable to deliver high-quality prod-
ucts, software-intensive organizations started using them for the development of
their proprietary products in two possible scenarios. First, when an organization
decides to release proprietary code as OSS and create a community or ecosystem
to improve its internal product. Second, when an organization wants to use OSS
code for tools or for the code of the product. In this thesis, we proposed Contribu-
tion Acceptance Process (CAP) model and Theory of openness for tools to address
both scenarios.

4 INTRODUCTION

2 Related work and terminology

Despite the wide interest in several domains, OI is far from thoroughly researched
in software engineering. OSS is often explored as one of the main examples of OI
in order to incorporate the external knowledge and innovation to internal product
innovation. However, Munir et al. [Paper I] recognized the lack of systematic
efforts to summarize and synthesize the state of the research on OI in software
engineering. The previously attempted reviews were either partly systematic [83,
186, 196] or focused on the metrics used to measure innovation in OSS [50].

Organization use different strategies to engage in OSS tools communities [41],
e.g. adopting selective revealing [76] or OI models [27]. West et al. [188] high-
lighted the strategies that organizations use to acquire, incorporate the external
knowledge into their internal innovation processes and exploiting the Intellectual
Property Rights (IPR) by a selective revealing strategy. Stuermer et al. [176] con-
ducted a study on applying the private collective model at Nokia to identify the
incentives for individuals investing in OSS and the firms. Nokia benefited from
the introduced private collective model in terms of learning effects, reputation
gain, reduced development effort and low knowledge protection costs. On the
other hand, the cost of implementing the private collective model entails diffi-
culty to differentiate, guard business secrets, reduce the community barriers and
give up organizational control. Bosch [23] claims that speed, data and ecosystems
are the main factors that impact software-intensive organizations in their software
engineering practices. At the same time, the size of software-intensive products
continues to grow. This growth incurs the need for faster and better adoption of
applications, technologies, components, services, and ecosystem partners. In or-
der to address this challenge, software-intensive organizations may utilize OSS
tools communities to increase the speed, reduce the development and maintenance
costs.

In addition, OI entails challenges on process and business levels. West et
al. [191] highlighted the business related challenges faced by the leading firms
in the development of Symbian: 1) balancing the interests of all stakeholders, 2)
knowing the requirements for a product that has yet to be created, and 3) priori-
tizing the conflicting needs of all stakeholders. Software-intensive organizations
intending to indulge themselves in OSS communities, need to adjust their software
development processes in their efforts to fix bugs and contribute new features to
the community. These efforts might reduce the maintenance cost compared to
in-house software development. Furthermore, OSS involvement may also entail
different modes of working in terms of dedicated resouces [108, 194] and OSS
governance mechanisms [110] to facilitate software development in an OI con-
text. Dahlander [42] concluded that initiating an OSS project is often a pragmatic
way of attracting the skilled workforce from communities. Moreover, having a
dedicated employee working close to the community seems to be an enabler for
not only building a good reputation of an organization in the community, but also

2 Related work and terminology 5

allow exercising the governance/control mechanism to steer the development to-
wards the organization’s business model. Van der Linden et al. [120] concluded
that when a software product loses its competitive value in terms of profitability,
customers, innovation and learning [97] with the passage of time due to improve-
ments and ever-growing size of the software, it becomes a good candidate for OSS
development.

Table 1: Definitions
Terms Definition

Jenkins Jenkins is the leading open source continuous in-
tegration server. It provides 1000+ plugins built in
Java to support building and testing [2].

Gerrit It is a web-based code review tool built on top of
the git version control system [3].

Product innovation Product innovation is the introduction of a good or
service that is new or significantly improved with
respect to its characteristics or intended uses [4].

Process innovation Process innovation is the implementation of a new
or significantly improved production or delivery
method [4].

Business innovation Business innovation is the implementation of
a new marketing method involving significant
changes in product design or packaging, product
placement, product promotion or pricing [4].

Organizational inno-
vation

Organizational innovation is the implementation
of a new organizational method in the firm’s busi-
ness practices, workplace organization or external
relations [4].

Software-intensive
product organization

It refers to organizations developing products or
services with a substantial amount of software
defining the product/service behavior, mostly em-
bedded in physical products.

However, the shift from the Closed innovation to the Open innovation model
poses significant challenges to software-intensive organizations in terms of when
to conceal and when to reveal in relation to their competitors. The openness chal-
lenges software-intensive organizations on both operational and strategic levels.
This thesis focuses on investigating the OSS tools communities considered repre-

6 INTRODUCTION

sentative examples of OI to investigate the impacts of OI on firms core product
development. Particularly, the triggers for software-intensive organizations to uti-
lize the OSS tools communities and the innovation outcomes attached to it. Fur-
thermore, the thesis proposes a theory of openness which provides guidelines for
software-intensive organizations to make strategic decisions regarding OSS tools
(e.g., Jenkins and Gerrit), which are not the core business (non-pecuniary) for the
organization but are vital to support the internal product development. The defini-
tion of the terms used in the thesis can be seen in Table 1.

3 Research goals

The overall aim of the thesis is to better understand OI in software engineering,
thus the following Research Goals (RG) are formulated.

RG1: To synthesize the research knowledge on OI for software-intensive devel-
opment organizations.

RG2: To explore how software-intensive development organizations use OSS tools
as an enabler for OI and innovation outcomes.

RG3: To provide strategic guidelines for managers regarding when and how to be
open in relation to OSS tools and proprietary products.

RG4: To validate the strategic guidelines in relation to RG3 with practitioners
working in the software-intensive development organizations.

Figure 2 provides an overview of the research process. As can be seen in
Figure 2, RG1 triggers Paper I to identify OI state of the research in software en-
gineering. OI has attracted a lot of researchers across different domains. However,
it remains unexplored in software engineering. Paper I systematically explores
the existing OI literature with the focus on software engineering. The outcome of
Paper I is the literature review.

RG2 is relevant to investigate OI on the use of OSS tools in a sofwtare prod-
uct development and influenced by RG1. The literature lacks evidence about the
performance of OI on the fined grained product development level [30]. Paper II
is aimed at exploring why and how a software-intensive organization adopts OI
using OSS tools communities. In addition, Paper II also points out the innovation
outcomes gained by the case organization. The outcome of Paper II is the detailed
case study understanding of OI in a software-intensive company.

RG3 leads to two solution papers. Paper III aims to define support for strategic
decisions in software organizations in relation to OSS tools and their impact on
core product development. Paper IV investigates strategic decisions for software-
intensive organizations on the core product level. However, the focus of this thesis
remains on the use of OSS tools in organization’s internal product development.

4 Research methodology 7

The outcome of Paper III and Paper IV is the theory of openness and contribution
acceptance process model respectively.

RG4 leads to Paper V, which is a validation study for the theory of openness
in two automotive companies.

Figure 2: Research overview and mapping of RGs to papers

RG 1

RG 2

RG 3

RG 4

Paper I

Paper II

Paper III

Paper V

Paper IDs
Research
Method

Mapping study

Theory
validation

Theory building
using synthesis

Case study

Research
Phases

Design science
based CAP

model
Paper IV

P
ro

b
le

m
 e

xp
lo

ra
ti

o
n

So
lu

ti
o

n
V

al
id

at
io

n

Survey study

4 Research methodology

Several research methods were utilized to meet the research goals. The thesis
mainly consists of exploratory and evaluative empirical research [193], based on a

8 INTRODUCTION

systematic mapping study [147], survey [59] and case study [159] research method
(see Table 2).

Table 2: Research strategy used for each paper based on pp. 15 [159]

Paper Id Research Objec-
tive

Research Strat-
egy

Design Type

Paper I Exploratory Systematic map-
ping study

Flexible

Paper II Exploratory Case study Flexible

Paper III Solution Theory building
and Survey

Flexible + Fixed

Paper IV Solution Case study us-
ing design sci-
ence principles

Flexible

Paper V Validation Case study Flexible

Paper I presents a systematic mapping study designed to explore the OI liter-
ature on software engineering. Prior reviews were either not systematic [83, 196],
partly systematic [186] or, for example, focus on the history or evolution of OSS or
available innovation metrics [50]. Moreover, these reviews lack objective quality
criteria to support the interpretation of the results to evaluate OI performance. It is
to be noted that the main focus of Paper I was to explore OI in software-intensive
organizations and not the use of software to support OI. Furthermore, it was not
possible to start with the clear-cut research questions due to lack of evidence for
a systematic literature review [98]. Therefore, a systematic mapping study was
chosen over the systematic literature review in order to explore the OI notion in
software engineering.

Paper II presents a case study, which not only investigates OI in an exploratory
manner but also makes an attempt to evaluate OI performance in a software-
intensive organization. The research questions in Paper II are partly based on
the findings from Paper I. First, the study explores the top contributors to the de-
velopment of Gerrit and Jenkins (see Table 1). Second, it explains the transition
process from Closed Innovation to Open Innovation, and the key triggers for the
case company towards this transformation. Third, it maps the existing practices of
requirements engineering and testing with the identified OI challenges. The study
made an attempt to understand how the aforementioned software engineering pro-
cesses interact in OI. In order to achieve the aims, the study uses the flexible case
study design to explore OI in software engineering since it is more suitable for
exploratory studies. The quantitative data extracted from the source code reposi-

4 Research methodology 9

tories is used as a basis for identifying the type of contributions made by the case
company and also the key interviewees in the studied units of analysis.

The case company used in the studies is Sony Mobile and the units of analysis
are Gerrit [3] and Jenkins [2]. Both Jenkins and Gerrit are OSS tools part of Sony’s
continuous integration tool chain. Sony Mobile is a multinational organization
with more than 5,000 employees globally, developing embedded devices. The
chosen branch in the case study is responsible for the development of Android
phones. Furthermore, Sony is becoming more and more open in terms of using
OSS communities. Jenkins and Gerrit are OSS examples studied in the paper seen
as an enabler for OI in software engineering.

Paper III aims at synthesizing a theory of openness for software engineer-
ing tools in software organizations, aimed to guide managers in defining more
efficient strategies towards open tools communities. We synthesize empirical ev-
idence from a systematic mapping study [Paper I], a case study [Paper II], and a
survey, using a narrative synthesis method [Paper III]. The survey questionnaire
was distributed among 500 employees working for software-intensive organiza-
tions using Gerrit, Jenkins or Git communities in their development or also, con-
tributing to those communities. We extracted the email list of Jenkins, Gerrit and
Git communities from GitHub and distributed the survey among all contributors
and non contributors having organizational affiliations in their email addresses.
The synthesis method entails four steps: (1) Developing a preliminary synthesis,
(2) Exploring the relationship between studies, (3) Assessing the validity of the
synthesis, and (4) Theory formation. The final step in the synthesis method pro-
posed theory of openness for software engineering tools, according to the theory-
building framework proposed by Sjøberg et al. [169]. The theory consists of 1)
constructs, 2) propositions, and 3) explanation in Paper III.

Paper IV is a case study designed based on the design science approach [81].
The work was initiated by problem identification and analysis of its relevance at
Sony Mobile. This was followed by an artifact design process where the arti-
facts (the CAP model and information meta-model) were proposed and validated
at Sony Mobile. We conducted informal consultations with four experts at Sony
Mobile who is involved in the decision-making process of OSS contributions. Si-
multaneously, internal processes and policy documentation at Sony Mobile were
studied. Next, we accessed the additional data sources acquire the contribution
repositories. All these steps were performed in close academia-industry collabo-
ration between the researchers and Sony Mobile.

Paper V aims to validate the theory of openness by performing a repertory
grid analysis [95] using focus groups [159] in two companies from the automotive
industry. Kelly proposed the personal construct theory (PCT) and the associated
repertory grid technique to elicit and analyze these personal constructs [95][Paper
III]. The grid is comprised of following three basic concepts: 1) Elements Elici-
tation, 2) Constructs Elicitation and 3) Ratings. There are two essential ways to
select grid elements: a) elicit elements from participants, b) provide participants

10 INTRODUCTION

with elements. This study chooses to the provide elements participants since the
objective was to learn more about the specific set of elements derived from the
theory of openness [Paper III].

First, the participants in the focus group were given an introduction to con-
structs and elements to develop a common understanding in the whole group.
Second, participants from company A picked Jenkins and participants from com-
pany B selected an internal tool entitled Awesome framework for the focus group.
Third, a survey link was distributed among all the participants to rate each element
against the constructs based on the selected tools from their internal development
environment. Fourth, we held a discussion among participants based on the ratings
to further explore their ratings. The discussion part was recorded and transcribed
to further explore the rationales for the participant’s ratings. Finally, repertory grid
analysis and focus groups were used to validate the propositions derived from the
theory of openness [Paper III].

5 Results and synthesis
This section summarizes the results from the papers included in this thesis. For
each paper, we state the rationale, the methodology used (see table 2) and the key
findings.

RG1: To synthesize the research knowledge on OI for software-
intensive organization

Paper I identifies 33 studies, divided into nine themes as a result of thematic anal-
ysis [38]. 17 out of 33 studies were conducted with high rigor and in an industrial
relevant context. The key themes identified in the study are as follow:

1. Intellectual properties strategies

2. OI toolkits

3. Degree of openness

4. OI models/frameworks

5. Managerial implications

6. Enabling OI communities

7. Benefits

8. Challenges

9. OI strategies

5 Results and synthesis 11

Each of the above-mentioned themes is defined in detail in Paper I with corre-
sponding empirical evidence associated with it. Furthermore, we classified papers
based on the research methodology [159] and paper type classification [193] fol-
lowed by the rigor and relevance analysis [85]. Twenty evaluation papers used case
study research methodology, seven were survey evaluation, two proposal papers
each with survey and framework followed by one framework validation and a tool
proposal paper.

In conclusion, the results indicate that start-ups have a higher tendency to opt
for OI compared to incumbents and firms assimilating external knowledge into
their R&D activity have a better chance of gaining financial advantage. Fur-
thermore, an important implication for an industry is that OSS and OI does not
come for free. Software-intensive organizations must invest in the OSS commu-
nities with a clear resource investment plan to leverage their key resources. The
large share of evaluation research alludes to researchers to produce more solution-
oriented papers followed by the validation.

RG2: To explore and evaluate how a software-intensive
organization uses OSS as an enabler for OI and gains ben-
efits

Paper II investigated the OSS tool usage and involvement of Sony Mobile. The
units of analysis were Jenkins and Gerrit, the central tools in Sony Mobile’s con-
tinuous integration process. Moreover, the study also investigated how Sony Mo-
bile extract and assimilate external knowledge using OSS tools communities. We
started by extracting the Gerrit and Jenkins change log data to classify Sony Mo-
bile’s contributions, and to identify the key contributors for interviews.

The results of the study suggest that moving from Closed Innovation to the
Open Innovation model was a paradigm shift around 2010 when Sony Mobile
moved from the Symbian platform to Google’s open source Android platform
in its products. Jenkins and Gerrit are not seen as a competitive advantage or a
source of revenue, which indicates that Sony Mobile’s openness is limited to the
non-proprietary and non-competitive tools only. This transition from closeness to
openness is driven bottom-up from the engineers at Sony Mobile. Furthermore,
the requirements process in the Tools department was optimized to work towards
the Jenkins and Gerrit communities. The Tools department team works in an agile
manner with the influences from Kanban for simpler planning.

The Tools department was struggling to test Gerrit with the old manual test-
ing framework. The openness made the Tools department think of switching from
the manual to an automated testing process. Consequently, an Acceptance Test
Harness is created to contribute internal acceptance tests to the community and
have the community to execute what Sony Mobile tests when setting up a next
stable version and vice versa. More so, requirements prioritization and bug fixes
are prioritized based on the most pressing needs of Sony Mobile. Paper II further

12 INTRODUCTION

explores if there are any innovation outcomes attached to these tools and identi-
fied the following innovation outcomes as results of these tools in Sony Mobile’s
continuous integration process:

1. Free features

2. Free maintenance

3. Freed up time

4. Knowledge retention

5. Flexibility

6. Increased turnaround speed

7. Increased quality assurance

8. Improved new product releases and upgrades

9. Inner source initiative

Sony Mobile uses dedicated resources in the Tools department to work with the
Jenkins and Gerrit communities. Furthermore, we also discovered that Sony Mo-
bile lacks key performance indicators to measure its innovation capability before
and after the introduction of OI in the Tools department. However, the qualitative
data suggests that OI results in improved stability and flexibility in the develop-
ment environment. The findings of the study are limited to software-intensive
organizations with the similar domain, size and context as Sony Mobile.

RG3: To provide a theory for managers regarding when
and how to be open in relation to development outcomes
and development process

Paper III presents a theory of openness for software engineering tools in soft-
ware organizations that complement and expands our previous research efforts
[Paper I][Paper II] and provides the necessary organizational aspects that support
software-intensive organizations in their transformation towards OI. The increased
use of Open Source Software (OSS) affects how software-intensive product de-
velopment organizations innovate and compete, moving them towards Open In-
novation (OI). Specifically, software engineering tools have the potential for OI,
but require better understanding regarding what to develop internally and what to
acquire from outside the organization, and how to cooperate with potential com-
petitors.

However, we have found no guidelines for software-intensive organizations in
order to make strategic decisions regarding OSS tools, i.e. what role in Huizing’s

5 Results and synthesis 13

taxonomy to choose in the open innovation (i.e. open processes, open outcomes),
for OSS tools which are not the core business (non-pecuniary) for the organiza-
tion (e.g., OSS tools like Jenkins and Gerrit) but are vital to support the internal
product development. The scope of this study covers the use of non-pecuniary
OSS tools in organizations’ proprietary software development for outside-in and
inside-out innovation (i.e. coupled innovation). Furthermore, the study focuses
on the strategic role of OSS tools in an organization, where we use software build
tools as cases, due to their strategic role in the build chain [Paper II][Appendix D].

The theory of openness for OSS tools in software engineering presents four
constructs: (1) Strategy, (2) Triggers, (3) Outcomes, and (4) Level of openness. We
synthesize the theory from two previous empirical studies [Paper I][Paper II] com-
plemented by a survey in the Git, Gerrit and Jenkins communities [Appendix D].
The theory presents four classes of openness in companies with their respective
focus:

1. Laggards – Routine business

2. Leverage – Resource optimization

3. Lucrativeness – Acting as a think-tank

4. Leaders – Growth through ecosystems

Each category has the different levels of openness, based on their strategies
(proactive or reactive) in relation to goals (cost saving or inspirational). First, lag-
gards respond to paradigm shifts and all strategies are reactive, aiming to reduce
the development cost (i.e. integration). Second, in leverage category, organiza-
tions use the external sources of innovation by inspiring their internal developers
to participate in various OSS tools communities, prior to internal R&D work. It
not only adds to product and process innovation but also inspires developers to
exchange ideas on discussion forums to develop competence. Third, Lucrative-
ness deals with investing in existing OSS communities to be able to influence and
steer these communities in the same direction as the organizational interests. The
objective is to support internal innovation and reduce costs by investing in OSS
tools communities. The use of OSS tools communities helps organizations to re-
duce time-to-market. Fourth, Leaders are organizations that focus on creating new
communities and ecosystems to strengthen their business model.

The theory provides strategic guidelines and helps software-intensive organi-
zations to adopt OI tools in relation to reduced development cost, shorter time-
to-market and process, and product innovation. The theory reasons that openness
provides opportunities to reduce the development cost and development time. Fur-
thermore, OI positively impacts on the process and product innovation, but it re-
quires investment by organizations in OSS communities. By betting on openness,
organizations may be able to significantly increase their competitiveness but it re-
quires management’s support.

14 INTRODUCTION

Paper IV proposes a Contribution Acceptance Process (CAP) model and meta
model. The model helps software-intensive product development organizations
to classify artifacts, such as features, plug-ins, or complete projects, according
to business impact (low to high) and control complexity (low to high). Business
impact refers to the profit from the artifact, and control complexity refers to the
difficulty in acquiring and controlling the technology. An artifact is categorized
into the following four categories where each category represents a specific artifact
type with certain characteristics and contribution strategy.

• Strategic artifacts: high business impact and high control complexity.

• Platform/leverage artifacts: high business impact and low control complex-
ity.

• Products/bottlenecks artifacts: low business impact and high control com-
plexity.

• Standard artifacts: low business impact and low control complexity.

In turns, organizations may estimate and plan whether an artifact should be
contributed or not. Open Source Software (OSS) ecosystems have reshaped the
ways how software-intensive organizations develop products and deliver value to
customers. However, organizations still need support for strategic product plan-
ning in terms of what to develop internally and what to share as OSS. Existing
models accurately capture commoditization in the software business, but lack op-
erational support to decide what contribution strategy to employ in terms of what
and when to contribute. Further, an information meta-model is proposed that helps
operationalize the CAP model at the organization. In a design science influenced
case study executed at Sony Mobile, the CAP model was iteratively developed in
close collaboration with the experts from Sony Mobile. The CAP model provides
an operational OI perspective on what firms involved in OSS ecosystems should
share, by helping them motivate contributions through the creation of contribution
strategies. The goal is to help maximize return on investment and sustain needed
influence in OSS ecosystems.

Static validation was done through continuous consultations with experts at
Sony Mobile for the CAP-model and its related information meta-model. In these
consultations, the models were discussed and improvement ideas were collected
and used for iterative refinement and improvement. Experts from Sony Mobile
were asked to run the CAP model against examples of features in relation to the
four software artifact categories and related contribution strategies that CAP model
describes. The examples of how the CAP model and meta-model are used is fur-
ther presented in Paper IV. These examples help to evaluate functionality, com-
pleteness, and consistency of the CAP model and associated information meta-
model.

6 Ethical aspects and threats to validity 15

RG4: To validate the strategic guidelines in relation to
RQ3 with practitioners working in the software-intensive
development organizations

Paper V is a validation of the theory of openness presented in Paper III. We used
a repertory grid technique [95] to analyze and validate the theory of openness.
The results showed that both case companies qualify as laggards in relation to
the theory of openness and neither of them has internal procedures to facilitate
developers to contribute to OSS tools communities.

The lack of central tool coordination leads to multiple variants of the same
tools, causing additional costs to glue tools together. An important implication
for both companies is that they may learn from Sony Mobile’s transition from
closed tools to open OSS tools by innovating their process in terms of creating a
legal framework. Furthermore, both companies can create an internal champion
which serves as an interface between the legal department, software developers
and top management, to drive the open tools strategy. The framework will help
companies to engage their developers in OSS tools communities together with the
legal team to facilitate their core product development. Hence, both companies
need a centralized, proactive strategy to help software developers use open OSS
tools to reduce integration cost.

6 Ethical aspects and threats to validity

Ethical aspects must be taken into consideration in any empirical research activity
which involves human subjects or the data related to humans [159]. Singer and
Vinson [167] initiated the discussion on ethical issues in software engineering and
provide guidelines for the conduct of empirical studies. These guidelines include
informed consent, confidentiality of the data from human subjects and weighing
the risks, harms and benefits, not only for the individual subjects, but also for the
organizations.

OI research in this thesis involves software engineers working in the indus-
try. The investigation started from mining the OSS code repositories to identify
the key contributors and classify their contributions in terms of new features, bug
fixes, cosmetic issues or documentation. After identifying the key contributors,
interviews were conducted with them. It is worth mentioning that the case compa-
nies have shown a strong interest in investigating its OI activities to see whether or
not it is helping them to accelerate their internal innovation process. For example,
Sony Mobile gets recommendation whether or not opening up in their development
process gives them a cutting edge on their competitors. Moreover, the researchers
are able to publish research papers to carry forward OI state of the art in soft-
ware engineering. Therefore, it’s a collaboration that leads to a win-win situation
for both stakeholders. On the hind side, there are risks attached to the research

16 INTRODUCTION

process. Specifically, the case company fully understands the importance of col-
laboration with the research community and its positive impacts on their internal
processes of working. However, if a local newspaper correspondence decides to
pick up something (e.g. internal conflicts) randomly from the study out of the
context and place it on the front page of the local newspaper may lead to a mas-
sive dent on concerned organization’s reputation. Therefore, the confidentiality of
the data collected from the companies is ensured by signing the non disclosure
agreements.

Additionally, workshops were conducted in two automotive companies which
involves software engineering and managers. All participants were asked to sign a
consent document to ensure the voluntary participation of participants. Moreover,
the data gathered through these workshops are kept confidential.

Apart from ethical aspects, there are validity concerns worth mentioning about
the thesis. Internal validity is the confidence that we can place in the cause and
effect relationship in a scientific study [159]. In the thesis, review protocols were
created for all the studies and reviewed by all authors to be more objective and to
assure quality as well. The studies revealed that Sony Mobile does not have any
metrics to measure innovation thus, researchers had to rely on implications drawn
from qualitative data collected from interviews. The element of subjectivity was
addressed by performing the analysis independently by multiple researchers.

External validity refers to the ability to generalize the study findings [159].
In particular, all those software-intensive organizations using OSS tools in their
internal product development. This thesis used Sony Mobile, software companies
in the survey and the two case companies from the automotive industry to achieve
better external validity of the research work.

Construct validity refers to what extent the studied concepts really represent
what the researcher has in mind and what is investigated according to the research
questions [159]. Constructs and elements in the theory of openness are derived
from literature. However, neither of the case companies come from a software
background but they are becoming more and more software-intensive in the de-
velopment of their core products. Therefore, both companies do not have a well-
defined procedure to map all the constructs of the theory. This threat was partially
met by keeping the discussion on a higher level to the company’s specific con-
text. Furthermore, more software-intensive companies are required to validate the
theory of openness.

Reliability deals with the ability to replicate the same study with the same re-
sults [159]. To address the reliability concerns, review protocols, multiple data
sources, independent qualitative and quantitative data, and interview transcription
summary validation by interviewees were some of the techniques used in the stud-
ies to draw conclusions more reliably. Finally, the study design and findings of the
studies were kept transparent in terms of mentioning the context of case company
except for the anonymous interviewees names.

7 Future work 17

7 Future work

Future work may be the extension of RG4, which involves further validation in
more organizations to extend the generalization of the theory of openness. Fur-
thermore, develop a tool (a web survey), which helps companies conducting a
self-assessment with respect to the theory. The aim is to assess the current tool
chain of a software-intensive product development organizations. The survey is
based on the criteria defined in the theory, and the web tool collects that data and
feeds a summary back to the company for their internal use, about their perfor-
mance in relation to the theory and other companies.

8 Conclusion and main contributions

Even though software engineering tools are not the direct source of revenues,
software-intensive organizations rely on these tools for the development of core
products. OSS tools (e.g., Jenkins, Gerrit and Git) offer companies an alternate
solution to closed source proprietary tools. The OSS tools provide an organization
with several benefits as opposed to closed source tools. These benefits may en-
tail free-up developers time, faster development speed, reduced development cost,
increased flexibility in tool usage and adaption and govern the open tools ecosys-
tem. However, it must be mentioned that the usage of open tools is not entirely for
free if companies want to gain control and steer communities towards their own
business model.

Empirical-based insight were provided into this thesis by summarizing the
existing evidence on the use of OI by exploiting OSS tools communities. To further
strengthen the existing evidence, the case study at Sony mobile helped us under-
stand that software-intensive organizations need proactive management strategies
to achieve the standardization of open tools in the long run. Furthermore, the sur-
vey in OSS tools communities also helped us understand that software-intensive
organizations are keen on using and contributing to these OSS tools communities.
However, the empirical evidence suggests a clear lack of guidelines for managers
how to engage themselves in the OSS tools. This thesis presents the theory of
openness as a main contribution to address the identified research gap.

Theory of openness is an empirically developed theory intended to provide
guidelines and helps organizations to utilize OSS tools communities in relation to
reduced development cost, shorter time-to-market and process and product inno-
vation.

CAP model provides operational guidelines for software organizations regard-
ing what to conceal and what to share in OSS ecosystems. The model proposes
contribution strategies and meta-model to help organization operationalizing these
strategies. The goal is to help maximize return on investment and sustain the
needed influence on OSS ecosystems.

18 INTRODUCTION

Validation study validates the theory of openness for software engineering
tools in two automotive companies.

INCLUDED PAPERS

CHAPTER I

OPEN INNOVATION IN
SOFTWARE ENGINEERING: A

SYSTEMATIC MAPPING
STUDY

Abstract

Context: Open innovation (OI) means that innovation is fostered by using both
external and internal influences in the innovation process. In software engineering
(SE), OI has existed for decades, while we currently see a faster and broader move
towards OI in SE. We therefore survey research on how OI takes place and con-
tributes to innovation in SE.
Objective: This study aims to synthesize the research knowledge on OI in the SE
domain.
Method: We launched a systematic mapping study and conducted a thematic anal-
ysis of the results. Moreover, we analyzed the strength of the evidence in the light
of a rigor and relevance assessment of the research.
Results: We identified 33 publications, divided into 9 themes related to OI. 17/33
studies fall in the high–rigor/high–relevance category, suggesting the results are
highly industry relevant. The research indicates that start-ups have higher ten-
dency to opt for OI compared to incumbents. The evidence also suggests that
firms assimilating knowledge into their internal R&D activities, have higher like-
lihood of gaining financial advantages.
Conclusion: We concluded that OI should be adopted as a complementary ap-
proach to facilitate internal innovation and not to substitute it. Further research is
advised on situated OI strategies and the interplay between OI and agile practices.

22 Open Innovation in Software Engineering: A Systematic Mapping Study

1 Introduction

Open innovation (OI) and associated free exchange of information about new tech-
nologies are recognized as one of the main drivers for collective inventions in the
19th century by Allen [6]. Two decades after Allen’s paper from 1983, Ches-
brough’s seminal book about OI [31] has initiated an unabated interest [67] among
researchers in innovation management [83], economics, psychology, sociology,
and also Software Engineering (SE) [181]. The work initiated by Chesbrough [31]
forced both practitioners and scholars to rethink the design of innovation strategies
in a networked environment [83]. The inherent flexibility of software, combined
with increase of software cost and value for new products and services, puts SE
into the hotspot of OI. Several trends, such as outsourcing, crowd-sourcing and
funding, global software development, open source software, agility, and flexibil-
ity, challenged the do it yourself mentality [65]. More courageous voices sug-
gested even that closed innovation might have been the exception in the history,
characterized mostly by open innovation practices [133].

OI is a relatively new field of research and a collective theoretical foundation
is starting to emerge. Chesbrough [31] was the first to define OI as “a paradigm
that assumes that firms can and should use external ideas as well as internal ideas,
and internal and external paths to market, as they look to advance their technol-
ogy”. OI encompasses various activities such as inbound, outbound and coupled
activities [66], and each of these activities can be more or less open. Open Source
Software (OSS) is the most straightforward application of OI to software devel-
opment [83], although not the only one [196]. The success of OSS in the last
twenty years have ignited and encouraged several new movements for collective
innovation such as: outsourcing, global software development, crowd-sourcing
and founding.

Despite the wide interest in several domains and the unquestionable potential
that OI can bring to the software industry, OI remains greatly unexplored in the SE
literature, while in the OI literature extensive interest is given to exploring OSS
as one of the ways to incorporate external knowledge and innovation to internal
product innovation [31]. Similarly in the early days of OSS, many interesting
OI initiatives were performed, e.g. opening up software product organizations
and utilizing open configurations [88]. However, there is a lack of systematic
efforts that focus on summarizing the current state of the literature on the relation
between OI and SE. Previous reviews are either not systematic [83, 196], partly
systematic [186] or, for example, focus on the history or evolution of OSS or
available innovation metrics [50]. Moreover, these reviews lack quality criteria to
support the interpretation of the results in favor or against OI.

Therefore, we identified a need to systematically review OI research in SE
with a specific focus on assessing the strength of the empirical evidence in the
identified studies [85], highlighting the current themes and outlining implications
for research and practice. For instance, a study might have high relevance (e.g.

2 Related work 23

managerial implications for an industrial scale project), but at the same time have
low rigor (e.g. having validity threats and lacking descriptions of the units of
analysis). Consequently, these above mentioned needs lay the foundation for a
systematic mapping study [147] to explore the concept of OI in the context of SE.
Specifically, this mapping study makes the following contributions:

1. Identification of the existing themes and patterns in the literature for open
innovation in software engineering.

2. Assessment of trustworthiness of the results with respect to rigor and rele-
vance [85].

3. Based thereon, identification of knowledge that may inform industry prac-
tice on open innovation in software engineering

4. Identification of the research gaps for further exploration of open innovation
in software engineering [100].

The remainder of the paper is structured as follows: Section 2 presents related
work and Section 3 presents the research method (review protocol). Next, Section
4 highlights the results of the search and the analysis the synthesized research,
followed by a discussion in Section 6 which results in a research agenda and advice
for industry practice in Section 6. Section 7 concludes the paper.

2 Related work

Using the study by West and Bogers [186], we identified four secondary studies
(literature reviews) on OI [50, 83, 186, 196], relevant to this study. The studies are
summarized in Table 1.

Are the reviews systematic? Huizingh [83] and Wnuk and Runeson [196] con-
ducted reviews on OI, however neither of them is systematic according to the
guidelines stated by Kitchenham et al. [99]. The study conducted by West and
Bogers [186] could be considered partly systematic, since the relevance can be
seen in terms of data sources, inclusion/exclusion criteria and data extraction. On
the other hand, the review conducted by Edison et al. [50] adheres to guidelines by
Kitchenham et al. [99] and Petersen at al. [147]. In this paper, we report a review
conducted according to the guidelines by Kitchenham et al. [99].

What were the objectives behind conducting reviews? West and Bogers [186]
conducted a review on OI with the main objective to define an agenda for OI
research. They classified the studies into three main categories of OI, namely,
inbound (outside in), outbound (inside out) and coupled, as suggested by Enkel at
al. [54]. Wnuk and Runeson [196] performed a study with the goal to propose a
SE framework for OI.

24 Open Innovation in Software Engineering: A Systematic Mapping Study

Huizingh [83] also focused on exploring the notion of open innovation and
on the degree of OI adoption by the firms. The study concluded that the know-
ledge about how to apply OI and when to do it is still incomplete. Edison at
al. [50] centered their literature study around innovation measurement and inno-
vation management aspects, e.g. definitions, frameworks and metrics. Our study
limits its scope to SE and focuses on deriving existing OI themes and patterns us-
ing thematic analysis. Moreover, this study also focuses on exploring the strength
of evidence under the light of rigor and relevance, and states the further course of
action in terms of OI in SE.

What were the data sources used in the reviews? Were the used search terms
appropriate? Huizingh [83] neither specified the database, nor the search terms
used. Likewise, West and Bogers [186] did not mention the search terms for their
study, but provided the time scope of the survey (between 2003 and 2010) and
the list of selected management journals, see Table 1. Conversely, the study con-
ducted by Wnuk and Runeson [196] used Inspec and Compendex and the follow-
ing search terms “Open innovation, requirements engineering, testing, software
and methodology”. However, the time span for the search is not reported. Edi-
son et al. [50] used multiple data sources namely, Inspec and Compendex, Sco-
pus, IEEE explore, ACM digital library, Science direct, Business Source Premier
(BSP) and performed the search between 1949 and 2010, see Table 1. Their search
terms aim at identifying innovation metrics, measurements, drivers and innovation
attributes. Inspired by the previous reviews, we organized our search string into
three main categories and employed the inclusion exclusion criteria after the search
process, with keywords: i) related to OI, ii) on SE in order to restrict the results to
the SE domain, and iii) pertaining to empirical evidence on OI (see Section 3.3).
Furthermore, we complemented our search string with backward snowball sam-
pling [86, 161] by scanning the reference list of all primary studies, see Section
3.2.

Did the reviews use any quality assessment criteria for primary studies before
analyzing their results? Neither Wnuk and Runeson [196] nor Huizingh [83] used
explicit quality assessment criteria for the identified studies. On the other hand,
West and Bogers [186] included studies that focused on OI as per the definition
by Chesbrough [31] and excluded book reviews, commentaries and editorial intro-
ductions. Edison et al. [50] used a set of questions for quality assessment and to
evaluate if a study explains the aims, methodology and validity threats. We used
a comprehensive set of guidelines that cover rigor and relevance of studies. We
slightly tailored the criteria from Ivarsson et al. [85] to fit into the scope of this
study, see Section 3.4.

How did the reviews extracted data from primary studies? Did they map data
extraction with research questions? The data extraction strategy was not reported
in three studies [83, 186, 196]. The information about the mapping between the
data extraction properties and the research questions was also absent. However,
Edison at al. [50] described the data extraction strategy which was piloted before

2 Related work 25

the execution to ensure a common understanding among all involved researchers.
We created a defined set of data extraction properties, and mapped them on re-
search questions to avoid redundant information, outlined in Table 3.

How did the reviews synthesize the data from primary studies? Neither of the
four studies followed an established procedure for the synthesis, such as thematic
or cross-case analysis [37, 38]. Instead, West and Bogers [186] used a self created
four phase integrated model (i.e. obtaining, integrating, commercializing, interac-
tion with communities) to guide the literature review and classified studies based
on dimensions provided by Enkel at al. [54]. Similarly, Wnuk and Runeson [196]
presented the synthesis in a table where studies are categorized in terms of re-
search type (e.g. evaluation, proposal, opinion, solution, conceptual etc.) defined
by Wieringa et al. [193]. Moreover, studies were also classified in terms of soft-
ware techniques, process and methods, and presented a framework to foster OI
with technical and methodological dimensions stated above.

Edison et al. [50] presented their synthesis in terms of different types of inno-
vation definitions available in the literature, metrics used to measure innovation,
and challenges related to existing innovation measurements. They developed a
model to assist organizations to use the available measures to develop insights into
their innovation program. Finally, Huizingh [83] wrote a literature review without
synthesis.

In summary, this systematic study aims at exploring the OI in SE in a much
more rigorous manner according to guidelines of Kitchenham et al. and Petersen
et al. [99, 147] and focusing on systematic synthesis of the findings.

26 Open Innovation in Software Engineering: A Systematic Mapping Study

Fa
ce

ts
W

es
ta

nd
B

og
er

s[
18

6]
(2

01
3)

E
di

so
n

et
al

.
[5

0]
(2

01
3)

W
nu

k
et

al
.

[1
96

]
(2

01
3)

H
ui

zi
ng

h
[8

3]
(2

01
0)

D
at

a
so

ur
ce

s

1.
A

ca
de

m
y

of
M

an
ag

em
en

tR
ev

ie
w

2.
A

dm
in

is
tr

at
iv

e
Sc

ie
nc

e
Q

ua
rt

er
ly

3.
C

al
if

or
ni

a
M

an
ag

em
en

tR
ev

ie
w

4.
H

ar
va

rd
B

us
in

es
s

R
ev

ie
w

5.
IE

E
E

Tr
an

sa
ct

io
ns

on
E

ng
in

ee
ri

ng
M

gt
.

6.
In

du
st

ri
al

an
d

C
or

po
ra

te
C

ha
ng

e

7.
Jo

ur
na

lo
fT

ec
hn

ol
og

y
M

gt
.

8.
Jo

ur
na

lo
fP

ro
du

ct
In

no
va

tio
n

M
gt

.

9.
L

on
g

R
an

ge
Pl

an
ni

ng

10
.

M
an

ag
em

en
tS

ci
en

ce

11
.

M
IT

Sl
oa

n
M

an
ag

em
en

tR
ev

ie
w

12
.

O
rg

an
iz

at
io

n
Sc

ie
nc

e

13
.

R
&

D
M

an
ag

em
en

t

14
.

R
es

ea
rc

h
Po

lic
y

15
.

R
es

ea
rc

h-
Te

ch
no

lo
gy

M
an

ag
em

en
t

16
.

St
ra

te
gi

c
M

an
ag

em
en

tJ
ou

rn
al

17
.

Te
ch

no
va

tio
n

1.
In

sp
ec

an
d

C
om

pe
nd

ex

2.
Sc

op
us

3.
IE

E
E

X
pl

or
e

4.
A

C
M

D
ig

ita
lL

i-
br

ar
y

5.
Sc

ie
nc

eD
ir

ec
t

6.
B

us
in

es
s

So
ur

ce
Pr

em
ie

r(
B

SP
)

In
sp

ec
an

d
C

om
-

pe
nd

ex
N

/A

2 Related work 27

Fa
ce

ts
W

es
ta

nd
B

og
er

s[
18

6]
(2

01
3)

E
di

so
n

et
al

.
[5

0]
(2

01
3)

W
nu

k
et

al
.

[1
96

]
(2

01
3)

H
ui

zi
ng

h
[8

3]
(2

01
0)

Sy
st

em
at

ic
Pa

rt
ly

Y
es

N
o

N
o

R
ep

ea
ta

bi
lit

y
N

o
Y

es
N

o
N

o

Q
ua

lit
y

A
ss

es
s-

m
en

t
N

o
Y

es
N

o
N

o

In
cl

us
io

n/
ex

cl
us

io
n

cr
ite

ri
a

Pa
rt

ly
Y

es
N

o
N

o

D
at

a
ex

tr
ac

tio
n

pr
op

er
tie

s
Pa

rt
ly

Y
es

N
o

N
o

Va
lid

at
io

n
of

re
-

su
lts

N
o

Y
es

(P
ilo

te
d

th
e

cr
ite

-
ri

a)
N

o
N

o

D
at

a
sy

nt
he

si
s

Pa
rt

ly
(w

ith
ou

tm
en

tio
ni

ng
its

ty
pe

)
Y

es
(w

ith
ou

t
m

en
tio

n-
in

g
its

ty
pe

)
E

xp
lo

ra
tio

n
in

st
ea

d
of

sy
nt

he
si

s
N

o
(O

nl
y

co
nc

lu
si

on
)

Pu
rp

os
e

To
de

fin
e

an
ag

en
da

fo
ro

pe
n

in
no

va
tio

n
re

-
se

ar
ch

T
hi

ss
tu

dy
ex

pl
or

es
va

r-
io

us
as

pe
ct

s
re

le
va

nt
to

in
no

va
tio

n
m

ea
su

re
-

m
en

tr
an

gi
ng

fr
om

de
f-

in
iti

on
s,

m
ea

su
re

m
en

t
fr

am
ew

or
ks

an
d

m
et

-
ri

cs
th

at
ha

ve
be

en
pr

o-
po

se
d

in
lit

er
at

ur
e

an
d

us
ed

in
pr

ac
tic

e

T
hi

s
pa

pe
r

pr
o-

po
se

s
a

SE
fr

am
e-

w
or

k,
de

si
gn

ed
to

fo
st

er
op

en
in

no
va

-
tio

n
by

de
si

gn
in

g
an

d
ta

ilo
ri

ng
ap

pr
o-

pr
ia

te
SE

m
et

ho
ds

an
d

to
ol

s.

To
ex

pl
or

e
th

e
ch

al
-

le
ng

es
fa

ce
d

by
pr

ac
ti-

tio
ne

rs
an

d
ac

ad
em

ic
s

in
un

de
rs

ta
nd

in
g

th
e

O
I.

28 Open Innovation in Software Engineering: A Systematic Mapping Study

Fa
ce

ts
W

es
ta

nd
B

og
er

s[
18

6]
(2

01
3)

E
di

so
n

et
al

.
[5

0]
(2

01
3)

W
nu

k
et

al
.

[1
96

]
(2

01
3)

H
ui

zi
ng

h
[8

3]
(2

01
0)

O
ut

co
m

e
T

he
pa

pe
r

de
fin

ed
th

e
ag

en
da

fo
r

O
I

re
-

se
ar

ch
an

d
co

nc
lu

de
s

w
ith

re
co

m
m

en
da

-
tio

ns
fo

r
fu

tu
re

re
se

ar
ch

th
at

in
cl

ud
e

ex
am

-
in

in
g

th
e

en
d-

to
-e

nd
in

no
va

tio
n

co
m

m
er

-
ci

al
iz

at
io

n
pr

oc
es

s,
an

d
st

ud
yi

ng
th

e
m

od
-

er
at

or
s

an
d

lim
its

of
le

ve
ra

gi
ng

ex
te

rn
al

so
ur

ce
s

of
in

no
va

tio
n

A
sy

st
em

at
ic

re
vi

ew
fo

llo
w

ed
by

an
on

-
lin

e
qu

es
tio

nn
ai

re
an

d
in

te
rv

ie
w

s
w

ith
pr

ac
tit

io
ne

rs
an

d
ac

a-
de

m
ic

s
to

id
en

tif
y

th
e

de
fin

iti
on

of
in

no
va

tio
n

in
so

ft
w

ar
e

in
du

st
ry

.
B

as
ed

on
th

e
fin

di
ng

s,
a

co
nc

ep
tu

al
m

od
el

of
th

e
ke

y
m

ea
su

ra
bl

e
el

em
en

ts
of

in
no

va
tio

n
w

as
co

ns
tr

uc
te

d
fr

om
th

e
fin

di
ng

s
of

th
e

sy
st

em
at

ic
re

vi
ew

.

T
hi

s
st

ud
y

di
s-

cu
ss

es
th

e
m

et
ho

d-
ol

og
ic

al
an

d
pr

oc
es

s
di

m
en

si
on

s
an

d
ou

tli
ne

s
ch

al
-

le
ng

e
ar

ea
s

th
at

sh
ou

ld
be

re
vi

ew
ed

w
he

n
tr

an
si

tio
ni

ng
to

so
ft

w
ar

e
en

gi
-

ne
er

in
g

dr
iv

en
op

en
in

no
va

tio
n.

T
he

st
ud

y
sh

ow
s

th
at

op
en

in
no

va
tio

n
ha

s
be

en
a

va
lu

ab
le

co
nc

ep
t

fo
r

so
m

an
y

fir
m

s
an

d
in

so
m

an
y

co
nt

ex
ts

in
in

no
va

tio
n

m
an

ag
e-

m
en

t.
H

ow
ev

er
,

th
e

kn
ow

le
dg

e
ab

ou
t

ho
w

to
do

it
an

d
w

he
n

to
do

it
re

m
ai

n
di

sp
er

se
d

an
d

in
co

m
pl

et
e.

Ta
bl

e
1:

Su
m

m
ar

y
of

ex
is

tin
g

lit
er

at
ur

e
re

vi
ew

s

3 Research methodology 29

3 Research methodology

In this section, we present the literature review methodology, based on the guide-
lines provided by Kitchenham et al. [99] and Petersen et al. [147]. The study was
conducted in six steps outlined in subsections below: I) identification of primary
studies, II) search string development and database search, III) performing includ-
ing and exclusion criteria, IV) data extraction, V) quality assessment through rigor
and relevance, and VI) synthesis and reporting.

3.1 Research questions

The research questions for the mapping study are defined as:

RQ1: Which themes and patterns of OI in SE exist in the literature?

RQ2: How strong is the evidence in favor of or against OI in SE?

3.2 Identification of primary studies

In order to identify the primary studies, following steps were performed, see Figure
1.

1. Identification of 15 control papers [45] from forward snowball sampling
[72, 86].

2. Extraction of studies from databases using a search string: 2805 papers were
identified using a search string

3. Duplicate elimination at the database level: 305 studies were found to be
duplicates, and hence removed.

4. Selection of studies based on abstract, titles and keywords: 2279 papers
were not found relevant and excluded.

5. Filtering based on inclusion/exclusion criteria: 194 additional papers were
excluded after applying the inclusion/exclusion criteria and 27 papers were
found to be relevant and pertain to the scope of this study

6. Backward snowball sampling was applied to scan the reference list of 27
primary papers and enabled us to spot 6 more relevant papers.

We identified 33 studies that directly pertain to the scope of the study. The ad-
ditional studies found by the snowball sampling confirms the usefulness of snow-
balling for identification of potential studies missed by database searches.

30 Open Innovation in Software Engineering: A Systematic Mapping Study

Figure 1: Identification of primary studies

Inspec/Compendix

(1264 Paper)

1. Control papers (15 Papers)

IEEE Explore

(756 papers)

ACM

(31 papers)

Science Direct

(674 papers)

ISI Web of Science

(80 papers)

Refine search string

2. Total studies extracted by Search string
(2805 papers)

3. Duplication at Database level
(2500 Papers)

6. Backward

snowball

sampling
(6 Paper)

Forward

snowball

sampling

4. Filtration based on abstract, tiles, keywords
(221 Papers)

5. Filtration based on inclusion/exclusion criteria
(27 Papers)

DB duplicates

removed

(305 papers)

 Removed based on

Title/abstract

(2279 papers)

discarded based on

inclusion/exclusion

194 papers)

33 Primary papers

Applying Search String

3 Research methodology 31

3.3 Search string strategy

In order to develop the search string, the keywords were aptly derived from 15
control papers, see Figure 1. The search terms are organized into three interven-
tions: T1 includes terms related to open innovation, T2 related to outcomes, T3
related to the research methods.

1. T1: Open Innovation OR Open-Innovation OR OI OR innovation OR inno-
vation management

2. T2: software OR software ecosystem OR product line OR requirement*
engineer* OR requirement* management OR open source

3. T3: exploratory study OR lesson* learn* OR challenge* OR guideline*
OR Empirical investigation OR case study OR survey OR literature study
OR literature review OR interview* OR experiment* OR questionnaire OR
observation* OR quantitative study OR factor*

The interventions are combined using Boolean operators (T1 AND T2 AND
T3) to achieve the desired outcome. We searched the following databases, using
their command interfaces and utilizing expert or advanced search capabilities (the
search strings used per database are reported in Appendix B):

1. ISI Web of Science

2. Inspec and Compendix (Engineering Village)

3. ACM Digital Library

4. IEEE Xplore

5. Science Direct (Elsevier)

The search string was refined, using the control papers as a benchmark, until
the average acceptable level of precision and recall was achieved. A study con-
ducted by Beyer and Wright [18] reported that the recall of the search strategies
ranged from 0% to 87%, and precision from 0% to 14.3%. The final search string
retrieved 13 out of 15 control papers which gives recall of 86.66%. The final
search string achieved precision of 0.52% (13 out of 2500 papers, excluding du-
plicates). Both precision and recall scores are in range with the findings of Beyer
and Wright [18]. The fact that two of the control papers were not captured by
the final search string confirms the observations by Wohlin et al. [197] that using
single search strategies leads to missing studies. Therefore, we combined database
searches with snowball sampling.

32 Open Innovation in Software Engineering: A Systematic Mapping Study

3.4 Inclusion/exclusion criteria

The inclusion/exclusion criteria were derived and piloted. These criteria were ap-
plied simultaneously on studies to make sure we only include studies that pertains
to SE domain and not, for example economics, management or psychology.

Table 2: Inclusion exclusion criteria
Inclusion Criteria (All must apply) Exclusion Criteria (Each apply sepa-

rately)

• Peer reviewed papers, and in
case of duplicate publications,
the priority follows the se-
quence: Journals, Conferences,
Workshops

• The study must be accessible in
full text.

• The study highlights the
research-focused concept of
OI in the context of software
engineering.

• The study that reports the bene-
fits, disadvantages, limiting fac-
tors, and challenges of OI.

• The studies pertaining to the
scope of open source software
used as OI examples

• Factors limiting the adoption of
OI in SE

• Available tools used by the soft-
ware community to support OI
in SE

• Studies that discusses the open-
ness of software producing orga-
nization(SPO)

• All studies from 1969 to 2013

• All gray and white literature

• Non-English articles

• Studies about OI in the manage-
ment and economics context

• Intellectual property rights pa-
pers

• Research on OI not related to SE

• All papers that mentioned only
the use of software to bring in-
novation in the fields other than
SE.

• All articles, which are not within
the field of SE in terms of how to
develop software

• All duplicate studies

The selection of studies was accomplished independently by the two first au-
thors, applying the inclusion/exclusion criteria. In case of uncertainty, the authors
included the papers to next step in order to reduce the risk of excluding the relevant
papers as suggested by Petersen and Bin Ali [146]. Kappa statistics [105] was cal-
culated at multiple steps in order to check the agreement level between the authors.

3 Research methodology 33

First, the Kappa coefficient was calculated on a 10% randomly selected sample of
titles and abstracts and it was found to be 0.37. After discussing and resolving the
disagreements, the Kappa value increased to 0.91. Second, Kappa was calculated
on a sample of randomly selected 50% of papers included into the full text reading
phase while applying inclusion/exclusion criteria. Disagreements were identified
as the Kappa value (0.48) was found to be below the substantial agreement range.
Consequently, after discussing and resolving disagreements [146], the kappa value
increased to 0.95. It is to be noted that the inclusion/exclusion criteria was applied
simultaneously. However, for exclusion it is enough when one exclusion criterion
holds.

3.5 Data extraction and synthesis strategy

The data extraction properties outlined in Table 3 were discussed and finalized
beforehand. Moreover, a spreadsheet was created for the data extraction properties
and also mapped to research questions, see Table 3. The first author performed the
data extraction, supervised by the second and the third authors.

The extracted data was synthesized by performed thematic analysis based on
the guidelines by Cruzes et al. [38]. First, we identified patterns in the data and
then grouped those patterns into distinct themes. Second, in order to check the
trustworthiness of each paper, we used rigor and relevance criteria which helped
us identifying whether or not results are generalizable to the software industry, see
Section 3.6.

3.6 Quality assessment with respect to rigor and rele-
vance

We used the rigor and relevance assessment checklist by Ivarsson et al. [85]. Two
researchers reviewed the ratings and data extraction to ensure objectivity. Each
paper was assigned a score using objective criteria tailored for this mapping study,
see Appendices 2.1 and 2.2. The idea behind investigating rigor and relevance
resembles the use of a rubric based evaluation in education [85]. Previous stud-
ies [93,132] have shown that rubrics increase the reliability of assessments in terms
of inter-rater agreement between researchers.

Rigor can be defined as “the research methodology is carried out in accor-
dance with corresponding best practices” [85]. Ivarsson et al. [85] state that rigor
has two dimensions: following the complete reporting of the study, and best prac-
tices. Through aggregating of study presentation aspects from existing literature,
they defined rigor as the degree to which study context (C), design (D), and valid-
ity threats (V) are described. All facets are rated on a scale, i.e. weak, medium,
and strong description, see Appendix 2.1.

Relevance deals with the impact of a study on industry [85]. It consists of
manifold aspects, namely, relevance of the topic studied [170], ability to apply

34 Open Innovation in Software Engineering: A Systematic Mapping Study

Table 3: The data extraction properties explained and mapped to the research
question

Category Properties RQ Mapping

General informa-
tion

Authors, Title, Year of Publication, Ab-
stract

RQ1, RQ2

Study Type Evaluation research, Solution research,
Validation research, Proposal research

RQ1, RQ2

Research Meth-
ods

Case study, Tool proposal, Survey,
Framework

RQ1, RQ2

Research Prob-
lem

Description of research questions RQ1, RQ2

Outcomes Benefits, limitation, strategies, patterns
related to OI

RQ1

Context Subjects Type (Students/ professional-
s/researchers/mixed), number of sub-
jects, case description, validity threats
to context.

RQ2

a solution in a real world industrial setting with degree of success [200], use of
research methods that facilitate industrial realism [171], and provision of a realistic
situation in terms of users, scale, and context [85]. We followed the suggestion of
Ivarsson et al. [85] to decompose rigor into: users/subjects (U), scale (S), research
methodology (RM), and context (C), see Appendix 2.2.

3.7 Validity threats

This section highlights the validity threats associated with the systematic mapping
and how they were addressed prior to the study in order to reduce their impact
[159].

Internal validity

The key idea behind conducting the systematic mapping study was to capture avail-
able literature as much as possible without introducing any researcher bias thereby,
internal validity seem to be a major challenge for the study. In order to address the
internal validity concerns, a review protocol was created beforehand and evaluated
by three researchers, which took on roles of quality assurance as well. The internal
validity is enhanced by following the systematic mapping guidelines [147] and the
guidelines for quality assessment criteria [85].

4 Results and analysis 35

Construct Validity

Construct validity refers to the presence of potential confounding factors and whether
or not a study was able to capture what was intended in terms of aims and objec-
tives. One important concern for this study was the multiple definitions of OI. In
order to minimize this threat and build on solid foundation, Chesbrough’s concept
of OI is adopted [31].

External validity

External validity refers to the ability to generalize the results to different settings,
situation and groups. The majority of the studies fall into the case study cate-
gory with high rigor and relevance, see Figure 6. Moreover, many studies were
conducted in industrial contexts hence, the results are more general and industry
relevant.

Reliability

Reliability is concerned with to what extent the data and the analysis are depen-
dent on a specific researcher. Multiple strategies were taken into account in order
to enhance reliability. First, there is always a risk of missing out on primary stud-
ies with a single search string for all selected databases. Therefore, 15 control
papers were identified through forward snowball sampling to verify the precision
and recall of the search string. However, this only minimizes the selection bias that
may impact further research steps. We believe that the potential effect of this bias
have a lesser importance in mapping studies than in SLRs. To further substantiate
the search process, backward snowball sampling was applied and resulted in addi-
tional studies pertaining to the context of OI in software engineering (see Figure
1).

Second, quality assessment of the identified studies is sensitive on interpreta-
tion. Therefore, rigor and relevance criteria were applied to increase the objectivity
of this step. The evaluation was performed by the first author and reviewed by the
remaining authors. Moreover, we created a data spread sheet and mapped research
questions with the data extraction properties in order to comply with the objectives
of this study. Besides, all studies were rated according to the rigor and relevance
criteria tailored from Ivarsson et al. [85] and data extraction properties from each
paper were reviewed by two researchers in the study.

4 Results and analysis

In this section, the results of the mapping study analysis are reported. We give
an overview of the time distribution and categorize the studies based on research

36 Open Innovation in Software Engineering: A Systematic Mapping Study

Figure 2: Distribution of studies over publication years

methodology used. An analysis of the themes studied is reported, followed by a
detailed description of each theme.

4.1 Distribution of OI studies

33 primary studies about OI in software engineering were found, distributed by
their publication year in Figure 2. The scholarly interest in OI seems to be growing
at a steady pace since its introduction in 2003 with a maximum annual rate of 8
studies published in 2009. However, the trend declines after that, and it it hard to
assess why, since the interest in OI seem to grow in general [83].

4.2 Categorization based on research methodology

Primary studies found are categorized into the research methodology (i.e. case
study, experiment, survey etc) and type of the study (i.e. evaluative, proposal,
solution, opinion etc) dimensions. The horizontal axis in Figure 3 represents re-
search methodologies defined by Runeson et al. [159] and vertical axis represents
the classification of studies established by Wieringa et al. [193]. Evaluations, us-
ing case study research methodology dominate among the identified papers with
20 papers, among which two were interview studies that we consider qualitative
case studies. Evaluations, using survey research methodology was found in 7 pa-
pers. We classified only 2 papers in each of the framework–proposal and case

4 Results and analysis 37

Figure 3: Research methodology classification based on Runeson et al. and
Wieringa et al. [159, 193]

study–proposal categories. Finally, the categories case study–validation and tool
proposal–solution received only 1 paper each and no papers were identified in the
case study solution category.

4.3 Thematic analysis

The main objective behind conducting this analysis is to find the recurring themes
in the identified primary studies. Based on the guidelines provided by Cruzes et
al. [37, 38], we performed the following analysis steps:

1. Extract data from the primary studies

2. Identify the interesting themes from the data

3. Group the themes into the distinct categories

4. Assess the trustworthiness of the identified themes using rigor and relevance
criteria

The resulting 9 themes of OI in software engineering are depicted in Figure 4.
Figure 5 provides a more detailed view on the identified themes using the mind
map technique, where the 33 primary studies are referred to as S_1 to S_33. In
order to assess the trustworthiness of the identified themes, the rigor and relevance

38 Open Innovation in Software Engineering: A Systematic Mapping Study

Figure 4: Identified Open Innovation themes in Software Engineering

analysis is performed and its results are visualized in Figure 6. Details on the
primary studies and the rigor an relevance scores are reported in the appendix,
Table 1. The rigor and relevance scores are used to find the evidence in favor and
against OI in SE (research question RQ2). The results from less relevant and less
rigorous studies have weaker empirical support than those stemming from highly
relevant and rigorously conducted primary studies. There can also be promising
highly relevant studied that were conducted with low rigor.

Studies are organized into four quadrants (A, B, C and D) according to their
rigor and relevance scores. The procedure for classification was as follows:

1. Studies with the score from (0–1.5) are considered as low rigor, while high
rigor is defined for a score of 2 or above.

2. Studies with the score from (0–2) are considered as low relevance, while
high relevance covers scores from 2.5 or above.

We classified 17 studies as having the highest rigor and relevance, see area A
in Figure 6, and these results are the most trustworthy. Moreover, we classified
12 studies into C category of studies with high relevance but low rigor. On the
other hand, categories B and D contain two studies each and in for both categories
the relevance scores were higher than the rigor scores, see Table 1. The identified
themes are are presented in the subsections below, sorted according to the number
of categorized studies.

4 Results and analysis 39

Fi
gu

re
5:

M
in

d
M

ap
of

O
Ii

n
SE

40 Open Innovation in Software Engineering: A Systematic Mapping Study

Figure 6: Categorization of studies based on rigor and relevance

OI Strategies/Instruments

The software industry is characterized by frequent technological changes which
force large incumbent firms to more rapidly innovate their strategies in the pur-
suit to sustain their current revenue levels. OI strategies focus on how innovation
networks and strategies can be used to participate, orchestrate or govern this tech-
nologically unstable environment.

Research and development (R&D) collaboration strategies seem to help or-
ganizations to attract and establish communities and to stay competitive. This
strategy is also visible among the firms that adopt OI to enhance their innovation
process in nine primary studies (S_3, S_5, S_6, S_13, S_15, S_19, S_25, S_26,
S_29). Six out of these studies (S_3, S_6, S_13, S_15, S_25, S_29) were con-
ducted with high rigor and relevance, see category A in Figure 6. The remaining
three studies (S_5, S_19, S_26) were classified into category C which indicate that
the studies have relatively low rigor but still their results are highly relevant.

Looking at the primary studies with high rigor and relevance scores, the results
of one study (S_3) indicated that firm’s human capital affects the adoption of OI
business strategy among the Finnish software companies. Consequently, the com-
panies that have larger academically educated staff more often apply OI business

4 Results and analysis 41

strategies. Harison and Koski (S_3) stated the reason for that is the ties between
the OSS communities and universities. Smaller companies (start-ups) tend to ap-
ply more open innovation strategies compared to large and older firms. This inter-
pretation seems reasonable since smaller companies often leverage OSS to acquire
knowledge and substitute of a comparable depth as for the in-house R&D capabil-
ities that they lack. Overall results suggest that a more positive attitude towards
openness enables firms to better share in the benefits of open innovation processes
(S_6).

In a study about implementing a private collective model at Nokia (S_13), a
number of mitigation strategies were adopted. Nokia had the evidence of their
competitors using their source code, therefore, they partially revealed their source
code to retain control and information, and future plans leakage was protected
through non-disclosure agreements. Moreover, the development control was com-
promised by involving communities, hiring key developers and upstream participa-
tion, which resulted in no single vendor being able to control the platform. Besides
that, Nokia opened up and communicated the structure of its internal processes.

Dahlander and Magnusson (S_15) highlight that in order to address the emerg-
ing challenges of the public-private development model, such as attracting out-
siders to work in their community, companies are releasing the code under open
source licenses and in this way are establishing new communities or using existing
communities. At the same time, companies often adopt licensing practices that
clarify ownership, devoting resources to evaluate source code and give feedback
on source code to communities.

One of the main conclusions of Grøtnes’ study (S_29) is that the open inno-
vation takes place in neutral arenas like standardization, and outside-in, inside-out
and coupled processes are used to create new technological platforms. A more re-
stricted membership gives a separate outside-in and inside-out process while open
membership leads to a coupled process. A key difference can be explained by the
example of Android that was available for invited firms only, while open member-
ship is open for all. Open membership creates a modular innovation that embeds
new radical innovations like mobile TV, while Android creates an architectural
innovation with possibilities for further radical innovations.

Similarly, Deutsche Telekom (S_25) used Foresight workshops, executive fo-
rums, Customer integration, Endowed chairs (opening doors to academia world),
Consortia projects (cost sharing of complex projects), Corporate Venture Capitalist
(window to innovation in the start-up community and technology sourcing through
co-investing), Internet platforms, Joined development, strategic alliances, spin-
outs (external commercialization of internal R&D results in technologies, products
or services) and test market (equipping a city with next generation infrastructure)
to take advantage of open innovation, see Figure 5.

Looking at the studies performed with less rigor, West and Gallagher (S_5)
argued that companies employing strategies such as pooled R&D/product devel-
opment (firms sharing the R&D), spin-outs and selling complement and attracting

42 Open Innovation in Software Engineering: A Systematic Mapping Study

donated complements, easier overcome the following challenges: 1) the generation
and contribution of external knowledge (motivating), 2) incorporating the external
innovation into firms resources and capabilities (incorporating), 3)diversifying the
exploitation of intellectual property (IP) resources (maximizing).

The most noted example of pooled R&D is the Mozilla project, initiated by
Netscape in response the competitive pressure from Microsoft Internet Explorer
(IE). Vendors such as IBM, HP and Sun needed a Unix based browser to increase
sales of Internet connected workstations and therefore donated some of their IPs
to the open source development lab (OSDL), while exploiting the common advan-
tages of all the contributors to expedites the sale of related products. Similarly,
spin-out (shared R&D between firms and a community) can also release the po-
tential IP from the firm that is not creating the value anymore. Thereby, the firms
transform internal development projects to externally visible open source projects.

Consequently, the donated IP generates demands for other products and ser-
vices that the (donor) firms continued to sell. An examples of a spin-out is when
IBM promotes the Java programming language, developed by Sun Microsystems,
to compete with Microsoft. IBM was still able to generate revenue from sales of
hardware and supporting services in the Java world. Selling complements is used
by firms to build upon the already existing products and succeed through differ-
entiation strategy and in contrast, donating complements are more feasible when
selling to technically professional buyers, capable of making modification and im-
provements, such as hobbyist programmers or corporate engineers.

In addition, Dittrich and Duysters (S_19) also addressed the difference be-
tween exploration (seeking radical innovation) and exploitation (seeking incre-
mental innovation) strategies adopted by firms to sustain their position in rapidly
changing technological environments. Exploration networks make use of flexible
legal organizational structures, whereas exploitation alliances are associated with
legal structures that enable long-term collaboration. Nokia followed an exploita-
tion (incremental innovation) strategy in the development of the first two gener-
ations of mobile telephony devices, and an exploration (radical) strategy in the
development of technologies for the third generation. Such inter-firm networks
seem to offer flexibility, speed, innovation, and the ability to adjust smoothly to
changing market conditions and new strategic opportunities.

While studying the case of embedded Linux (S_26) Henkel found that hob-
byists and developers in universities reveal nearly all of the code in contrast to
companies. In particular, the more important it is to obtain external development
support, the more code the respective firms reveal.

Challenges

This theme highlights business and process related challenges (S_4, S_9, S_12,
S_14, S_15, S_21, S_24, S_13) faced when firms try to adopt open innovation,
summarized in Table 4. Business related challenges refer to business strategy

4 Results and analysis 43

(S_9, S_13, S_14), entry barriers (S_15, S_21) and governance (S_12, S_24).
Governance refers to establishing measurement and control mechanisms to enable
project managers and software developers within the communities as well as others
within a software development organization, to carry out their roles and responsi-
bilities [33]. Process related challenges consider hinders in strategy realization.

Facets Challenges

B
us

in
es

s Business strategy

• Unclear content and contribution strategy (S_14)

• Contribution time-line unclear (S_14)

• Minimize modifications to the open source code (S_14)

• Unclear relationship between the benefits from contributions in
terms of strategy and business goals (S_14)

• Be strategic when adopting innovative features (S_14)

• Balancing the interests of those participants against those of the
ecosystem leader (S_9)

• Difficulty to differentiate (S_13)

• Guarding business secrets (S_13)

• Definition of core competencies (S_21)

• Legal and property rights issues concerning the external know-
ledge (S_21)

Strategic OI entry barrier

• Accessing communities to extend the resource (S_15)

• Reducing community entry barriers base (S_13)

• Aligning firm strategies with the community (S_15)

• Community build-up and management (S_21)

• Achieving a common vision (S_12)

• Finding staff/ Competencies (S_24)

• Lack of expertise (S_24)

Governance

• Expectation management of community (S_21)

• Increasing knowledge sharing and exchange (S_12)

• Achieving a high level of commitment (S_12)

• Giving up control (S_13)

• Lack of support (S_24)

• Lack of ownership (S_24)

44 Open Innovation in Software Engineering: A Systematic Mapping Study

Facets Challenges

Pr
oc

es
s Agile processes

• The new approach caused significant problems in terms of trans-
ferring the ideas outside the team (S_4)

• Visibility as to what the new [agile] team were doing dropped
quickly. The introduction of agile coincided with a rapid drop
in the number of developers from that team attending the overall
R&D meetings. (S_4)

• The use of short iterations, a feature backlog and stand-up meet-
ings reduced the amount of time you can spend playing around
or sharing ideas outside your team (S_4)

• Motivating the generation and contribution of external know-
ledge (Motivating) (S_4)

• Incorporating external innovation into firms resources and capa-
bilities (Incorporating) (S_4)

• Diversifying the exploitation of intellectual property (IP) re-
sources (Maximizing)(S_4)

Relation between process and innovation

• Augmenting the requirements management process (S_14)

• Manage innovative features in a separate process (S_14)

• Top-down or bottom-up open innovation (S_14)

Release planning and prioritization

• Prioritization process needs modification (S_14)

• Challenging acceptance criteria kills innovative features (S_14)

• Need for special flow for innovative features to evolve to meet
acceptance criteria (S_14)

• Release planning even more challenging (S_14)

• Prioritizing the conflicting needs of heterogeneous ecosystem
participants (S_9)

• Assimilating communities in order to integrate and share results
(S_15)

• Efficient process management (S_21)

• Lack of Road-maps with OSS Products (S_24)

• Overcoming Not Invented Here (S_21)

Table 4: OI challenges categorized in business and process themes.

As can be seen in Table 4, business and process level challenges are considered
to be major hindering factors for the adoption of OI. Finding the right balance

4 Results and analysis 45

between contributing to community and reaping benefits is tough, and thus results
in unclear business strategies (S_14). One of the biggest concerns is the difficulty
in differentiation if a firm indulge itself in an OSS solution and guard its business
secrets because its competitors have the same solution available for their products
(S_14). Other challenges are: managing the conflicting needs (S_9) of all players
involved in the process, aligning the firm’s strategy with community (S_15) and
achieving a common vision (S_12). Even if a firm has a clear business strategy
to resolve the often conflicting stakeholders’ needs, the challenge of community
build up and survival remains (S_21). Therefore, firms and communities need to
find the right balance of governance(S_13).

On the other hand, process related challenges are negatively impacting OI. For
instance, Conboy and Morgan (S_4) suggest that agile and OI do not get along
well, especially when dealing with the management of innovative requirements
and release planning. Agile requirements backlogs do not have room for innova-
tive requirements since short iterations, a feature backlog and stand up meetings
make it extremely tough to play around or share ideas outside your team. The
lack of control over release planning was also pointed out as a challenge in a study
(S_11), for example, sometimes it is a better business decision to adopt the open
source code, perform minimum changes, and sell it instead of spending time on
developing differentiation features. This raises a question whether or not firms
should have a separate requirements management process for innovative features
(S_11), but nevertheless there is an inherent complexity in requirement manage-
ment process while managing innovative features. Further process challenges in-
clude the lack of clear roadmaps for product highly dependent on OSS platforms
and overcoming the “not invented here” mentality.

The majority of the primary studies highlighting the challenges lie in categories
A (S_13, S_14, S_15, S_24) and C (S_4, S_9, S_12) suggesting that results are
highly relevant to industry Only one study (S_21) lie in category D.

Benefits

This category highlights the OI adoption benefits in terms of positive impacts as-
sociated with the inside-out, outside-in, coupled processes and the private collec-
tive model (S_10, S_12, S_13, S_20, S_23, S_24, S_26, S_31). The benefits are
summarized in Table 5. As far as the strength of evidence is concerned, five pa-
pers (S_10, S_13, S_23, S_24, S_31) lie in category A and two studies (S_12,
S_26) fall into category C. The fact that only one study (S_20) has low rigor and
relevance suggests that the identified OI adaption benefits are highly relevant for
industry.

46 Open Innovation in Software Engineering: A Systematic Mapping Study

Facets Benefits

Pr
oc

es
s Knowledge building and exchange

• Knowledge sharing and exchange (S_12)

• Low knowledge protection costs (S_13)

• Easy access to all information (S_12)

• Increases organizational learning (S_12)

• Improves collaboration with groups in Europe, USA, India
(S_12)

• Customer demand for source code has a significant (5%), posi-
tive effect on the decision to reveal at all (S_31)

Platform and reuse

• Improves platform use (S_12)

• Promotes software reuse (S_12)

• Increases trust in platform (S_12)

Communication

• Direct communications (S_12)

• Supporting OI in an existing social network site lowers the hur-
dles for expressing and communicating ideas (S_20)

Involvement and innovation support

• Improves involvement of product teams (S_12)

• Improves feedback by being open (S_12)

• Avoidance of duplicate work (S_12)

• Empowers developers and project leaders (S_12)

• Introduces diverse people to each other, adding more heteroge-
neous viewpoints to ideas (S_20)

• The process acts as a catalyst for ideas: while it does not help
with the initial conception of an idea, it makes all following steps
easier (S_20)

• Executing the OI might result in the realization of ideas and
broadening companies offering (S_20)

• Developer/Tester Base (S_24)

• Flexibility of use (S_24)

4 Results and analysis 47

Facets Benefits

B
us

in
es

s Time to market, cost, maintenance and efficiency

• Reduces time to market (S_12)

• Cost savings (S_12)

• Increases efficiency in development (S_12)

• Reduced maintenance effort (S_26)

• Bug fixes by others (S_26)

• Small firms reveal significantly more due to resource scarcity
(S_26)

• Further development by others (S_26)

Innovation

• Increases innovative capacity and speed (S_12)

• Adoption of innovation (S_13)

• Increased innovation at lower costs (S_13)

• Encourages innovation (S_24)

• The OI technology scouting is positively associated to the SME’s
innovative performance (S_10)

• Communities provide SME’s a rich of free-of-charge (S_23)

• Increases collaboration (S_24)

Improved competitiveness and other business gains

• Extra business functionality (S_24)

• Improves adoption rate of the platform (S_12)

• New competitive weapon for managers in non market leaders
firms (S_31)

• Reputation gain (S_13)

• Revealing good code improves our company technical reputation
(S_26)

• Distribute ownership and control (S_12)

• Learning effects (S_13)

• De-facto standards (S_24)

Culture change

• Public success stories might create a culture of innovation (S_20)

• Firm reveals all of its drivers is positively related to the impor-
tance of technical benefits (S_31)

• External factors are less, and firm characteristics more important
for selective revealing. (S_31)

48 Open Innovation in Software Engineering: A Systematic Mapping Study

Facets Benefits

Table 5: OI Benefits categorized in business and process themes

The benefits are divided into the process and business related, see Table 5.
OI allows firms to find a pool of skilled labor outside their boundaries without
a significant cost. This external labor provides feedback and enables knowledge
exchange between the community and the firms (S_12). Organizational learning
is another important benefit, where OI often gathers diverse people with similar
interests, adding more heterogeneous viewpoints to ideas (S_12). However, it is to
be noticed that OI does not help with initial conception of an idea; rather it acts as
a catalyst for ideas, and might also result in the idea realization. Consequently, OI
provides opportunities to offer more choices to consumers and possibly broaden
the firms’ offerings. Furthermore, knowledge sharing and exchange lead to avoid-
ance of duplicate work and encourages software reuse. Analyzing behavior of
firms unveil that one third of the firms reveal no source code at all, and another
one third of the firms reveal an amount between 0 to 100 %, while the remaining
firms reveal all their source code. Customer demands are reported as the key factor
that causes the firms to reveal the source code (S_31).

OI also brings business advantages, outlined in Table 5. OI involvement en-
ables efficient development processes (S_12), reduces development cost (S_12),
and increases innovation capacity (S_12). OI can also help to reduce time to mar-
ket and can permit firms to build and maintain a good repute from code revealing
(S_13), public success stories and innovation culture (S_20). Finally, findings
suggest that by being open, companies can significantly increase their competi-
tive advantage and managers from the companies that are not market leaders may
consider it as the competitive weapon against their competitors (S_12).

Enabling OI communities

This theme refers to communities as distributed groups of individuals, aiming at
solving a general problem and/or developing a new solution supported by com-
puter mediated communication. The solutions developed in the community can be
used in conjunction with the firms’ internal capability to develop competitive ser-
vices and products. In particular, this theme uncovers strategies adopted by firms to
use communities as complementary assets, positive impacts of the community on
firms’ innovation and challenges associated with it (S_1, S_6, S_8, S_21, S_33),
see summary in Table 6.

As can be seen in Table 6, firms exploiting communities in their innovation
process not only gain a good reputation but also influence the direction of devel-
opment and legitimate the use of projects (S_1, S_6). Having an employee in the
community seems to be the key to enabler of these advantages. Thus, companies

4 Results and analysis 49

R
ef

Po
si

tiv
e

Im
pa

ct
s

N
eg

at
iv

e
fin

di
ng

s
St

ra
te

gi
es

S_
1

•
C

re
at

es
go

od
re

pu
ta

tio
n

•
L

eg
iti

m
iz

es
th

e
us

e
of

th
e

pr
oj

ec
t

•
C

om
pa

ni
es

ca
n

in
flu

en
ce

th
e

de
ve

lo
p-

m
en

td
ir

ec
tio

n
fo

rt
he

se
co

m
m

un
iti

es

•
N

o
cl

ea
r

ev
id

en
ce

th
at

fir
m

sp
on

so
re

d
in

di
vi

du
al

s
ar

e
ab

le
to

or
ch

es
tr

at
e

or
st

im
ul

at
e

de
ba

te
w

ith
in

th
es

e
co

m
m

un
iti

es

•
In

di
vi

du
al

s
w

ith
af

fil
ia

tio
ns

w
ith

la
rg

e
in

cu
m

be
nt

s
in

th
e

so
ft

w
ar

e
in

du
st

ry
ha

ve
no

si
gn

ifi
ca

nt
ef

-
fe

ct
in

th
e

co
m

m
un

ity

•
O

th
er

so
ft

w
ar

e
co

m
pa

ni
es

m
ay

no
t

de
vo

te
th

ei
r

be
st

em
pl

oy
ee

s
to

w
or

ki
ng

in
th

e
co

m
m

un
ity

or
m

ay
on

ly
pa

ss
iv

el
y

sc
re

en
de

ve
l-

op
m

en
ts

•
A

m
an

on
th

e
in

si
de

to
be

ab
le

to
ga

in
ac

ce
ss

to
co

m
m

un
iti

es

50 Open Innovation in Software Engineering: A Systematic Mapping Study

R
ef

Po
si

tiv
e

Im
pa

ct
s

N
eg

at
iv

e
fin

di
ng

s
St

ra
te

gi
es

S_
6

•
A

m
or

e
po

si
tiv

e
at

tit
ud

e
to

w
ar

ds
re

ve
al

-
in

g
w

ill
en

ab
le

fir
m

st
o

be
tte

rs
ha

re
in

th
e

be
ne

fit
s

of
op

en
in

no
va

tio
n

pr
oc

es
se

s

•
To

o
op

en
be

ha
vi

or
by

fir
m

s
pr

o-
gr

am
m

er
s

w
ou

ld
be

co
m

m
er

-
ci

al
ly

ha
rm

fu
l

•
M

an
ag

em
en

t
is

no
t

al
w

ay
s

in
-

fo
rm

ed
ab

ou
t

th
is

sh
ar

in
g

an
d

ha
s

br
oa

d,
bu

t
no

ne
th

el
es

s
lim

-
ite

d
m

ea
ns

of
m

on
ito

ri
ng

it

•
M

an
ag

em
en

t
m

ay
ov

er
es

tim
at

e
th

e
ri

sk
of

cr
iti

ca
l

co
de

le
ak

in
g

ou
t

•
Sp

on
so

r
pr

ov
id

es
m

on
et

ar
y

re
-

w
ar

ds
to

co
nt

ri
bu

to
rs

•
E

m
pl

oy
ee

re
fe

rr
al

s
to

at
tr

ac
t

co
nt

ri
bu

to
rs

•
T

he
fo

ca
l

fir
m

m
ig

ht
co

ns
id

er
la

un
ch

in
g

its
ow

n
pu

bl
ic

O
SS

pr
oj

ec
t

in
or

de
r

to
at

tr
ac

t
pr

ag
-

m
at

ic
O

SS
de

ve
lo

pe
rs

S_
8

•
Fe

at
ur

e
gi

ft
s

(n
ew

fe
at

ur
es

in
st

ea
d

of
ex

-
te

ns
io

n
of

ex
is

tin
g

fe
at

ur
es

)
•

N
/A

•
Pa

rt
ic

ip
an

ts
ha

vi
ng

an
ac

tiv
ity

(i
.e

.
re

po
rt

bu
gs

,
of

fe
r

bu
gs

fix
et

c.
)

ar
e

m
or

e
lik

el
y

to
be

gr
an

te
d

ac
ce

ss
to

th
e

de
ve

lo
pe

r
co

m
m

un
ity

4 Results and analysis 51

R
ef

Po
si

tiv
e

Im
pa

ct
s

N
eg

at
iv

e
fin

di
ng

s
St

ra
te

gi
es

S_
21

•
In

cr
ea

se
of

id
ea

to
rs

an
d

th
er

ef
or

e
id

ea
s

•
St

ro
ng

cu
st

om
er

or
ie

nt
at

io
n

si
nc

e
us

er
s

ca
n

ar
tic

ul
at

e
w

is
he

s
di

re
ct

ly

•
Po

ss
ib

ili
ty

to
us

e
w

is
do

m
of

th
e

cr
ow

ds
to

ha
nd

le
hi

gh
nu

m
be

ro
fi

de
as

•
N

ew
fo

rm
s

of
ev

al
ua

tio
n

w
ith

be
tte

r
re

-
su

lts

•
M

or
e

an
d

be
tte

r
id

ea
s,

co
nc

ep
ts

an
d

pr
od

uc
ts

•
In

cr
ea

se
in

ef
fic

ie
nc

y
an

d
ef

fe
ct

iv
ity

•
C

om
m

un
ity

bu
ild

-u
p

an
d

m
an

-
ag

em
en

t

•
O

ve
rc

om
in

g
N

ot
In

ve
nt

ed
H

er
e

•
Te

ch
ni

ca
lr

ea
liz

at
io

n
of

ex
te

rn
al

in
te

rf
ac

es

•
L

eg
al

an
d

pr
op

er
ty

ri
gh

ts
is

su
es

co
nc

er
ni

ng
th

e
ex

te
rn

al
kn

ow
-

le
dg

e

•
E

xp
ec

ta
tio

n
m

an
ag

em
en

t
of

co
m

m
un

ity

•
D

efi
ni

tio
n

of
co

re
co

m
pe

te
nc

ie
s

•
E

ffi
ci

en
tp

ro
ce

ss
m

an
ag

em
en

t

•
N

/A

52 Open Innovation in Software Engineering: A Systematic Mapping Study

R
ef

Po
si

tiv
e

Im
pa

ct
s

N
eg

at
iv

e
fin

di
ng

s
St

ra
te

gi
es

S_
33

•
O

I
co

m
m

un
iti

es
pr

od
uc

e
co

m
pl

em
en

-
ta

ry
as

se
ts

th
at

ar
e

of
si

gn
ifi

ca
nt

va
lu

e
to

fir
m

s

•
Pr

ov
id

e
fir

m
sw

ith
th

e
ta

ci
tk

no
w

le
dg

e
to

ad
dr

es
s

so
m

e
of

th
e

te
ns

io
ns

th
at

ar
is

e
in

fir
m

-c
om

m
un

ity
in

te
ra

ct
io

n

•
L

im
ite

d
re

so
ur

ce
ba

se
of

sm
al

lfi
rm

s
ex

-
er

ts
a

ce
ili

ng
-e

ffe
ct

on
th

e
op

tim
al

le
ve

l
of

co
m

m
un

ity
in

vo
lv

em
en

t

•
A

bo
ve

-a
ve

ra
ge

le
ve

ls
of

te
ch

ni
ca

l
co

m
-

m
un

ity
pa

rt
ic

ip
at

io
n

lim
it

th
e

fin
an

ci
al

pe
rf

or
m

an
ce

of
sm

al
lO

SS
fir

m
s

•
fo

r
sm

al
l

fir
m

s,
in

iti
al

in
cr

ea
se

s
in

in
-

vo
lv

em
en

ti
n

th
e

co
m

m
un

iti
es

ha
s

a
po

s-
iti

ve
im

pa
ct

on
th

ei
r

fin
an

ci
al

pe
rf

or
-

m
an

ce

•
C

on
tr

ib
ut

in
g

en
ta

ils
si

gn
ifi

ca
nt

co
st

s
in

te
rm

s
of

re
so

ur
ce

In
ve

st
-

m
en

ts
an

d
lo

ss
of

st
ra

te
gi

c
as

se
ts

th
at

m
ay

re
su

lt
in

de
cr

ea
si

ng
re

-
tu

rn
s

•
in

te
rn

al
an

d
ex

te
rn

al
so

ur
ce

s
of

in
no

va
tio

n
ar

e
co

m
pl

em
en

ts
ra

th
er

th
an

su
bs

tit
ut

es

Ta
bl

e
6:

St
ud

ie
s

in
th

e
O

Ic
om

m
un

ity
th

em
e

4 Results and analysis 53

use employee referrals or offer individuals monetary rewards to exploit communi-
ties. Besides, initiating OSS projects is an alternative way for attracting pragmatic
OSS developers (S_6).

Using the wisdom of crowds, and direct articulation of user wishes (S_8, S_21)
help organizations receive new features from communities instead of extensions of
already existing features. Albeit claimed that OI can bring benefits to both small
and large companies, small firms with limited resources exert a ceiling effect on
community involvement. OI should, in those cases, be used as a complemen-
tary asset to accelerate internal innovation and R&D processes of the organization
(S_33). On the other hand, OI does have its cost when companies might procure
the outcome of the community participation, but at the same time not be willing
to devote their best resources to work in the communities (S_1, S_6). In addition,
it remains unclear how to orchestrate or stimulate debates within communities,
thereby making it hard for firms to achieve their goals. Consequently, too open
behavior might be potentially harmful and contributions without selective reveal-
ing strategy could entail significant cost in terms of programming resources and
loss of strategic assets that may result in decreasing returns (S_21, S_33). As far
as the trustworthiness of results of these studies is concerned based on rigor and
relevance (see Figure 6), 5 studies (S_1, S_6, S_8, S_33) lie in category A except
for one study (S_21) in category D.

Managerial implications

This category includes six studies that focus on the recommendations for man-
agers how and when to indulge in open innovation, in order to increase firms in-
novative performance (S_7, S_15, S_17, S_22, S_32, S_33), see Figure 4. The
primary study (S_17) suggests that firms working in open source settings can pur-
sue differentiation strategies to achieve openness, without really distancing their
developers from the communities. The openness is most realized at the component
level and differs significantly between software and hardware components. Open-
ness of software seems to be more important to the community than openness of
hardware. Thus, companies may get involved in open source software initiatives
and secure their competitive position by capturing more value or differentiation in
hardware. Managers could enhance the degree of innovation and performance of
their firms in a number of ways. Among them, firms should consider getting access
to skilled resources, and learning by encouraging their employees to participate in
the communities, instead of free riding (S_33).

Moreover, firms operating in hostile environments, motivate managers to draw
knowledge out of end users and communities (S_32). However, most often it is
not a straightforward decision for managers to participate in communities or draw
knowledge from end users. A survey conducted in Dutch software industry re-
vealed that managers are confronted with too little available time, resources, lack
of commitment, and often the wrong strategy to indulge themselves in the commu-

54 Open Innovation in Software Engineering: A Systematic Mapping Study

nities (S_22). Furthermore, firms need to develop sufficient absorptive capacity to
benefit from external knowledge and to find interesting tasks for community partic-
ipants to keep them motivated (S_15). To underline the strengths of the evidence,
Figure 6 depicts four studies (S_17, S_33, S_32, S_15) classified in category A
with high rigor and relevance, while two studies (S_7, S_22) fall in category C
that have high industry relevance but relatively low rigor.

OI Models/Framework

This theme includes the models or frameworks (S_7, S_11, S_13, S_20, S_27).
Two studies (S_27, S_13) lie in category A and three studies (S_7, S_11, S_20)
fall into category C, B and D respectively, see Figure 6. Jansen et al. presents an
open software enterprise model (OSE) for determining the openness of a software
producing organization (S_27). An organization can choose to be open on both
supply and demand sides of the supply chain. This happens typically by opening
up development on the side of software developers and contributors, or opening
up service delivery on the side of service partners who deploy, configure, and
service the software platform produced by the organization. However, the paper
lacks clear guidelines how to execute these activities using software engineering
techniques or processes.

Stuermer et al. (S_13) focuses on the private-collective innovation model
which proposes incentives for individuals and firms to privately invest resources
to create public goods innovations. Such innovations are characterized by non-
exclusivity and non-rivalry in consumption. Stuermer et al. examined Nokia’s
Internet Tablet development and identified five hidden costs: difficulty to differ-
entiate, guarding business secrets, reducing community entry barriers, giving up
control, and organizational inertia.

Ebner et al. (S_7) highlight the idea of competition as a method to nurture a
virtual community for innovations. Similarly, Wnuk et al. (S_11) proposed a soft-
ware engineering framework, designed to foster open innovation by designing and
tailoring appropriate software engineering methods and tools. The framework is
divided into the technical (e.g. requirements engineering, software design, devel-
opment and testing techniques etc.) and methodological dimensions. Singer et al.
(S_20) envisions a 7 step innovation process as a conceptual solution. The process
covers an idea life-cycle from its creation to its realization and is exemplified on
an IT-related example.

Degree of openness

Openness of a software producing organization is explicated by revealing the pro-
prietary information. Existing and potential intellectual property rights are vol-
untarily given up to the interested parties in order to make them accessible. This
theme comprises three studies that not only contain different forms of open strate-
gies (S_16, S_17), but also presents an open enterprise software (OSE) model

4 Results and analysis 55

developed in order to assess the openness of organizations (S_27). West (S_16)
claims that proprietary platforms are more suitable for market leaders and open
standards are more feasible when propriety strategies fail. Besides, differentiation
can be achieved through opening some parts, by disclosing technology under such
conditions that it will only provide value to customers, without really giving away
the advantage to competitors. Open source provides direct benefits to many users
who lack the requisite technical skills to do their own development.

Balka et al. (S_17) state that transparency, accessibility and replicability are
important to open design communities. They present an open software enterprise
model that suggests that openness can quickly create critical mass of developers
or partners around the software product if the surrounding partners are prepared to
enter in the ecosystem in any of roles, such as developers, values added resellers,
service partners or customers. However, Balka et al. also suggest that openness is
not always beneficial to the organization and mention the role of partnerships in
software producing organizations as a form of openness (S_17). It is also noticed
that openness often leads to creation of new business models. All above men-
tioned results carry more industry relevance, since two studies (S_17, S_27) lie in
category A, and one study (S_16) in category C with high relevance and low rigor.

Intellectual property (IP) strategies

This theme refers to strategies used by firms to share IP among stakeholders in
the OI context. Rayna and Striukova (S_18) investigated open source vs. patent
pools as innovation structures, however the study has low relevance according
to Figure 6. Patent pools are comprised of multi-party ownership and include
not only current patents, but may also include future changes to these patents.
Typically, all patents in a patent pool are available to each member of the pool.
In contrast, the open source structure is based on the copy-left paradigm instead
of intellectual monopoly rent paradigm, where the source code as well as any
subsequent modifications and improvements are released, not only to the members
of the project, but to the whole community. This study (S_18) compares two OI
structures in terms of risks, cooperation, financial/non-financial benefits, standards
and their feasibility.

Rayna and Striukova (S_18) argue that patent pools and open source have
common risks and benefits. For instance, the key risks are associated with in-
tellectual property right (IPR) infringement, bad publicity and discouraged further
investment. On the other hand, benefits can be reaped in terms of decreased R&D
expenditure and transaction cost, access to skilled resources and increased future
business opportunities and reputation. Besides that, open source is exclusive in ap-
plication but universal in access while patent pools are universal in application but
exclusive in access. Therefore, it is more suitable for large companies to initiate
or adopt patent pools compared to small companies or start-ups. Small compa-
nies may find additional benefits in terms of having a chance to set a standard in

56 Open Innovation in Software Engineering: A Systematic Mapping Study

open source and give them access to highly skilled work force, and thereby re-
duce the development cost. Finally, patent pools are often formed based on prior
knowledge unlike open source that generates new knowledge based on skills and
competences.

OI toolkits

This theme includes the toolkits developed in order to involve end users into firms’
internal innovation process. Given that international firms often operate in hostile
environments, limited evidence (S_2, S_28, S_32) was found related to the use
of user innovation toolkits and its impacts on firms innovative performance. As
far as the strength of evidence is concerned, one study (S_32) was found in cat-
egory A and remaining two studies (S_2, S_28) fall into category C, see Figure
6. Wang et al. concluded that innovation toolkits improve the innovation outcome
and productivity for users with knowledge and experience. We identified only one
toolkit, namely INOVEX (S_28), that is used by software producing organizations
to extract knowledge from end users. When it comes to utilizing the end user
knowledge, evidence suggests that larger firms seem to exploit end users online
less than the smaller firms (S_32). This could be due to the fact that small firms
are having more open search strategies caused by a lack of skilled resources and
the need to reduce the development cost.

5 Discussion
The synthesized evidence in this study suggests that smaller companies (start-ups)
have higher tendency to adopt OI compared to incumbents. This trend makes
sense when we consider start-ups engaging themselves in OSS solution in order
to quickly acquire knowledge and R&D capabilities. OI provides initial financial
gains for small companies, but also limits their financial performance when the
level of participation increases above the average. Thus, in order to reap the finan-
cial benefits, it seems important to have high absorptive capacity to properly catch
the technical know-how from the available knowledge. Large companies should
encourage their developers to participate in communities for improved knowledge
sharing and for obtaining heterogeneous viewpoints on ideas.

The primary studies classified in the OI strategies category (Section 4.3) indi-
cate that both small and large companies explore the OI potential, but in different
ways. For smaller companies, adapting OSS solutions seems to provide the most
benefits, while larger companies also benefit from adapting their code ownership
strategies and internally adapt OSS practices via so called inner-sourcing [82].
Therefore, it is possible to hypothesize that larger companies should dedicate more
effort into the OI strategies and options analysis. Moreover, companies that own
implemented assets have more possibilities to capitalize their innovative poten-
tial via OI strategies, than companies that have no implemented assets. Still, for

5 Discussion 57

companies owning only intangible innovations, there exist strategies to share these
assets via, for example, pooled IPR forums.

The primary studies summarized in the enabling communities for open in-
novation category (Section 4.3) lead to an interpretation that communities offer
significant benefits that companies should exploit. In particular, it seems that ini-
tiating OSS projects is equally important from the OI perspective as joining or
governing an OSS project or the entire ecosystem. It remains an important aspect
to further explore what strategy is optimal, given the company’s size, domain and
product characteristics. Furthermore, our results suggest that firms are able to in-
fluence the direction of development (governance) in communities to some extent,
with one exception. Companies that sponsor individuals in their involvement in
OSS projects were not able to effectively stimulate or orchestrate debates in these
projects, mainly because communities believe that companies have their vested
interests in participation. This could explain the difference between OSS and OI
well, where in OI organizations decide to open up when they see a potential benefit
in opening up, while in OSS the community contributes with the mind set of free
software ideology without expecting any benefits in return.

The results regarding the interplay between OI and agile methods provide in-
teresting interpretations. It seems that openness is often compromised due to lack
of transparency between competitors, and even business units within an organi-
zation. Combining agile and OI seems to create barriers in transferring the ideas
outside the team’s boundaries, primarily due to the use of short iterations, min-
imum documentation, stand-up meeting, and a feature backlog that reduces the
amount of time you can spent trying new things or sharing ideas outside your
team. The resulting lack of overall R&D group overview disables the innovation
opportunities when using agile practices (S_4). Further, the introduction of agile
with OI caused a rapid decline in teams attending R&D meetings, due to the lack
of tolerance for prolonged meetings as stated by senior anonymous developers,
using the old plan-driven approach we would have been going to meeting after
meeting, but since going to agile, every minute you spend in one of these meetings
you just think about all of the work not being done (S_4).

To further demonstrate the challenges of OI in the agile context, developers
quoted that on-site customer practice seem to be the most telling barrier since
you feel accountable to person there at all time and its harder to justify taking a
half day out to sit with folks in other projects for benefits of other customers. At
the same time, managers experienced lower quality of ideas due to focus on daily
work.

Managers can enhance the financial situation and innovativeness of their firms,
by encouraging their employees to participate in communities. To gain further
advantage, managers can consider the learning and resource advantages attached
to community participation, instead of just free riding. The identified evidence
suggests that participation is more strongly related to the performance of those
firms that exhibit high level of social participation. However, the literature also

58 Open Innovation in Software Engineering: A Systematic Mapping Study

underlines the inherent complexity for organization to initiate, build and nurture
an external community as a complementary asset to their internal R&D process.
To be more specific, managers have too few resources available in order to indulge
them in communities. This may lead to too much time and commitment to make
significant contributions in these communities.

Business strategies also play an important role in embracing open innovation,
thus companies can pursue differentiation strategies with the controlled degree of
openness towards communities. Nonetheless, transparency and accessibility are
important factors when talking about openness of firms. Consequently, from the
firms’ point of view, OI does not substitute the already existing R&D process, but
it complements the existing internal innovation processes.

Regarding OI models or frameworks, fostering competing ideas seems to be
promising. At the same time, companies may use social networks to lower the
hurdle of sharing ideas, but since the primary study (S_20) presents preliminary
work and therefore lacks rigor and relevance, more empirical research is needed to
ensure that. Similarly, the framework presented by Wnuk and Runeson (S_11) is
preliminary and lacks specific guidelines about which SE techniques are applicable
for which contexts.

When it comes to the benefits and challenges of applying a collective innova-
tion model (S_20) there is a need for further studies that directly connect bene-
fits and challenges with SE techniques, as the current evidence is incomplete and
largely anecdotal. Similarly, Jansen et al. (S_27) describe in great detail what to do
rather than how to do it, especially on the operational level, where appropriate SE
techniques can provide great support. To summarize, there seems to be a lot of in-
teresting techniques or processes that foster OI, but the ways how to operationalize
them remain unspecified and requires further research.

When looking at the results in the IP strategies theme, it appears that patent
pools is an alternative solution for the companies that may not necessary have
innovation implemented in software (S_18). Both patent pools, and OSS share
many benefits and challenges, but differ in that OSS provide universal access but
is exclusive in application, while patent pools restrict the access but enable appli-
cation. Thus, large companies should use their IPR capital for enabling OI via
patent pools.

The results indicate little research focus on the OI toolkits since only one
toolkit was found among the primary studies. Moreover, primary studies suggest
that extensive experience is required to unlock the full potential of these toolkits.
Therefore, it remains to be explored how to enable less experienced practitioners
to be more innovative and in this way to leverage their innovative potential. We be-
lieve that enabling newcomers is important to fully benefit from OI, since many OI
contexts are characterized with high turnover for contributors that often contribute
once in a project.

6 Implications for research and practice 59

6 Implications for research and practice

6.1 Research Agenda for Open Innovation in Software
Engineering

In line with the advice by Kitchenham et al. [100], we use the systematic mapping
study to derive an agenda for further research. We interpret the increased scholarly
interest in OI since the launch of Chesbrough’s book in 2003 as a sign of increased
importance of OI. Still the number of publications that focus on OI in SE remain
small and therefore we believe that focusing on OI in SE should be highlighted on
the research agenda in SE. In particular, based on the results our interpretation, the
following areas should be put on the research agenda:

• Further exploring suitable software development methodologies that foster
OI. The results outlined in Section 4.3 suggest that combining agile and OI
provides additional challenges that may have a ceiling effect on the potential
benefits from OI. Thus, it is important to direct research efforts into better
understanding of which development methods or processes best suits OI and
what changes need to be implemented to unlock OI’s full potential.

• Providing clear managerial guidelines on how to adapt OI depending on the
context factors, with a special focus on which SE techniques, processes and
methods can be applied depending on the selected managerial strategy. In
this way the findings reported in Sections 4.3 and 4.3 will be complemented
by guidelines on the operational level to form more complete solutions for
adapting to OI.

• Exploring the balance between community involvement and in-house SE ac-
tivities. This study identified several benefits from OI and OSS community
involvement, see Section 4.3. However, the process-related benefits should
be further explored, with a focus on uncovering where involvement brings
most benefits. In particular, the role of OI involvement in improved testing
remains unexplored, where we believe that OI provides not only significant
reduction of the test effort but also can be a source of innovation. We base
this assumption on a premise that testing uncovers unexpected behavior of
software, which could be inspirational in the innovation process.

• Focusing on the role of requirements engineering in OI both during and
beyond innovation discovery. OI offers access to a wide and heteroge-
neous communities of potential stakeholders which puts pressure on the cur-
rent techniques for key stakeholder identification and domain understanding.
Advances in current techniques are required for supporting the identification
of commodity and competitive advantage requirements sources. Beyond in-
novation discovery, there is a need for a decision making support that can

60 Open Innovation in Software Engineering: A Systematic Mapping Study

combine both strategic and operational levels and provide run-time require-
ments triage support for capturing and incorporating OI potential into prod-
uct planning and requirements decision making. Despite that, researching
if unimplemented requirements that represent valuable IPRs, can be shared
with others in a similar way as for example patents, and what benefits this
approach brings is important.

• We encourage researchers to develop and publish more solution and vali-
dation research in OI as these remain underrepresented, see Figure 3. The
large number of evaluation research is definitely positive but, at the same
time, highlights the immaturity of the OI in SE research area. Thus, more
solutions in terms of tool proposals or frameworks and their validations are
needed to advance to the next maturity level.

6.2 Implications for industry practice
Although we summarize the empirical evidence in the field of OI in SE being
scarce, there is some evidence that may be used to guide software companies in
their innovation strategies:

• The identified conflict between agile and OI principles should be given spe-
cial attention. Agile principles focus developers attention and communica-
tion in order to meet specific project goals. However, the innovation pro-
cess benefits from the noise of leaks in the information flow from multiple
sources, internal as well as external. Companies should make sure that this
information flow is regained, using other practices.

• Open innovation strategies seem to be more beneficial for smaller and newer
actors in a market. They may apply OI and thus can gain significant com-
petitive advantage against competitors by more quickly absorbing potential
innovation. However, there are also examples of major corporations that
manage a software ecosystem, based on open or semi-open innovation. The
take-away for companies is that they need to define and monitor their OI
strategy to make sure their actions are relevant, given their current and fu-
ture expected market position.

• An implication for industry, based on the literature findings, is that OSS
and OI is not for free. In order to gain the full and long term benefits from
OI, companies must invest in the open communities, and since these are
complex networks with a multitude of actors, these companies must have a
clear resources investment plan, just as they need for closed innovations.

• IPR management is different for OI. The studied research recommend large
companies using patent pools to manage their IPR capital in relation to the
open innovation community.

7 Conclusions 61

7 Conclusions
Open innovation (OI) becomes significantly important for companies developing
software-intensive products and services. It provides several benefits that force
these companies to re-think and often significantly change their current innovation
strategies. The external availability of innovations combined with the flexibility of
their realization generate new opportunities for providing value to the customers.
OI pushes software industry into a new ground where well-known and checked
software development and management strategies need to be revisited. At the
same time, OI remains greatly unexplored in the SE literature, focusing greatly on
exploring OSS, resulting in a lack of systematic efforts to summarize OI literature
in relation to software engineering.

We conducted a systematic mapping study on OI in software engineering with
the aim to identify the existing themes in the literature and evaluate them based on
the rigor and relevance analysis.

Answering research question RQ1 we identified nine themes. The dominant
themes are related to OI strategies, OI challenges and benefits, enabling OI com-
munities, managerial implications of adaption OI and OI models or frameworks.
The degree of openness, OI toolkits and IP strategies are less frequently repre-
sented in the surveyed papers.

Our findings for RQ2 suggest that the majority of the studies is conducted with
high rigor and high relevance (17 out of 33) and as many as 29 out of 33 were con-
sidered industry relevant. This strongly indicates that OI in SE is industry practice
oriented. Further, 27/33 studies are of evaluation type, which is unusually high for
a mapping topic. Therefore, we encourage more solution and validation research,
see Table 1. The high rigor and relevance scores also imply generalizability of the
results derived from thematic analysis in answer to RQ1.

This mapping study leads to a proposal to further explore SE in OI in terms
of development methodologies that interplay with OI, situated managerial guide-
lines for OI adaptation, as well as exploring the balance between open community
involvement and in-house development. Specifically, the roles of testing and re-
quirements engineering in OI remain unexplored.

APPENDIX A

RIGOR AND RELEVANCE
CRITERIA

1 Rigor

Context(C)

1. Strong description: The context is described to the extent where it becomes
comparable to other settings [85]. In particular, we emphasized subject type
(graduate, undergraduate, professionals, researcher), development experi-
ence, development methodology, duration of the observation. If all these
aforementioned factors are highlighted, then C is evaluated to 1.

2. Medium description: If any of the above mentioned factors is missing in
the study, then C is evaluated to 0.5.

3. Weak description: If no description of context is provided in the study,
then C is evaluated to 0.

Design (D)

1. Strong description: The research design is described to the extent where
it becomes transparent and detailed enough for the reader to understand the
design [85]. To be specific, if the study underlined the outcome variables,
measurement criteria, treatments, number of subjects , and sampling, then
D is evaluated to 1.

2. Medium description: If a study is missing out on any of the factors related
to design and data collection is missing (see above), then D evaluates to 0.5.

3. Weak description: If no design description is provided at all then, D is
evaluated to 0.

Validity threats (V)

64 Rigor and Relevance Criteria

1. Strong description: If different types of validity (i.e. internal, external,
conclusion and construct validity) are evaluated and reflected upon then, V
is evaluated to 1.

2. Medium description: If a study only highlights the subset of the relevant
threat categories then, V is evaluated to 0.5

3. Weak description: If a study is missing out on validity discussion com-
pletely, then V is evaluated to 0.

2 Relevance
Users/Subjects (U)

1. Contribute to relevance: If the subjects used in the study are from industry
(professionals) then, U is evaluated to 1 for industry.

2. Partially contribute to relevance: The subjects are partially representative,
i.e. they are master(Msc.) or graduated students then, U is evaluated to 0.5

3. Does not contribute to relevance: If the subjects are bachelor/undergrad
students or the information is missing then, U is evaluated to 0

Scale (S)

1. Contribute to relevance: If an industrial size application is used in the
study then, S is evaluated to 1.

2. Does not contribute to relevance: The application is down-scaled or a toy
example hence, S is evaluated to 0.

Research Methodology (RM)

1. Contribute to relevance: The chosen research methodology is suitable to
scrutinize real world contexts and situations with relevance for practitioners
(action research, case study, industry interviews, experiment investigating a
real situation, and surveys/interviews). If study belongs to any of the afore-
mentioned research methodologies then, RM is evaluated to 1

2. Does not contribute to relevance: If a Study is using Lab experiment (hu-
man subjects/software) or missing information then, RM is evaluated to 0.

Context (C)

1. Contribute to relevance: If a study is executed in a setting that matches
real industrial usage (industrial setting) then, C is evaluated to 1.

2. Does not contribute to relevance: If a study is investigated under under
artificial setting (e.g. lab) or others that do not represent a context matching
real world situations, or not reported then, C is evaluated to 0.

2 Relevance 65

Table 1: Rigor and relevance scores with category
Study_ID Ref. C D V Rig. Sum U S RM C Rel. SUM Category
S_1 [42] 1 1 0.5 2.5 1 1 1 1 4 A
S_2 [183] 0.5 0.5 0.5 1.5 1 1 1 1 4 C
S_3 [74] 1 1 0 2 1 1 1 1 4 A
S_4 [36] 1 0.5 0 1.5 1 1 1 1 4 C
S_5 [187] 1 0.5 0 1.5 1 1 1 1 4 C
S_6 [77] 1 0.5 0.5 2 1 1 1 1 4 A
S_7 [49] 0.5 0.5 0.5 1.5 0.5 1 1 1 3.5 C
S_8 [182] 1 1 0.5 2.5 1 1 1 1 4 A
S_9 [190] 0.5 0 0 0.5 1 1 1 1 4 C
S_10 [145] 1 1 0.5 2.5 1 1 1 1 4 A
S_11 [196] 1 0.5 0.5 2 0 0 1 1 2 B
S_12 [130] 0.5 0.5 0.5 1.5 1 1 1 1 4 C
S_13 [176] 1 1 0 2 1 1 1 1 4 A
S_14 [194] 0.5 0.5 1 2 1 1 1 1 4 A
S_15 [40] 1 1 0 2 1 1 1 1 4 A
S_16 [185] 0.5 0.5 0 1 1 1 1 1 4 C
S_17 [13] 1 1 0.5 2.5 1 1 1 1 4 A
S_18 [153] 0.5 1 0.5 2 0 1 0 0 1 B
S_19 [47] 0.5 0.5 0.5 1.5 1 1 1 1 4 C
S_20 [168] 0 0.5 0 0.5 0 0 1 0 1 D
S_21 [84] 0 0.5 0 0.5 0 0 0 1 1 D
S_22 [179] 0.5 0.5 0 1 1 1 1 1 4 C
S_23 [34] 1 1 0.5 2.5 1 1 1 1 4 A
S_24 [131] 1 0.5 0.5 2 1 1 1 1 4 A
S_25 [156] 0.5 0 0 0.5 1 1 1 1 4 C
S_26 [76] 1 0.5 0 1.5 1 1 1 1 4 C
S_27 [88] 1 0.5 0.5 2 1 1 1 1 4 A
S_28 [24] 0 0.5 0 0.5 1 1 0 1 3 C
S_29 [73] 1 0.5 1 2.5 1 1 1 1 4 A
S_30 [46] 1 1 0.5 2.5 1 1 1 1 4 A
S_31 [78] 1 0.5 0.5 2 1 1 1 1 4 A
S_32 [106] 1 1 0 2 1 1 1 1 4 A
S_33 [173] 1 1 1 3 1 1 1 1 4 A

APPENDIX B

DATABASE SEARCH STRINGS

Search string used for the Compendex and Inspect database (years 1969 to
2013):

(((((Open Innovation WN KY OR Open-Innovation OR OI WN KY OR inno-
vation WN KY OR innovation management WN KY) AND (software WN KY OR
software ecosystem WN KY OR product line WN KY OR requirement* engineer*
WN KY OR requirement* management WN KY OR open source WN KY) AND
(exploratory study WN KY OR lesson* learn* WN KY OR challenge* WN KY
OR guideline* WN KY OR Empirical investigation WN KY OR case study WN
KY OR survey WN KY OR literature study WN KY OR literature review WN KY
OR interview* WN KY OR experiment* WN KY OR questionnaire WN KY OR
observation* WN KY OR quantitative study WN KY OR factor* WN KY) AND
(ENGLISH) WN LA))))

Search string used for the ACM Digital Library database (years 1969 to 2013):
((((((((((((((((((("Title":"Open Innovation" OR "Title":"Open-innovation" OR

"Title":OI OR "Title":innovation OR "Title":innovation management) AND ("Ab-
stract": software OR "Abstract": software ecosystem OR "Abstract": require-
ment* engineer* OR "Abstract": open source OR "Abstract": product line) AND
("Abstract":exploratory study OR "Abstract": challenge* OR "Abstract": guide-
line* OR "Abstract": Empirical investigation OR "Abstract": case study OR "Ab-
stract": survey OR "Abstract": literature study OR "Abstract": literature review
OR "Abstract": interview* OR "Abstract": experiment* OR "Abstract": ques-
tionnaire OR "Abstract":observation* OR "Abstract":quantitative study OR "Ab-
stract":factor*))))) and (FtFlag:yes))) and (FtFlag:yes)) and (PublishedAs:journal
OR PublishedAs:proceeding OR PublishedAs:transaction) and (FtFlag:yes)))) and
(PublishedAs:journal OR PublishedAs:proceeding OR PublishedAs:transaction)
and (FtFlag:yes)))))))))

Search string used for the IEEE Explore database (years 1969 to 2013):
((("Index Terms":"Open Innovation" OR "Index Terms": "Open-Innovation"

OR "Index Terms":OI OR "Index Terms": innovation management OR "Index
Terms": innovation) AND (Search_Index_Terms: software OR "Index Terms":

68 Database search strings

ecosystem OR "Index Terms": product line OR "Index Terms":requirement* en-
gineer* OR "Index Terms": requirement* management* OR "Index Terms": open
source) AND (p_Abstract:case study OR "Abstract": exploratory study OR "Ab-
stract": lessons learn* OR "Abstract": survey OR "Abstract": Empirical investi-
gation OR "Abstract": guidelines "Abstract": literature study OR "Abstract": in-
terview OR "Abstract": experiment OR "Abstract": factors OR "Abstract": ques-
tionnaire)))

Search string used for the ISI Web of Science database (years 1969 to 2013):
(((TI=("Open Innovation" OR "Open-Innovation" OR OI OR innovation OR

innovation management) AND TS=(software OR software ecosystem OR product
line OR requirement* engineer* OR requirement* management OR open source)
AND TS=(exploratory study OR lesson* learn* OR challenge* OR guideline* OR
Empirical investigation OR case study OR survey OR literature study OR litera-
ture review OR interview* OR experiment* OR questionnaire OR observation*
OR quantitative study OR factor*)))) AND Language=(English) Refined by: Web
of Science Categories=(COMPUTER SCIENCE INFORMATION SYSTEMS
) Timespan=1969-2013. Databases=SCI-EXPANDED, SSCI, A&HCI, CPCI-S,
CPCI-SSH

Search string used for the Science Direct database (years 1969 to 2013):
(open innovation OR open-innovation OR OI OR innovation OR innovation

management) AND (software OR software ecosystem OR product line OR re-
quirement* engineer* OR requirement* management OR open source) AND (ex-
ploratory study OR lesson* learn* OR challenge* OR guideline* OR Empirical
investigation OR case study OR literature study OR literature review OR inter-
view* OR experiment* OR case study OR questionnaire OR observation* OR
quantitative study OR factor*)[All Sources(Computer Science)]

CHAPTER II

OPEN INNOVATION THROUGH
THE LENS OF OPEN SOURCE

TOOLS: AN EXPLORATORY
CASE STUDY AT SONY

MOBILE

Abstract

Background. Despite growing interest of Open Innovation (OI) in Software En-
gineering (SE), little is known about what triggers software organizations to adopt
it and how this affects SE practices. OI can be realized in numerous of ways,
including Open Source Software (OSS) involvement. Outcomes from OI are not
restricted to product innovation but also include process innovation, e.g. improved
SE practices and methods.
Aim. This study explores the involvement of a software organization (Sony Mo-
bile) in OSS communities from an OI perspective and what SE practices (require-
ments engineering and testing) have been adapted in relation to OI. It also high-
lights the innovative outcomes resulting from OI.
Method. An exploratory embedded case study investigates how Sony Mobile use
and contribute to Jenkins and Gerrit; the two central OSS tools in their continuous
integration tool chain. Quantitative analysis was performed on change log data
from source code repositories in order to identify the top contributors and triangu-
lated with the results from five semi-structured interviews to explore the nature of
the commits.
Results. The findings of the case study include five major themes: i) The pro-
cess of opening up towards the tool communities correlates in time with a general
adoption of OSS in the organization. ii) Assets not seen as competitive advantage

70 Open Innovation through the Lens of Open Source Tools: An . . .

nor a source of revenue are made open to OSS communities, and gradually, the
organization turns more open. iii) The requirements engineering process towards
the community is informal and based on engagement. iv) The need for systematic
and automated testing is still in its infancy, but the needs are identified. v) The
innovation outcomes included free features and maintenance, and were believed to
increase speed and quality in development.
Conclusion. Adopting OI was a result of a paradigm shift of moving from Win-
dows to Linux. This shift enabled Sony Mobile to utilize the Jenkins and Gerrit
communities to make their internal development process better for its software
developers and testers.

1 Introduction

Software organizations have recently been exposed to new facets of openness that
go beyond their experience and provide opportunities outside their organizational
walls. Chesbrough [31] explains the term Open Innovation (OI) as “a paradigm
that assumes that organizations can and should use external ideas as well as inter-
nal ideas, and internal and external paths to market, as they look to advance their
technology”. OI is based on outside-in and inside-out knowledge flows that help to
advance technology and spark innovation. Some classical examples of inside-out
are selling intellectual property while outside-in correspond to start-up acquisition
and integration. There are also coupled processes [54] where companies give and
take during co-creation by making alliances and joint-ventures. OI is fuelled by
increased mobility of workers and knowledge, more capable universities, greater
knowledge access and sharing capabilities that World Wide Web offers [30] and
easier access to venture capital for start-ups.

Open Source Software (OSS) was widely used by software organizations be-
fore the OI model became popular [112] and nowadays provides a common ex-
ample of OI [141]. OSS leverages external resources and knowledge to increase
innovation, product quality and to shorter time-to-market. OSS offers not only po-
tential product innovation (e.g. by using an OSS platform of commodity parts to
build differentiation parts), but potential process innovations in terms of an imple-
mentation of new or significantly improved production or delivery methods [117].

IBM’s engagement in the Linux community in terms of patent and monetary
contributions exemplifies how a firm can leverage OSS from an OI perspective.
Risks and costs of development were in this case shared among other stakeholders
such as Intel, Nokia, and Hitachi, which also have made significant investments in
the Linux community [110]. Thanks to Linux involvement, IBM can strengthen
its own business model in selling proprietary solutions for its clients running on
top of Linux. Additionally, the openness of Linux also gave IBM more freedom to
co-develop products with its customers [30].

1 Introduction 71

Innovation
outcomes

Open
Innovation

Open source
software (OSS)

Organization

Who?
Why?
How?
When?

Figure 1: Study Objectives in the intersection between proprietary organizations
and open source software.

Software organizations that want to benefit from OI via OSS engagement need
to adapt and innovate their internal software development strategies and processes.
For example, influence on feature selection and road-mapping may be gained
through a more active participation, as many OSS communities are based on mer-
itocracy principles [91]. Also, some benefits may first be fully utilized after con-
tributing back certain parts to the OSS community [180]. For example, by cor-
recting bugs, actively participating in discussions and contributing new features,
a software organization might reduce maintenance cost compared to proprietary
software development [176]. Hence, in order for a firm to gain the expected ben-
efits of products, OI process innovations may be a required step on the way for-
ward [108, 157, 194]. Existing literature does not particularly focus on how these
internal SE process adaptions should be structured or executed [141]. Further,
little is known about how OSS involvement may be utilized as an enabler and sup-
port for further innovation spread inside an organization, e.g. process, tools, or
organizational innovations.

In this study, we focus on identifying when, why and how a software organi-
zation adopts OI through the use of OSS, and what innovative outcomes can be

72 Open Innovation through the Lens of Open Source Tools: An . . .

gained (see Fig. 1). We investigate these aspects through a case study at Sony
Mobile and how it actively participate and contribute to the communities of the
two OSS tools Jenkins and Gerrit. These two tools are the basis of Sony Mobile’s
internal continuous integration tool chain. The study further investigates how ex-
ternal knowledge and innovation captured through the active development of these
OSS tools may be transferred into the product development teams of Sony Mobile.
More explicitly, this study contributes by studying how OSS may be used, not only
for leveraging product innovation [117] in the tools themselves, but also how these
tools can be used as enablers for process innovation in the form of improved SE
practices and product quality.

This paper is structured as follows. Section 2 highlights the related work and
Section 3 outlines the research methodology. In Sections 4 and 5 results from the
quantitative and qualitative analysis are presented, respectively. Finally, Section 6
discussed the results, followed by conclusions in Section 5.

2 Related work

In this section, we summarize related work in OI strategies, OI challenges in SE
and open source development practices inside software organizations. This section
is partly based on the systematic mapping study by Munir et al. [138].

The increased openness that OI implies poses significant challenges to soft-
ware organizations in terms of securing their competitive advantage [141] and un-
derstanding what to contribute, when and how to maintain differentiation towards
competitors that may also be involved in the OSS community [76, 89, 120]. Re-
lated to that is the challenge of what requirements should be selected, when these
should be released and how an internal roadmap should be synchronized with the
OSS project’s roadmap [119,194]. These challenges highlight the need for a clear
contribution strategy that software organizations should create to focus their in-
ternal resources on value-creating activities, rather than contributing unnecessary
patches or differentiating features [194].

Extensive involvement in OSS communities may also bring significant chal-
langes. Among these challenges, Daniel et al. [44] suggested that the conflict be-
tween organizational and OSS standards reduces developers’ organizational com-
mitment and it is strongly dependent on the degree to which developers associate
themselves with organizations or OSS communities. Investing in OSS may also
be costly and create differentiation and property right protection challenges, as in-
dicated by Stuermer et al. [176] who studied the Nokia Internet Tablet, which was
based on a hybrid of OSS and proprietary software development.

West et al. [190] examined the complex ecosystem surrounding Symbian Ltd.
and identified three inherent difficulties for organizations leading an OI ecosystem:
1) prioritizing the conflicting needs of heterogeneous ecosystem participants, 2)

2 Related work 73

knowing the ecosystem requirements for a product that has yet to be created, and 3)
balancing the interests of those participants against those of the ecosystem leader.

Looking at OI strategies, Dahlander & Magnusson [40] show how organiza-
tions may access OSS communities in order to extend the firm’s resource base,
align the organization’s strategy with that of the OSS community, and/or assim-
ilate the community in order to integrate and share results with them. The same
authors explained that depending on how open a firm chooses to be in regards to
their business model, different strategies may be enforced, e.g. symbiotically giv-
ing back result to the community, or as a free-rider keeping modifications and new
functionality to oneself [41]. Some strategies include:

• selectively revealing - differentiating parts are kept internal while commod-
ity parts are made open [76, 185]. This requires continuous assessment of
what parts are to be considered commodity as opposed to differentiating
value.

• licensing schemas (cf. Dual-licensing [32]), technology may be fully dis-
closed, but under a restrictive license [185]. Alternatively, everything may
be disclosed under open and transparent conditions [32].

Henkel [76] reports how small organizations reveal more, as they are likely
to benefit from the external development support. Component manufacturers also
reported to contribute a lot as they have a good protection of the hardware they
sell; software is seen as a complementary asset. In a follow-up study, Henkel [78]
further reported how openness had become a competitive edge, as customers had
started to request even more revealing.

Dahlander & Wallin [42] show how having an employee in the community
can be an enabler for the organizations to not only gain a good reputation but
also to influence the direction of the development towards the organizations’ own
interests. However, to gain the roles needed to commit or review code written by
community developers, individuals need to contribute and become an active part
of the communities as these are often based on the principles of meritocracy [91].

Inner Source [174] has gained interest among researchers and practitioners as a
way to adapt OSS practices at software organizations. Such hybrids of commercial
and OSS practices [127] could include using the OSS style project structure, where
a core team of recognized experts has the power to commit code to an official
release, and a much larger group contributes voluntarily in many ways.

Summary. Research has shown a lot of interest for OI and its different ap-
plications [186], including leveraging OSS for OI [141]. However, the focus is
mostly limited to management and strategic aspects, e.g., [40, 176, 191], with
some exception of inner sourcing [130, 174]. Little is still known about what trig-
gers software organizations to adopt OSS from an OI perspective and how this
affects SE practices [141].

This paper adds to existing knowledge by focusing on the use of OSS from an
OI perspective in an organization that seek to complement its internal product de-

74 Open Innovation through the Lens of Open Source Tools: An . . .

Table 1: Research questions with description
Research Questions Objective
RQ1: How and to what extent is
Sony Mobile involved in the com-
munities of Jenkins and Gerrit?

To characterize Sony Mobile’s in-
volvement and identify potential in-
terviewees.

RQ2: What is the motivation for
Sony Mobile to adopt OI?

To explore the transition from a
closed innovation process to an OI
process.

RQ3: How does Sony Mobile take
a decision to make a project or fea-
ture open source?

To investigate what factors affect
the decision process when deter-
mining whether or not Sony Mobile
should contribute functionality.

RQ4: What are the innovation out-
comes as a result of OI participa-
tion?

To explore the vested interest of
Sony Mobile as they moved from
a closed innovation model to an OI
model.

RQ5: How do the requirements en-
gineering and testing processes in-
terplay with the OI adoption?

To investigate the requirements en-
gineering and testing processes and
how they deal with the special com-
plexities and challenges involved
due to OI.

velopment and process innovation [117] with the use of external knowledge from
OSS communities. Furthermore, this study aims to improve our understanding
of what and how a software organization can open up and how SE practices are
adapted to deal with the openness to OSS communities.

3 Case study design

Below we describe the research design of this study. We explain the research
questions, the structure of the case study design, and the methodologies used for
data collection as well as for the quantitative and qualitative analysis.

3.1 Research questions

The focus of this study is on how software organizations use OSS projects from an
OI perspective, what triggers them to open up and how this impacts the organiza-

3 Case study design 75

tions’ innovative performance and their SE practices (see Fig. 2). We investigate
these aspects through a case study at Sony Mobile, and how they actively par-
ticipate and contribute to the communities of the two OSS tools Jenkins [2] and
Gerrit [3]. Both tools constitute pivotal parts in Sony Mobile’s internal continuous
integration tool chain.

The study further investigates how external knowledge and innovation cap-
tured through the development of these OSS tools, may be transferred into the
product development teams of Sony Mobile. More explicitly, this study con-
tributes by studying how OSS may be used, not only for leveraging product in-
novation [117] in the tools themselves, but also how these tools can be used as
enablers for process innovation in the form of improved SE practices and tools
within the organization.

1. Jenkins is an open source build server that runs on a standard servlet con-
tainer e.g. Apache Tomcat. It can handle Maven and Ant instructions, as
well as execute custom batch and bash scripts. It was forked from the Hud-
son build server in 2010 due to a dispute between Oracle and the rest of the
community.

2. Gerrit code review is an OSS code review tool created by Google in con-
nection with the Android project in 2007. It is tightly integrated with the
software configuration management tool GIT, working as a gatekeeper, i.e.
a commit needs to be reviewed and verified before it is allowed to be merged
into the main branch.

Based on this background, and the research gap identified in earlier work [141],
we formulate our research questions to study the OI in Sony Mobile in an ex-
ploratory manner (see Table 1). RQ1 addresses the extent to which Sony Mobile is
involved in the Jenkins and Gerrit communities and its key contribution areas (i.e.
bug fixes, new features, documentation etc.). RQ2 and RQ3 explore the rationale
behind Sony Mobile’s transition from closed innovation to OI. RQ4 highlights the
key innovation outcomes realized as a result of openness. Finally, RQ5 aims at
understanding whether or not the existing requirements engineering and testing
processes have the capacity to deal with the OI challenges in SE. RQ1 is answered
with the help of quantitative analysis of repository data, while the remaining four
research questions (RQ2, RQ3, RQ4, RQ5) are investigated using qualitative anal-
ysis of interview data.

3.2 Case Selection and Units of Analysis

Sony Mobile is a multinational corporation with roughly 5,000 employees, de-
veloping embedded devices. The studied branch focuses on developing Android-
based phones and tablets and has 1600 employees, of which 900 are directly in-
volved in software development. Sony Mobile develops software in an agile fash-

76 Open Innovation through the Lens of Open Source Tools: An . . .

Jenkins & Gerrit
Open Source

Software
Communities

Sony Mobile

Other Software-intensive firms NPOs Individuals

Tools Department

Product
Development

Knowledge Transfer

Figure 2: The Jenkins and Gerrit OSS communities surrounded by Sony Mobile
and other members. Arrows represent knowledge transfer in and out of the com-
munity members such as other software organizations, non profit organizations
(NPO) and individuals, which in turn are illustrated by funnels, commonly used in
OI literature [31].

ion and applies software product line management with a database of more than
20,000 features suggested or implemented across all product lines [150].

However, in order to work with OSS communities, namely Jenkins and Gerrit
Sony Mobile created a designated tools department to acquire and integrate the
external knowledge to improve the internal continuous integration process. The
continuous integration tool chain used by Sony Mobile is developed, maintained
and supported by an internal tools department. The teams working on phones and
tablets are thereby relieved of this technical overhead. During the recent years,
Sony Mobile has transitioned from passive usage of the Android codebase into
active involvement and community contribution with many code commits to Jenk-
ins and Gerrit. This maturity resulted in a transition from closed innovation to OI
[31], assuming that business values are created or captured as an effect.

From an OI perspective, there are interactions between the Tools department
and the Jenkins and Gerrit communities (see Fig. 2). The in- and outgoing transac-
tions, visualized by the arrows in Fig. 2, are data and information flows, e.g. ideas,
support and commits, can be termed as a coupled innovation process [54]. The
exchange is continuous and bi-directional, and brings product innovation into the
Tools department in the form of new features and bug fixes to Jenkins and Gerrit.

The Tools department can, in turn, be seen as a gate between external know-
ledge and the other parts of Sony Mobile (see Fig. 2). The Tools department
accesses, adapts and integrates the externally obtained knowledge from the Jenk-
ins and Gerrit communities into the product development teams of Sony Mobile.

3 Case study design 77

This creates additional transactions inside Sony Mobile which can be labeled as
process innovation [4] in the sense that new tools and ways of working improve de-
velopment efficiency and quality. This relates to the internal complementary assets
need that is mentioned as an area for future research by Chesbrough et al. [29].

We conducted a case study design with Jenkins and Gerrit as units of analy-
sis [159] as these are the products in which the exchange of data and information
enable further innovation inside Sony Mobile.

3.3 Case study procedure

We performed the following steps.

1. Preliminary investigation of Jenkins and Gerrit repositories.

2. Mine the identified project repositories.

3. Extract the change log data from the source code repositories.

4. Analyze the change log data (i.e. stakeholders, commits etc).

5. Summarize the findings from the change log data to answer RQ1.

6. Prepare and conduct semi-structured interviews to answer RQ2–RQ5.

7. Synthesize data.

8. Answer the research questions RQ1–RQ5.

3.4 Methods for quantitative analysis

To understand Sony Mobile’s involvement in the OSS tools (RQ1), we conducted
quantitative analysis of commit data in the source code repositories of Jenkins and
Gerrit.

Preliminary Investigation of Jenkins and Gerrit Commits

A commit is a snapshot of a developer’s files after reaching a code base state. The
number of lines of code in a commit may vary depending upon the nature of the
commit (e.g. new implementation, update etc.) [75]. The comment of a commit
refers to a textual message related to the activity that generates the updated new
piece of code. It ranges from a simple note to a detailed description, depending
on the project’s conventions. In this study, we used the keywords provided by
Hattori [75] in his study as a reference point to classify the commit messages (see
Table 2).

We mined the source code repositories of Jenkins and Gerrit to extract the com-
mit id, date, committer name, committer email and commit description message

78 Open Innovation through the Lens of Open Source Tools: An . . .

for each commit, with the help of the tool CVSAnlY [1]. The extracted data was
stored locally in a relational database with a standard data scheme, independent
of the analyzed code repository. The structure of the database allows a quanti-
tative analysis to be done by writing SQL queries. The number of commits per
committer were added together with the name and email of the committer as keys.

We extracted the affiliations of the committers from their email addresses by
filtering them on the domain, e.g., john.doe@sonymobile.com was classified with
a Sony Mobile affiliation. It is recognized that committers may not use their cor-
porate email addresses when contributing their work, since parts of their work
could be contributed privately or under the umbrella of other organizations than
their employer. To triangulate and complement this approach, a number of ad-
ditional sources were used, as suggested by earlier research [19, 70]. First, so-
cial media sites as LinkedIn, Twitter and Facebook were queried with keywords
from the committer, such as the name, variations of the username and e-mail do-
main. Second, unstructured sources such as blogs, community communication
(e.g., comment-history, mailing-lists, IRC logs), web articles and firm websites
were consulted.

Sony Mobile turned out to be one of the main organizational affiliations among
the committers to Gerrit while no evidence of commits to the Jenkins core com-
munity was identified. The reason for this was that Jenkins is a plug-in-based
community, i.e. there is a core component surrounded by approximately 1,000
plug-ins of which each has a separate source code repository and community. Our
initial screening had only covered the core Jenkins component. After analyzing fo-
rum postings, blog posts and reviewing previously identified committers, a set of
Jenkins plug-ins, as well as two Gerrit plug-ins, were identified, which then were
also included in our analysis. The following Open Source projects were included
for further analysis:

• Gerrit1

• PyGerrit (Gerrit plug-in)2

• Gerrit-events (Gerrit plug-in)3

• Gerrit-trigger (Jenkins plug-in)4

• Build-failure-analyzer (Jenkins plug-in)5

• External-resource-viewer (Jenkins plug-in)6

1https://www.openhub.net/p/gerrit
2https://www.openhub.net/p/pygerrit
3https://www.openhub.net/p/gerrit-events
4https://github.com/jenkinsci/gerrit-trigger-plugin
5https://www.openhub.net/p/build-failure-analyzer-plugin
6https://github.com/jenkinsci/external-resource-dispatcher-plugin

3 Case study design 79

• Team-views (Jenkins plug-in)7

Classification of commit messages

Further analysis included creating the list of top committers combined with their
yearly activity (number of commits) in order to see how Sony Mobile’s involve-
ment evolved over time. Next, we characterized and classified the commits made
by Sony Mobile to the corresponding communities by following the criteria de-
fined by Hattori et al. [75]. This was done manually by analyzing the description
messages of the commits and searching for keywords (see Table 2), and then clas-
sifying the commits in one of the following categories:

Forward engineering activities refer to the incorporation of new features and
implementation of new requirements including the writing new test cases to verify
the requirements. Re-engineering activities deal with re-factoring, redesign and
other actions to enhance the quality of the code without adding new features. Cor-
rective engineering activities refer to fixing defects in the software. Management
activities are related to code formatting, configuration management, cleaning up
code and updating the documentation of the project.

Multiple researchers were involved in the commit message classification pro-
cess. After defining the classification categories, Kappa analysis was performed to
calculate the inter-rater agreement level. First, a random sample of 34% of the to-
tal commit messages were taken to classify the commit messages and Kappa was
calculated to be 0.29. Consequently, disagreement was discussed and resolved
since the inter-rater agreement level was below substantial agreement range. Af-
terwards, Kappa was calculated again and found to be 0.94.

3.5 Methods for qualitative analysis

The quantitative analysis had laid a foundation to understand the relation between
Sony Mobile, and the Jenkins and Gerrit communities. Therefore, in the next step
we added a qualitative view by interviewing relevant people inside Sony Mobile
in order to address RQ2–RQ5. Interview questions are listed in the Appendix.

Interviewee selection

The selection of interviewees was based on the committers identified in the ini-
tial screening of the projects. Three candidates were identified and contacted by
e-mail (Interviewees 1, 2 and 3, see Table 3). Interviewees 4 and 5 were proposed
during the initial three interviews. The first three are top committers to the Jenkins
and Gerrit communities, giving the view of Sony Mobile’s active participation and
involvement with the communities. It should be noted that interviewee I3, when

7https://github.com/jenkinsci/team-views-plugin

80 Open Innovation through the Lens of Open Source Tools: An . . .

Table 2: Keywords used to classify commits taken from Hattori [75].

Forward
Engineering

Re-
engineering

Corrective
Engineering

Management

IMPLEMENT OPTIMIZ BUG CLEAN
ADD ADJUST ISSUE LICENSE
REQUEST UPDATE ERROR MERGE
NEW DELET CORRECT RELEASE
TEST REMOV PROPER STRUCTURE
START CHANG DEPRAC INTEGRAT
INCLUD REFACTOR BROKE COPYRIGHT
INITIAL REPLAC DOCUMENTATION
INTRODUC MODIF MANUAL
CREAT ENHANCE JAVADOC
INCREAS IMPROV COMMENT

DESIGN
CHANGE

MIGRAT

RENAM REPOSITORY
ELIMINAT CODE RE-

VIEW
DEUPLICAT POLISH
RESTRUCTUR UPGRADE
SIMPLIF STYLE
OBSOLETE FORMATTING
REARRANG ORGANIZ
MISS TODO
ENHANCE
IMPROV

he was contacted, had just left Sony Mobile for a smaller organization dedicated to
Jenkins development. His responsibilities as the tools manager for Jenkins at Sony
Mobile were taken over by interviewee I4. Interviewee I4 is a Software Architect
in the Tools department involved further down in Sony Mobile’s continuous in-
tegration tool chain and gives an alternative perspective on the OSS involvement
of the Tools department as well as a higher, more architectural view on the tools.
Interviewee I5 is an upper-level manager responsible for Sony Mobile’s overall
OSS strategy, which could contribute with a top-down perspective to the qualita-
tive analysis.

The interviews were semi-structured, meaning that interview questions were
developed in advance and used as a frame for the interviews, but still allowing
the interviewers to explore other relevant findings during the interview wherever
needed. The two first authors were present during all five interviews, with the

3 Case study design 81

Table 3: Interviewee demographics.

Anonymous
name

ID Tools involve-
ment

Years of ex-
perience

Role

Interviewee 1 I1 Jenkins 8 Tools manager
for Jenkins

Interviewee 2 I2 Jenkins and Ger-
rit

6 Team lead, Tools
manager for Ger-
rit

Interviewee 3 I3 Jenkins 7 Former tools
manager Jenkins

Interviewee 4 I4 Second line after
Jenkins and Ger-
rit Build artifacts
and channel dis-
tribution

8 Software Archi-
tect

Interviewee 5 I5 Open Source pol-
icy in general

20+ Upper-level man-
ager responsible
for overall Open
Source strategy

addition of the third author during the first and fifth ones. Each interviewer took
turns asking questions, whilst the others observed and took notes. Each interview
was recorded and transcribed. A summary was also compiled and sent back to
the interviewees for a review. Any misunderstandings or corrections could then be
sorted out. The duration of the interviews varied from 45 to 50 minutes.

3.6 Validity threats

This section highlights the validity threats related to the case study. Four types of
validity threats [159] are addressed with their mitigation strategies.

Internal validity

This concerns causal relationships and the introduction of potential confounding
factors.

Confounding factors. To mitigate the risk of introducing confounding factors,
the study was performed on the tools level instead of an organizational level to
ensure that the innovation outcomes are merely the result of adopting OI. Per-
forming the study on an organization level introduces the risk of confounding the

82 Open Innovation through the Lens of Open Source Tools: An . . .

innovation outcomes as a result of a product promotion or financial investment
etc. instead of the use of external knowledge from OSS communities. Therefore,
a more fine-grained analysis on the OSS tools level was chosen to minimize the
threat of introducing confounding factors.

Subjectivity. It was found in the study that Sony Mobile does not use any
general innovation metrics to measure the impact of OI. Therefore, researchers
had to rely on qualitative data. This leads to the risk of introducing subjectivity
while inferring innovation outcomes as a result of OI adoption. In order to mini-
mize this risk, the first two authors independently performed the analysis and the
remaining authors reviewed it to make the synthesis more objective. Moreover,
findings were sent back to interviewees for validation. Furthermore, subjectivity
was minimized by applying the commit messages classification criteria proposed
by Hattori et al. [75]. During the analysis, the disagreements were identified using
Kappa analysis and resolved to achieve a substantial agreement.

Triangulation. In order to mitigate the risk of identifying the wrong innovation
outcomes, we used multiple data sources by mining the Jenkins and Gerrit source
code repositories prior to conducting interviews. Furthermore, we also performed
observer triangulation during the whole course of the study to mitigate the risk of
introducing researcher bias.

External validity

This refers to the extent it is possible to generalize the study findings to other
contexts. The scope of this study is limited to a software organization utilizing
the notion of OI to accelerate its innovation process. The selected case organiza-
tion is a large-scale organization with an intense focus on software development
for embedded devices. Moreover, Sony Mobile is a direct competitor of all the
main stream organizations making Android phones. The involvements by other
stakeholders in the units of analysis (Jenkins and Gerrit) indicate their adoption
of Google’s tool chain to improve their continuous integration process. Therefore,
the findings of this study may be generalized to major stakeholders identified for
their commits to Jenkins and Gerrit, and other OSS tools used in the tool chain
development. Our findings may also be relevant to software organizations with
similar context, domain and size as Sony Mobile.

Construct validity

This refers to what extent the operational measures that are studied really represent
what researcher has in mind, and what is investigated according to the research
questions [159]. We took the following actions to minimize construct validity
threats.

Selection of interviewees. We conducted a preliminary quantitative analysis
of the Jenkins and Gerrit repositories to identify the top committers and to select

4 Quantitative analysis 83

the relevant interviewees. The selection was performed based on the individu-
als’ commits to Jenkins or Gerrit. Moreover, recommendations were taken from
interviewees for suitable further candidates to attain the required information on
OI. Process knowledge, role, and visible presence in the community were the key
selection factors.

Reactive bias. Researchers presence might limit or influence the interviewees
and causing them to hide facts or respond after assumed expectations. This threat
was limited by the presence of a researcher that has a long research collaboration
record with Sony Mobile and explained confidentiality rules. Furthermore, inter-
viewees were ensured anonymity both within the organization and externally in
the OSS community.

Design of the interviews. All authors validated the interview questionnaire
followed by a pilot interview with an OSS Jenkins community member in order to
avoid misinterpretation of the interview questions.

Reliability

The reliability deals with to what extent the data and the analysis are dependent on
the specific researcher, and the ability to replicate the study.

Member checking. To mitigate this risk, multiple researchers individually tran-
scribed and analyzed the interviews to make the findings more reliable. In addition,
multiple data sources (qualitative and quantitative) were considered to ensure the
correctness of the findings and cross-validate them. All interviews were recorded,
transcribed and sent back to interviewees for validation. The commit database
analysis was performed and validated by multiple researchers.

Audit trail. Researchers kept track of all the mined data from OSS code reposi-
tories as well as interview transcripts in a systematic way to go back for validation
if required. Finally, this study was not ordered by Sony Mobile to bring supporting
evidence for OI adoption. Instead the idea was to keep the study design and find-
ings as transparent as possible without making any adjustments in the data except
for the anonymizing the interviewees. The results were shared with Sony Mobile
prior to submitting the study for publication.

4 Quantitative analysis

This section presents a quantitative analysis of commits made to eight OSS projects,
namely: Gerrit, pyGerrit, Gerrit-events, Gerrit-trigger, Build-failure-analyzer, External-
resource-viewer and Team-views as depicted in section 3.4. It should be noted that
the seven latter projects are plugins to Gerrit and Jenkins, i.e., not part of the core
projects. In the analysis we investigated the types of commits made (see Sec-
tion 3.4), and in what proportion these were made by Sony Mobile over time, as
well as compared to other major organizations.

84 Open Innovation through the Lens of Open Source Tools: An . . .

Commits classification 2010 2011 2012 2013 2014 Total
Forward Engineering 65 44 264 373 207 953

Re-engineering 38 65 240 336 190 869

Corrective engineering 10 12 59 62 26 169

Management 12 15 96 171 73 367
Total 125 136 659 942 496 2358

Table 4: Sony Mobile’s commits to Gerrit analyzed per year.

4.1 Gerrit

The two largest categories of commits for Gerrit are forward engineering (953
commits) and re-engineering (869 commits), followed by management commits
(367 commits) and corrective engineering commits (169 commits), see Table 5.

Table 5: Classification of Sony Mobile’s commits to OSS tools based on hattori’s
criteria [75]

Tools Forward En-
gineering

Re-
Engineering

Corrective
Engineering

Management

Gerrit 953 869 169 367

pyGerrit 27 18 19 36

Gerrit-events 27 18 19 36

Gerrit-trigger 60 40 76 135

Build-failure-
analyzer

60 19 17 36

External-
resource-
viewer

28 8 8 6

Team-views 7 0 0 5

This dominance of forward and re-engineering commits remained stable be-
tween 2010 and 2014, see Table 4. Sony Mobile presented the first Android-based
mobile phone in March 2010 and as can be seen from the analysis also became
active in contributions to Gerrit with a total of 125 contributions in 2010. From
2012 the number of forward and re-engineering commits became more equal each
year suggesting that Sony Mobile was not only contributing new features but also
actively helping in increasing the quality of the current features and re-factoring.

4 Quantitative analysis 85

The number of forward engineering and re-engineering commits remained
high and we notice a substantial decrease of corrective engineering and manage-
ment commits. The decrease of management commits may suggest that Sony
Mobile reached a high level of compatibility of its code review processes and
therefore requires fewer commits in this area. This data shows an interesting pat-
tern in joining an OSS community. Since Sony Mobile is a large organization
with several complex processes, their joining of the Gerrit community had to be
associated with a substantial number of forward engineering and re-engineering
commits. This entry to the community lowered the transition time and enabled
faster synchronization of the code review processes between the Android commu-
nity players and Sony Mobile. At the same time, Sony Mobile contributed several
substantial features from the first year of participation which is positive for the
community. Figure 3 shows the progression of commits made by Sony Mobile to
all OSS tools between year 2009 and 2014.

Tool 2009 2010 2011 2012 2013 2014
Gerrit 0 125 136 659 942 496
PyGerrit 0 0 0 174 170 90
Gerrit-events 0 104 51 110 109 119
Gerrit trigger 0 411 262 526 367 607
Team-views 0 0 0 0 49 0
External resource reviewer 0 0 155 86 0 0
Build-failure analyzer 0 0 0 333 199 36

0

100

200

300

400

500

600

700

800

900

1000

2009 2010 2011 2012 2013 2014

N
um

be
r o

f C
om

m
its

Years

Gerrit

PyGerrit

Gerrit-events

Gerrit trigger

Team-views

External resource reviewer

Build-failure analyzer

Figure 3: Sony Mobile’s commits for all OSS tools per year

PyGerrit

PyGerrit is a Python library that provides a way for clients to interact with Gerrit.
As can be seen in Table 6, Sony Mobile initiated this plug-in and is the biggest
committer to it, representing 97.5% of the commits. Management commits are the
most frequent category, followed by forward engineering commits. This suggests
that some code formatting changes, cleaning up code and documentation commits
were delivered by Sony Mobile after opening up this plug-in to the community.
Sony Mobile’s yearly contribution analysis shows a steady growth since its intro-
duction in 2011 (see Fig. 3).

86 Open Innovation through the Lens of Open Source Tools: An . . .

Table 6: Percentage of Sony Mobile’s contribution compared to other Software
organizations

Tools Sony Google EricssonHP SAP Intel Others

Gerrit 8.2 38.5 0 0 10.7 0 42.5

PyGerrit 97.5 0 0 0 0 0 2.4

Gerrit-event 66.1 0 3.3 4.1 0.2 2 24.2

Gerrit-trigger 65.2 0 9.1 2.4 0.7 1.3 21.2

Team-views 100 0 0 0 0 0 0

External-resource-
reviewer

89.6 1.5 4.8 0 0 0 4.1

Build-failure-
analyzer

85.5 0 0 0 0 0 14.4

Conclusion: This indicates that companies that want the communities to ac-
cept their plug-ins should be prepared to dedicate effort on management type of
commits to increase the code’s quality and documentation and therefore enable
other players to contribute.

Gerrit-event

Gerrit-event is a Java library used primarily to listen to stream-events from Gerrit
Code Review and to send reviews via the SSH CLI or the REST API. It was orig-
inally a module in the Jenkins Gerrit-trigger plug-in and is now broken out to be
used in other tools without the dependency to Jenkins. Table 6 shows that apart
from Sony Mobile(66.1%), HP(4.1%), SAP(0.2%), Ericsson(3.3%) and Intel(2%)
commits reveal that they are also using Gerrit-event in their continuous integra-
tion process. Sony Mobile started contributing to Gerrit-event in 2009 and since
then seem to be the largest committer along with its competitors (see Table 6).
Similarly, to the PyGerrit plug-in, management and forward engineering commits
dominate and Sony Mobile is the main driver of features to this community.

Conclusion: Sony Mobile turns out to be the biggest contributor in Gerrit-
event where the focus is mostly on adding new features (forward engineering)
based on the internal organizational needs.

4.2 Jenkins

Commits from Sony Mobile to Jenkins could not be identified in the core product
but to a various set of plug-ins (see Table 6). The ones identified are:

4 Quantitative analysis 87

• Gerrit-trigger

• Build-failure-analyzer

• External resource-reviewer

• Team-views

Gerrit-trigger

This plug-in triggers builds on events from the Gerrit code review system by re-
trieving events from the Gerrit command stream-events, so the trigger is pushed
from Gerrit instead of pulled as scm-triggers usually are. Multiple builds can be
triggered by one change-event, and one consolidated report is sent back to Gerrit.
This plug-in (see Table 6) seems to attract the most number of commits with the
percentage of 65.2% from Sony Mobile. 135 commits were classified as manage-
ment and 76 as corrective engineering. In this case, the majority of the commits
were not forward or re-engineering, which may suggest that Sony Mobile was
more interested in increasing the code quality and fixing the bugs rather than ex-
tending it. It seems logical as for the Jenkins community new functionality can be
realized in the form of a new plug-in rather than extending the current plug-ins.

Conclusion: Adding plug-ins allows greater flexibility but increases the total
number of parallel projects to manage and maintain by the community.

Build-failure-analyzer

This plug-in scans build logs and other files in the workspace for recognized pat-
terns of known causes to build failures and displays them on the build page for
quicker recognition of why the build failed. As can be seen in see Table 6, Sony
Mobile came out as the largest committer (85.5%) to the Build-failure-analyzer.
One possible explanation for the lack of contribution from the other software or-
ganizations is that this plug-in might be very specific to the needs of Sony Mobile,
but they made it open to see if the community shows interest in contributing to
further development efforts.

Forward engineering and management commits are the two most common cat-
egories. Moreover, the number of commits have declined after 2012 and Table 5
shows a relatively low numbers of corrective engineering (17) and re-engineering
(19) commits, which seem to indicate the maturity of this plug-in in terms of qual-
ity and functionality.

Conclusion: We hypothesize that after creating and contributing the core func-
tionality for a given plug-in, the number of forward commits declines and further
advances are realized in a form of a new plug-in.

88 Open Innovation through the Lens of Open Source Tools: An . . .

External-resource-viewer

This plug-in adds support for external resources in Jenkins. An external resource is
something attached to a Jenkins slave and can be locked by a build, to get exclusive
access to it, then released after the build is done. Examples of external resources
are phones, printers and USB devices. Like Build-failure-analyzer, Sony Mobile’s
is the top commiter with the largest contribution percentage of 89.6% compared to
Google (1.48%) and Ericsson (4.8%). Moreover, the majority of the commits are
classified as forward engineering, suggesting that Sony Mobile has come up with
the majority of the functionality to this plug-in. As the number of corrective engi-
neering and re-engineering commits remained low (8 commits in each category),
we can assume that the contributed code was high quality.

Conclusion: This data suggest a hypothesis that companies that frequently
interact with OSS communities learn to contribute high quality code and possibly
keep the same quality standards for other development initiatives.

Team-views

This plug-in provides teams, sharing one Jenkins master, to have their own area
with team-specific views. Sony Mobile turned out to be the only committer for
this tool (see Table 6), which implies that Team-views is tailored for the needs of
Sony Mobile. Only forward engineering and management commits were identified
in the data, suggesting that high quality code was contributed and no major re-
factoring was required for this plug-in. This result also supports our previous
hypothesis that modular plug-in based OSS communities provide an efficient way
for proprietary companies to participate and contribute with new functionality as
new plug-ins.

Conclusion: Decoupling of plug-ins helps in targeting contributions and qual-
ity improvement suggestions and simplifies the collaboration networks for discus-
sions on bugs and future improvements.

5 Qualitative analysis

We conducted thematic analysis [37, 38] to find recurring patterns in the collected
qualitative data. The following steps were performed in the process.

1. Transcribe the interviewed data from the five interviewee (see Table 3).

2. Identify and define five distinct themes in the data (see Table 7).

3. Classify the interview statements based on the defined themes.

4. Summarize the findings and answers to the RQs.

5 Qualitative analysis 89

Table 7: Themes emerging from the thematic analysis.
Theme name Definition
Opening up Sony Mobile’s transition process from

closed innovation model to OI model.

Determinants of openness Factors that Sony Mobile considers before
indulging themselves into OI.

Requirements engineering How Sony Mobile manages their require-
ments while working in OI context.

Testing How Sony Mobile manages their testing
process while working in OI context.

Innovation outcome The outcomes for Sony Mobile as a conse-
quence of adopting OI.

5.1 Opening up

The process of opening up for external collaboration and maturing as an open
source organization, can be compared to moving from a closed innovation model
to an OI model [29]. The data suggest that the trigger for this process was a
paradigm shift around 2010 when Sony Mobile moved from the Symbian plat-
form (developed in a joint venture), to Google’s open source Android platform
in their products [191]. Switching to Android correlates to a general shift in the
development environment, moving from Windows to Linux. This concerned the
tools used in the product development as well. A transition was made from ex-
isting proprietary solutions, e.g. the build-server Electric commander, to the tools
used by Google in their Android development, e.g. GIT and Gerrit. As stated
by I2, “. . . suddenly we were almost running pretty much everything, at least any-
thing that touches our phone development, we were running on Linux and open
source”. This was not a conscious decision from management but rather some-
thing that grew bottom-up from the engineers. The engineers further felt the need
for easing off the old and complex chain of integration and building process.

At the same time, a conscious decision was made regarding to what extent
Sony Mobile should invest in the open source tool chain. As stated by I5, “. . . not
only should [the tool chain] be based on OSS, but we should behave like an ac-
tive committer in the ways we can control, understand and even steer it up to
the way we want to have it”. The biggest hurdle concerned the notion of giv-
ing away internally developed intellectual property rights, which could represent
competitive advantage. The legal department needed some time to understanding
the benefits and license aspects, which caused the initial contribution process to
be extra troublesome. In this case, Sony Mobile benefited from having an inter-
nal champion and OSS evangelist (I5). He helped to drive the initiative from the

90 Open Innovation through the Lens of Open Source Tools: An . . .

management side, explained the issues and clarified concerns from different func-
tions and levels inside Sony Mobile. Another success factor was the creation of an
OSS review board, which included different stakeholders such as legal department
representatives, User Experience (UX) design, product development and product
owners. This allowed for management, legal, and technology representatives to
meet and discuss OSS related issues. The OSS contribution process now includes
submitting a form for review, which promotes it further after successful initial
screening. Next, the OSS review board gives it a go or no-go decision. As this
would prove bureaucratic if it would be needed for each and every contribution to
an OSS community, frame-agreements are created for open source projects with a
high-intensity involvement, e.g. Jenkins and Gerrit. This creates a simplified and
more sustainable process allowing for a day to day interaction between develop-
ers in the Tools department and the communities surrounding Jenkins and Gerrit.
Sony Mobile’s involvement in OSS communities is in-line with the findings of
governance in OSS communities by Jensen [92].

Conclusion: Adopting OI was a result of a paradigm shift moving from Win-
dows to Linux environment to stay as close as possible to Google’s tool chain.
Furthermore, Sony Mobile saw a great potential in contributing to OSS communi-
ties (Jenkins and Gerrit) and steering them towards its own organizational interests,
as opposed to buying costly proprietary tools.

5.2 Determinants of openness

Several factors interplay in the decision process of whether or not a feature or a
new project should be made open. Jenkins and Gerrit are neither seen as a part of
Sony Mobile’s competitive advantage nor as a source of revenue. This is the main
reason why developers in the Tools department can meet with competitors, go to
conferences, give away free work etc. This, in turn, builds a general attitude that
when something is about to be created, the question asked beforehand is if it can be
made open source. There is also a follow-up question, whether Sony Mobile would
benefit anything from it, for example maintenance, support and development from
an active community. If a feature or a project is too specific and it is deemed
that it will not gain any traction, the cost of generalizing the project for open use
is not motivated. Another factor is whether there is an existing community for
a feature or a project. By contributing a plug-in to the Jenkins community or a
feature to Gerrit there is a chance that an active workforce is ready to adopt the
contribution, whilst for new projects this has to be created from scratch which may
be cumbersome.

Another strategic factor concerns having a first-mover advantage. Contributing
a new feature or a project first means that Sony Mobile as the maintainer gets a
higher influence and a greater possibility to steer it in their own strategic interest.
If a competitor or the community publishes the project, Sony Mobile may have
less influence and will have to adapt to the governance and requirements from

5 Qualitative analysis 91

the others. A good example here is the Gerrit-trigger. The functionality was re-
quested internally at Sony Mobile and therefore undergone development by the
Tools department during the same period it became known that there was a similar
development ongoing in the community. As stated by I3, “. . . we saw a big risk
of the community going one way and us going a very different route”. This led
to the release of the internal Gerrit-trigger as an open source plug-in to Jenkins,
which ended up being the version with gained acceptance in the Jenkins and Gerrit
communities. The initial thought was however to keep it closed according to I3,
“. . . We saw the Gerrit-trigger plug-in as a differentiating feature meaning that it
was something that we shouldn’t contribute because it gave us a competitive edge
towards our competitors [in regards to our continuous integration process]”. It
should be noted that this was in the beginning of the process of opening up in
Sony Mobile and a positive attitude was rising. A quote from I3 explains the posi-
tive attitude of the organization which might hint about future directions, “. . . in 5
years’ time probably everything that Sony Mobile does would become open”.

Conclusion: One of the key determinants of making a project open is that it is
not seen as a main source of revenue. In other words, there is no competitive ad-
vantage gained by Sony Mobile by retaining the project in-house. By maintaining
an internal fork, the project incurs more maintenance cost compared to making it
open source. Therefore, all the all projects with no competitive advantage are seen
as good candidates to become open source.

5.3 Requirements engineering

This theme provides insights about requirements engineering practices in an ex-
ample OI context. The requirements process in the Tools department towards the
Jenkins and Gerrit communities does not seem very rigid, which is a common
characteristic for OSS [163]. The product development teams in Sony Mobile
are the main customers of the Tools department. The teams are, however, quite
silent with the exception of one or two power users. There is an open backlog
for internal use inside Sony Mobile where anyone from the product development
may post feature requests. However, a majority of the feature requests are submit-
ted via e-mail. The developers in the Tools department started arranging monthly
workshops where they invited the power users and the personnel from different
functional roles in the product development organization. An open discussion is
encouraged allowing for people to express their wishes and issues. An example
of an idea sprung out from this forum is the Build-failure-analyzer8 plug-in. Most
of the requirements are, however, elicited internally within the Tools department
in a dialogue between managers, architects and developers. They are seen to have
the subject matter expertise in regards to the tool functionality. According to I2,
there are “. . . architect groups which investigate and collaborate with managers
about how we could take the tool environment further”. This is formulated as

8https://wiki.jenkins-ci.org/display/JENKINS/BuildFailureAnalyzer

92 Open Innovation through the Lens of Open Source Tools: An . . .

focus areas, and “. . . typical examples of these requirements are sync times, push
times, build times and apart from that everything needs to be faster and faster”.
These requirements are high level and later delegated to the development team for
refinement.

The Tools team works in an agile Scrum-like manner with influences from
Kanban for simpler planning. The planning board contains a speed lane which
is dedicated for severe issues that need immediate attention. The importance of
being agile is highlighted by I2, “. . . We need to be agile because issues can come
from anywhere and we need to be able to react”.

The internal prioritization is managed by the development team itself, on del-
egation from the upper manager, and lead by two developers which have the as-
signed role of tool managers for Jenkins and Gerrit respectively. The focus areas
frame the areas which need extra attention. Every new feature is prioritized against
existing issues and feature requests in the backlog. External feature requests to
OSS projects managed by the Tools department (e.g. the Gerrit-trigger plug-in)
are viewed in a similar manner as when deciding whether to make an internal fea-
ture or project open or not. If it is deemed to benefit Sony Mobile enough, it will
be put in the backlog and it will be prioritized in regards to everything else. As
stated by I3, “. . . We almost never implemented any feature requests from outside
unless we think that it is a good idea [for Sony Mobile]”. If it is not interesting
enough but still a good idea, they are open for commits from the community.

An example regards the Gerrit-trigger plug-in and the implementation of dif-
ferent trigger styles. Pressing issues in the Tools department’s backlog kept them
from working on the new features. At the same time, another software intense
organization with interest in the plug-in contacted the Tools department about fea-
tures they wanted to implement. These features and the trigger style functionality
required a larger architectural reconstruction. It was agreed that the external or-
ganization would perform the architectural changes with a continuous discussion
with the Tools department. This allowed for a smaller workload and the possibility
to implement this feature earlier. This feature-by-feature collaboration is a com-
monly occurring practice as highlighted by I1, “It’s mostly feature per feature. It
could be an organization that wants this feature and then they work on it and we
work on it". But we don’t have any long standing collaborations”. I3 elaborates
on this further and states that “. . . it is quite common for these types of collabora-
tion to happen just between plug-in maintainer and someone else. They emailed
us and we emailed back” as was the case in the previous example.

In the projects where the Tools department is not a maintainer, community
governance needs more care. In the Gerrit community, new features are usually
discussed via mailing lists. However, large features are managed at hackathons by
the Tools department where they can communicate directly with the community
to avoid getting stuck in tiny details [130]. As brought up by I2, “. . . with the
community you need to get people to look at it the same way as you do and get an
agreement, otherwise it will be just discussions forever”. This is extra problematic

5 Qualitative analysis 93

in the Gerrit community as the inner core team with the merge rights consists
of only six people, of which one is from Sony Mobile. One of the key features
received from the community was the tagging support for patch sets. I2 stated,
“. . . When developers upload a change which can have several revisions, it enabled
us to tag meta-data like what is the issue in our issues handling system and changes
in priorities as a result of that change. This tagging feature allows the developers
to handle their work flow in a better way". This whole feature was proposed and
integrated during a hackathon, and contained more than 40 shared patch sets. Prior
to implementing this feature together with the community (I3 quoted) “. . . we tried
to do it with the help of external consultants but we could not get it in, but meeting
core developer in the community did the job for us".

As hackathons may not always be available, an alternative way to communi-
cate feature suggestions more efficiently is by mock-ups and prototypes. I3 de-
scribed how important it is to sell your features and get people excited about it.
Screenshots is one way to visualize it and show how it can help end-users. In the
Jenkins community, this has been taken further by hosting official webcasts where
everyone is invited to present and show new development ideas. Apart from us-
ing mailing lists and existing communication channels, Sony Mobile creates their
own channels, e.g. with public blogs aimed at developers and the open source
communities.

This close collaboration with the community is important as Sony Mobile does
not want to end up with an internal fork of any tool. An I2 quoted, “If we start
diverging from the original software we can’t really put an issue in their issue
tracker because we can’t know for sure if it’s our fault or their system and we
would loose the whole way of getting help from community to fix stuff and col-
laborate on issues”. Another risk would be that “. . . all of a sudden everybody is
dependent on stuff that is taken away from the major version of Gerrit. We cannot
afford to re-work everything”. Due to these reasons, the Tools department is keen
on not keeping stuff for themselves, but contributing everything [180, 194]. An
issue in Jenkins is that there exist numerous combinations and settings of plug-ins.
Therefore, it is very important to have backward compatibility when updating a
plug-in and planning new features.

Conclusion: The requirements engineering process does not seem to be very
rigid, and a majority of the features requests are submitted through e-mails, and
monthly workshops with the power users (e.g. internal developers and testers).
However, large features are discussed directly with the community at hackathons
by the Sony Mobile’s Tools department to avoid communication bottlenecks. Fur-
thermore, the prioritization of features is based on the internal needs of Sony Mo-
bile.

94 Open Innovation through the Lens of Open Source Tools: An . . .

5.4 Testing

Similar to the requirements process, the testing process does not seem very rigid
either. I3 quoted, “. . . When we fix something we try to write tests for that so we
know it doesn’t happen again in another way. But that’s mostly our testing process
I think. I mean, we write JUnit and Hudson test cases for bugs that we fix”.

Bugs and issues are, similarly to feature requests, reported internally either via
e-mail or an open backlog. Externally, bugs or issues are reported via the issue
trackers available in the community platforms. The content of the issue trackers
is based on the most current pressing needs in the Tools department. Critical is-
sues are prioritized via the Kanban speed lane which refers to a prioritized list of
requirements/bugs based on the urgent needs of Sony Mobile. If a bug or an issue
has low priority, it is reported to the community. This self-focused view correlates
with the mentality of how the organization would benefit from making a certain
contribution, which is described to apply externally as well, “. . . Organizations
take the issues that affect them the most”. However, it is important to show to the
community that the organization wants to contribute to the project as a whole and
not just to its parts, as mentioned by Dahlander [42]. In order to do so, the Tools
department continuously stays updated about the current bugs and their status. It
is a collaborative work with giving and taking. “Sometimes, if we have a big issue,
someone else may have it too and we can focus on fixing other bugs so we try to
forward as many issues as possible”.

In Gerrit, the Tools department is struggling with an old manual testing frame-
work. Openness has lead them to think about switching from the manual to an
automated testing process. I2 stated, “. . . It is one of my personal goals this year
to figure out how we can structure our Gerrit testing in collaboration with the com-
munity. Acceptance tests are introduced greatly in Gerrit too but we need to look
into and see how we can integrate our tests with the community so that the whole
testing becomes automated”. In Jenkins, one of the biggest challenges in regards
to test is to have a complete coverage as there are many different configurations
and setups available due to the open plug-in architecture. However, Gerrit still has
some to catch up as stated by I2, “it is complex to write stable acceptance tests
in Gerrit as we are not mature enough compared to Jenkins”. A further issue is
that the test suites are getting bigger and therefore urges the need for automated
testing.

Jenkins is considered more mature since the community has an automated test
suite which is run every week when a new version of the core is released. This
test automation uses Selenium9, which is an external OSS test framework used
to facilitate the automated acceptance tests. It did not get any traction until re-
cently because it was written in Ruby, while the Jenkins community is mainly
Java-oriented. This came up after a discussion at a hackathon where the core
members in the community gathered, including representatives from the Tools de-

9http://www.seleniumhq.org/

5 Qualitative analysis 95

partment. It was decided to rework the framework to a Java-based version, which
has helped the testing to take off although there still remains a lot to be done.

I3 highlighted that Sony Mobile played an important role in the Selenium Java
transition process, “The idea of an acceptance test harness came from the com-
munity but [Sony Mobile] was the biggest committer to actually getting traction
on it”. From Sony Mobile’s perspective, it can contribute its internal acceptance
tests to the community and have the community execute what Sony Mobile tests
when setting up the next stable version. Consequently, it requires less work of
Sony Mobile when it is time to test a new stable version. From the community
perspective I3 stated, “an Acceptance Test Harness also helps the community and
other Organizations to understand what problems that big or small organizations
have in terms of features or in terms other requirements on the system. So it’s a
tool where everyone helps each other”.

Conclusion: Like the requirements engineering process, the testing process
is also very informal, and Sony Mobile prioritizes the issues that affect them the
most. One of the biggest challenges faced by the community and organizations is
to have complete test coverage due to the open plug-in architecture. The introduc-
tion of an acceptance test harness was an important step to make the whole testing
process automated for organizations, and the Jenkins and Gerrit communities.

5.5 Innovation outcomes

The word innovation has a connotation of newness [8] and can be classified as
either things (products and services), or changes in the way we create and deliver
products, services and processes. Assink [8] classified innovation into disruptive
and incremental. Disruptive innovations change the game by attacking an existing
business and offering great opportunities for new profits and growth. Incremental
innovations remain within the boundaries of the existing technology, market and
technology of an organization. The innovation outcomes found in this study are
related to incremental innovations.

Sony Mobile does not have any metrics for measuring process and product
innovation outcomes. However, valuable insights were found during the interviews
regarding what Sony Mobile has gained from the Jenkins and Gerrit community
involvement. During the analysis, the following innovation outcomes have been
identified:

1. Free features.

2. Free maintenance.

3. Freed-up time.

4. Knowledge retention.

5. Flexibility in implementing new features and fixing bugs.

96 Open Innovation through the Lens of Open Source Tools: An . . .

6. Increased turnaround speed.

7. Increased quality assurance.

8. Improved new product releases and upgrades.

9. Inner source initiative.

The most distinct innovation outcome is the notion of obtaining free features from
the community, which have different facets [40, 176]. For projects maintained by
Sony Mobile, such as the Gerrit-trigger plug-in, a noticeable amount of external
commits can be accounted for. Similarly, in communities where Sony Mobile
is not a maintainer, they can still account for free work, but it requires a higher
effort in lobbying and actively steering the community in order to maximize the
benefits for the organization. Along also comes, the free maintenance and quality
assurance work, which renders better quality in the tools. Furthermore, the use of
tools (Jenkins and Gerrit) helped software developers and testers to better manage
their work-flow. Consequently, it freed-up time for the developers and testers
that could be used to spent on other innovation activities. The observed innovation
example in this case was the developers working with OSS communities, acquiring
and integrating the external knowledge into internal product development.

Correlated to the free work is the acknowledgement that the development team
of six people in the Tools department will have a hard time keeping up with the ex-
ternal workforce, if they were to work in a closed environment. “. . . I mean Gerrit
has like let us say we have 50 active developers, it’s hard for the tech organization
to compete with that kind of workforce and these developers at Gerrit are really
smart guys. It is hard to compete for commercial Organizations”. Further on,
“. . . We are mature enough to know that we lose the competitive edge if we do not
open up because we cannot keep up with hundreds of developers in the community
that develops the same thing”.

An organizational innovation outcome of opening up is the knowledge reten-
tion which comes from having a movable workforce. People in the community
may move around geographically, socially and professionally but can still be part
of the community and continue to contribute. I3, who took part in the initiation
of many projects, recently left Sony Mobile but is still involved in development
and reviewing code for his former colleagues which is in line with the findings of
previous studies [130,176]. Otherwise, the knowledge tied to I3 would have risked
being lost for Sony Mobile.

Sony Mobile had many proprietary tools before opening up. Adapting these
tools, such as the build server Electric commander, was cumbersome and it took
long time before even a small fix would be implemented and delivered by the sup-
plier. This created a stiffness whereas open source brought flexibility. I2 quoted,
“. . . Say you just want a small fix, and you can fix that yourself very easily but
putting a requirement on another organization, I mean it can take years. Nothing
says that they have to do it”. This increase in the turnaround speed was besides

5 Qualitative analysis 97

the absence of license fees, a main argument in the discussions when looking at
Jenkins as an alternative to Electric commander. This was despite the required ex-
tra involvement and cost of more internal man-hours. As a result, the continuous
integration tool chain could be tailored specifically to the needs of the product de-
velopment team. I1 stated that “. . . Jenkins and Gerrit have been set up for testers
and developers in a way that they can have their own projects that build code and
make changes. Developers can handle all those parts by themselves and get to
know in less than 3 minutes whether or not their change had introduced any bugs
or errors to the system". Ultimately, it provides quality assurance and perfor-
mance gains by making the work flow easier for software developers and testers.
Prior to the introduction of these tools there was one engineer who was managing
the builds for all developers. In the current practice everybody is free to extend
on what is given to them from tools department. It offers more scalability and
flexibility [131].

I1 stated that besides the flexibility, the Tools department is currently able to
make a “. . . more stable tools environment [at Sony Mobile] and that sort of makes
our customers of the tools department, the testers and the engineers, to have an
environment that actually works and does not collapse while trying to use it”. I2
mentioned that “. . . I think it is due to the part of open source and we are trying
to embrace all these changes to our advantage. I think we can make high quality
products in less time and in the end it lets us make better products. I think we
never made an as good product as we are doing today”. Further exploration of
this statement revealed the background context where Sony Mobile has improved
in terms of handling all the new releases and upgrades in their phones compared
to their competitors and part of its credit is given to the flexibility offered by the
open source tools Jenkins and Gerrit.

The obtained external knowledge about the different parts of the continuous
integration tool chain enabled better product development. However, the Tools
department has to take the responsibility for the whole tool chain and not just its
different parts, e.g. Jenkins and Gerrit, described by I5 as the next step in the ma-
turity process. The tool chain has the potential to function as an enabler in other
contexts as well, seeing Sony Mobile as a diversified organization with multiple
product branches. By opening up in the way that the Tools department has done,
effects from the coupled OI processes with Jenkins and Gerrit may spread even
further into other product branches, possibly rendering in further innovations on
different abstraction levels [117]. A way of facilitating this spread is the creation
of an inner source initiative which will allow for knowledge sharing across the
different borders inside Sony Mobile, comparable to an internal OSS community,
or as a bazaar inside a cathedral [184]. The tool chain is even seen as the foun-
dation for a platform which is supposed to facilitate this sharing [116]. The Tools
department is considered more mature in terms of contributing and controlling the
OSS communities. Hence, the Tools department can be used as an example of how
other parts of the organization could open up and work with OSS communities. I5

98 Open Innovation through the Lens of Open Source Tools: An . . .

uses this when evangelizing and working on further opening up the organization
at large, and describes how “. . . they’ve been spearheading the culture of being
active or in engaging something with communities”.

Conclusion: Some of the innovation outcomes attached to Sony Mobile’s
openness entail more freed-up time for developers, better quality assurance, im-
proved product releases and upgrades, inner source initiatives and faster time to
market.

6 Results and discussion

Results from the quantitative and qualitative analysis are discussed below, of which
the latter is addressed per theme, and connected to the research questions defined
in Table 1. Table 8 presents the mapping of research questions to answers with
section numbers. Furthermore, a brief summary of answers to research questions
is highlighted in section 5.

Table 8: Mapping of answers to RQs with section numbers
Research questions Answers to RQs
RQ1 Section 6.1

RQ2 Section 6.2, 6.7

RQ3 Section 6.3

RQ4 Section 6.6

RQ5 Section 6.4, 6.5

6.1 Involvement of Sony Mobile in OSS Communities

Addressing RQ1 in Table 1, the quantitative analysis showed that Sony Mobile has
an active role in numerous OSS projects. In most of the analysed projects, Sony
Mobile is the initiator and maintainer. An exception is Gerrit where they entered
an already established project. However, with 8.2 % (see Table 6) of the commits
during the investigated time-span, they have established themselves in the com-
munity and been able to contribute the necessary adaptions for Gerrit to function
as a part of the continuous integration tool-chain used inside Sony Mobile. This
shows that Sony Mobile has an open mindset to creating their own OSS projects,
as well as getting involved and contributing back in existing ones. In the projects
which Sony Mobile has released themselves, they further show that they are open
for contributions by others. In the Gerrit-trigger plug-in for example, they only
represent 65% of the total commits. This also gives a clear picture of the help

6 Results and discussion 99

gained by the external workforce as highlighted by OI. By opening up the Gerrit-
trigger plugin and making it a part of the Jenkins community, they earn benefits
such as shared feature development, maintenance and quality assurance. A rea-
son why some of the other projects have fewer external commits (e.g., PyGerrit,
Build-failure-analyzer and Team-views) may be that they are not as established
and attractive for others outside Sony Mobile. A further explanation could be that
Sony Mobile has not invested the time and attention needed in order to build suc-
cessful communities around these projects.

6.2 Opening Up

In relation to RQ2, the move to Android took Sony Mobile from a closed context
to an external arena for OI, recalls the description provided by Grotnes [73]. With
this, the R&D was moved from a structured joint venture and an internal vertical
hierarchy to an OI community. This novel way of using pooled R&D [188] can
be further found on the operational level of the Tools department, which freely
cooperates with both known and unknown partners in the Jenkins and Gerrit com-
munities. From the OI perspective, these activities can be seen as a number of
outside-in and inside-out transactions.

The Tools department’s involvement in Jenkins and Gerrit and the associated
contribution process are repetitive and bidirectional. Thus, this interaction can be
classified as a coupled innovation process [66]. This also complies with Grotnes’
description of how an open membership renders in a coupled process, as Jenkins
and Gerrit communities both are free for anyone to join, in contrast to the Android
platform and its Open Handset Alliance, which is invite-only [73].

The quantitative results provide further support for the hypothesis that both es-
tablished, larger corporations and small scale software organizations are involved
in the development of Jenkins and Gerrit (see Table 6). Some of the small organiza-
tions are Garmin, Ostrovsky, Luksza, Codeaurora, Quelltextlich etc. This confirms
findings from the existing OI literature, e.g. [77, 173] that other community play-
ers also can use these communities as external R&D resources and complimentary
assets to internal R&D processes. One possible motivation for start-ups or small
scale organizations to utilize external R&D is their lack of in-house R&D capabil-
ities. Large scale software organizations exploit communities to influence not only
the development direction, but also to gain a good reputation in the community as
underlined by prior studies [42, 77].

Gaining a good reputation requires more than just being an active committer.
Stam [173] separates between technical (e.g. commits) and social activities (e.g.
organizing conferences and actively promoting the community), where the latter
is needed as complementary in order to maximize the benefits gained from the
former. Sony Mobile and the Tools department have evolved in this vein as they
are continuously present at conferences, hackathons and in online discussions. Fo-
cused on technical activities, the Tools department have progressively moved from

100 Open Innovation through the Lens of Open Source Tools: An . . .

making small to more substantial commits. Along with the growth of commits,
they have also matured in their commit strategy. As described in Section 5.2, the
intent was originally to keep the Gerrit-trigger plug-in enclosed. This form of se-
lective revealing [76] has however been minimized due to a more open mindset. As
a consequence of the openness more plug-ins were initiated and the development
time was reduced.

Although the adoption of Jenkins and Gerrit came along with an adaption to
the Android development, it was also driven bottom-up by the engineers since they
felt the need for easing off the complex integration tool chain and building process
as mentioned by Wnuk et al. [194]. As described in Section 5.1, this process was
not free of hurdles, one being the cultural and managerial aspect of giving away
internally developed intellectual property [84]. The fear to reveal intellectual prop-
erty was resolved thanks to the introduction of an OSS review board that involved
both legal and technical aspects. Having an internal champion to give leverage to
the needed organizational and process changes, convince skeptical managers [77],
and evangelism of open source was a great success factor, also identified in the
inner source literature [121].

6.3 Determinants of openness
When discussing if something should be made open or closed (RQ3) in Table 1,
an initial distinction within the Tools department regarding the possible four cases
is made:

1. New projects created internally (e.g. Gerrit-trigger).

2. New features to non-maintained projects (e.g. Gerrit).

3. External feature requirement requests to maintained projects (e.g. Gerrit-
trigger).

4. External bug reports to already maintained projects (e.g. Gerrit-trigger).

The first two may be seen as an inside-out transaction, whilst the two latter
are of an outside-in character. All have their distinct considerations, but one they
have in common, as described in Section 5.2, is whether Sony Mobile will benefit
from it or not. Even though the transaction cost is relative low, it still needs to be
prioritized against the current needs. In the case of the two former, if a feature is
too specific for Sony Mobile’s case it will not gain any traction, and it will be a
lost opportunity cost [113].

The fact that Sony Mobile considers their supportive tools, e.g. Jenkins and
Gerrit, as a non-competitive advantage is interesting as they constitute an essential
part of their continuous integration process, and hence the development process.
As stated in regards to the initial intent to keep Gerrit-trigger internally, they saw
a greater benefit in releasing it to the OSS community and having others adopt

6 Results and discussion 101

it than keeping it closed. The fear that the community was moving in another
direction, rendering in a costly need of patch-sets and possible risk of an internal
fork, was one reason for giving the plug-in to the community [180]. Wnuk et
al. [194] reason in a similar manner in their study where they differentiate between
contributing early or late to the community in regards to specific features. By going
with the former strategy, one may risk losing the competitive edge, however the
latter creates potentially high maintenance costs.

Sony Mobile is aware that increased mobility [29] poses a threat to the Tools
department as it is not possible for them to work in the OSS communities’ pace due
to the limited amount of resources [29]. Consequently, it may end up damaging
the originally perceived competitive advantage by lagging behind. On the other
hand, openness gives Sony Mobile an opportunity to have an access to pragmatic
software development workforce and also, Sony Mobile does not have to compete
against the community. Additionally, by adopting a first mover strategy [115]
Sony Mobile can use their contributions to steer and influence the direction of the
community.

6.4 Requirements engineering

Tracing back to RQ5 in Table 1, the Tools department may be viewed as both a de-
veloper and an end-user, making up a source of requirements as can often be seen
in Open Source Software Development (OSSD) [163]. This applies both internally
(as a supplier and an administrator of the tools), and externally (as a member of the
communities). From an RE perspective, they are their own stakeholder, competing
with other stakeholders (members) in the Jenkins and Gerrit communities. These
are important characteristics as stakeholders who are not developers are often nei-
ther identified nor considered [7]. A consequence otherwise could be that certain
areas are forgotten or neglected which stands in contrast to Wnuk et al. [194] who
state that adoption of OI makes identifying stakeholders’ needs more manageable.
Further, this brings an interesting contrast to traditional RE where non-technical
stakeholders often need considerable help in expressing themselves. The RE in
OI applied through OSS can be seen as quicker, light-weight and more technically
oriented than traditional RE [163].

In OSSD, one often needs to have a high authority level or have a group of
stakeholders backing up the intent. Sony Mobile has been very successful in this
respect due to the Tools department involvement inside these communities [42].
Due to their high commitment and good track record, Sony Mobile employees
have reached a high level in the governance organization. The Tools department
combines these positions in the communities together with openness in terms of
helping competitors and interacting in social activities [173] (e.g. developer con-
ferences [102]). One reason for this is to attract quiet stakeholders, both in terms
of influencing the community [40], but also to get access to others’ knowledge
which could be relevant for Sony Mobile. An example of this is the introduced

102 Open Innovation through the Lens of Open Source Tools: An . . .

focus on scalability in both the Jenkins and Gerrit communities, where the Tools
department needed to find stakeholders with similar issues to raise awareness and
create traction to the topic. Communication in this requirements value chain [61]
between the different stakeholders, as well as with grouping can be deemed very
ad-hoc, similar to OSS RE in general [163]. This correlates to the power structure
and how influence may move between different stakeholders.

Social interaction between the stakeholders is stressed by Panjer et al. [144]
as an important aspect to resolve conflicts and to coordinate dependencies in dis-
tributed software development projects. The Tools department’s preference for live
meetings over the otherwise available electronic options such as mailing lists, is-
sue trackers and discussion boards, is due to time differences and lag in discussions
that complicate implementation of larger features. Open source hackathons [164]
is the preferable choice as it brings the core stakeholders together which allows
for informal negotiations [61] and a live just-in-time requirements process [57],
meaning that requirements are captured in a less formal matter and first fully elab-
orated during implementation. As highlighted in Section 5.3, feature-by-feature
collaborations is also a common practice. This is also due to the ease of com-
munication as it may be performed between two single parties. Hence, it may be
concluded that communication in this type of distributed development is a critical
challenge, and in this case overcome by live meetings and keeping the number of
collaborators per feature low.

This use of live-meetings and social events for requirements communication
and discussion, highlights the importance of being socially present in a community
other than just online if a stakeholder wants to stay aware of important decisions
and implementations. Another reason for the individual stakeholder is to maintain
or grow its influence and position in the governance ladder. Hence, organizations
might need to revise their community involvement strategy and value what their
intents are in contrast to if an online presence is enough.

Another interesting reflection on the feature-by-feature collaborations is that
these may be performed with different stakeholders, i.e. relations between stake-
holders fluctuate depending on their respective interests. This objective and short-
term way of looking at collaborations imply a need of standardized practices in a
community for it to be effective.

6.5 Testing

Addressing the RQ5 in Table 1, we noticed during interviews that both Jenkins
and Gerrit focus on manual test cases. At the same time, the communities started
the transformation journey towards automated testing, with the Jenkins community
leading. The openness of the Tools department led them to participate in the testing
part of Jenkins community and to use its influence to rally the traction towards it
amongst the other stakeholders in the community. This is especially important for
the Jenkins community due to the rich number of settings offered by the plug-ins.

6 Results and discussion 103

The Gerrit community is currently following the Jenkins’ community patch,
as stressed by interviewee I2. With this move towards automated testing, quality
assurance will hopefully become better and enable more stable releases. These
are important aspects and business drivers for the Tools department as Jenkins and
Gerrit constitute the critical parts in Sony Mobile’s continuous integration tool
chain. From this perspective, a trend may be seen in how the different communities
are becoming more professionalized in the sense that the tools make up business
critical assets for many of the stakeholders in the communities, which motivates a
continuous effort in risk-reduction [76, 136].

The move towards automated testing also allowed for the Tools department to
contribute their internal test cases. This may be viewed as profitable from two
angles. First, it reduces the internal workload and second, it secures that settings
and cases specific for Sony Mobile are addressed and cared for. The test cases
may to some extent be viewed as a set of informal requirements, which secure
quality aspects in regards to scalability for example which is important for Sony
Mobile [21]. Similar practices, but much more formal, are commonly used in
more traditional (closed) software development environments. From a community
perspective, other stakeholders benefit from this as they get the view and settings
from a large environment which enable them to grow as well.

As can be noted in Table 5, the focus is on forward and re-engineering. An
interesting concern is when and how much one should contribute to bug fixes and
what should be left for the community, because some bug fixes are very specific
to Sony Mobile and the community will not gain anything from them. As dis-
cussed earlier, Sony Mobile has the strategy of focusing on issues which are self-
beneficiary. Therefore, to be able to keep the influence and strategic position in
the communities, the work still has to be done in this area as well.

6.6 Innovation outcomes

In relation to RQ4 in Table 1, the focal point of the OI theory is value creation and
capture [31]. In the studied case, the value is created and captured through their in-
volvement in the Jenkins and Gerrit communities. However, measuring that value
using key performance indicators is a daunting challenge. Edison et al. [50] con-
firmed a limited number of measurement models, and that the existing ones neither
model all innovation aspects, nor say what metric can be used to measure a certain
aspect. Furthermore, existing literature is scarce in regards to how data should be
gathered and used for the metrics proposed in the literature. As expected, we found
that Sony Mobile does not have established mechanisms in place to measure their
performance before and after the Jenkins and Gerrit introduction. However, from
the qualitative data collected from the interviews we specifically looked for two
types of innovations: product innovations in the tools Jenkins and Gerrit, and pro-
cess innovation in Sony Mobile’s product development. Other types, specifically
market and organizational innovation were considered but not identified.

104 Open Innovation through the Lens of Open Source Tools: An . . .

By taking an active part in the knowledge sharing and exchange process with
communities [40, 176], the Tools department enjoys the benefits of contributions
extending the functionality of their continuous integration tools. Another benefit
is the free maintenance and bug corrections and the test cases extension for further
quality assurance. By extension, these software improvements may be labeled as
product innovations depending on what definition to be used [50]. This may also
be viewed from the process innovation perspective [4] as Sony Mobile gets ac-
cess to extra work force and a broad variety of competencies, which are internally
unavailable [40]. The interviewees admit to that even a large scale software organi-
zation cannot keep up the technical work force beyond the organization’s borders
and there is a huge risk of losing the competitive edge by not being open. This
is an acknowledgement to Joy’s law [107] “No matter who you are, not all smart
people work for you”. Hence, it is vital to reach work force beyond organizational
boundaries when innovating [31], and knowledge is still retained even if people
move around inside the community.

Furthermore, these software improvements and product innovations affect the
performance and quality of the continuous integration process used by Sony Mo-
bile’s product development. Continuous integration as an agile practice [15] en-
ables early identification of integration issues as well as increases the developers’
productivity and release frequency [172]. With this reasoning, as reported else-
where [117], we deem that the product innovations captured in Jenkins and Gerrit
transfer on as process innovation to Sony Mobile’s product development. The
main reason behind this connection is the possibility to tailor and be flexible that
OSS development permits. By adapting the tool chain to the specific needs of
the product development the mentioned benefits (e.g. increased build quality and
performance) are achieved and waste is reduced in the form of freed up hours,
which product developers and testers may spend on alternative tasks, as confirmed
by Moller [128]. Reduced time to market and increased quality of products are
among the visible business outcomes. However, these outcomes cannot be con-
firmed due to a lack of objective metrics and came up as a result of interviews.

Another process innovation, which could also be classified as an organiza-
tional innovation outcome [4] is the inner source initiative. This initiative not only
helps Sony Mobile to spread the tool chain, but also to build a platform (i.e. soft-
ware forge [116]) for sharing built on the tool within the other business units of
Sony Mobile. This may be seen as an intra-organizational level OI as described
by Morgan et al. [130]. By integrating the knowledge from other domains, as
well as opening up for development and commits, this allows a broader adoption
and a higher innovation outcome for Sony Mobile and neighboring business units,
as well as for communities. Organizational change in regards to processes and
structures and related governance issues, would however be one of many chal-
lenges [130]. Since Sony Mobile is a multinational corporation with a wide spread
of internal culture, organizational changes are context and challenging.

7 Conclusions 105

6.7 Openness of tools software vs. Proprietary software

A specific aspect of RQ2 in Table 1 is that Sony Mobile only opens up its non-
competitive tools that are not the part of the revenue stream. I3 stated that “. . . Sony
Mobile has learnt that even collaborating with its worst competitors does not take
away their competitive advantage, rather they bring help for Sony Mobile and
becomes better and better”. This raises a discussion point of why Sony Mobile
limits its openness to noncompetitive tools, despite knowing that opening up cre-
ates a win-win situation for all stakeholders involved. Furthermore, it remains an
open question why the research activity related to OI in SE is low, as confirmed by
the results of a mapping study performed on the area [141].

In the light of the mapping study, it would be fair to state that the SE literature
lacks studies on OI [141]. Organizations have a tendency to open proprietary
products when they lose their value, and spinning off is a one way of re-capturing
the value by creating a community around it [120]. This implication paves the
way for future studies using proprietary solutions as units of analysis. Moreover,
it will lead to contextualization of OI practices, which may or may not work under
different circumstances. Therefore, the findings could also be used to address the
lack of contextualization weakness of OI mentioned by Mowery [133]. It is also
important to note that this study focuses on OI via OSS participation, which is
significantly different from the situation where OI is based on open source code
for the product itself (like Android or Linux). In future work we plan to explore
that situation to see if there are other patterns in these OI processes.

7 Conclusions

This study focuses on OI in SE at two levels: 1) innovation incorporated into Jenk-
ins and Gerrit as software products, and 2) how these software improvements affect
process and product innovation of Sony Mobile. By keeping the development of
the tools open, the in- and out-flows of knowledge between the Tools department
and the OSS communities bring improvement to Sony Mobile and innovate the
way how products are developed. This type of openness should be separated from
the cases where OSS is used as a basis for the organization’s product or service
offering, e.g. as a platform, component or full product [180]. To the best of our
knowledge, no study has yet focused on the former version, which highlights the
contribution of this study and the need for future research of the area.

Our findings suggest that both incumbents and many small scale organizations
are involved in the development of Jenkins and Gerrit (RQ1). Sony Mobile may
be considered as one of the top committers in the development of the two tools.
The main trigger behind adopting OI turned out to be a paradigm shift, moving
to an open source product platform (RQ2). Sony Mobile’s opening up process
is limited to the tools that are non-competitive and non-pecuniary. Furthermore,

106 Open Innovation through the Lens of Open Source Tools: An . . .

Sony Mobile makes projects or features open source, which are neither seen as a
main source of revenue nor as a competitive advantage (RQ3).

In relation to the main innovation outcomes from OI participation (RQ4), we
discovered that Sony Mobile lacks quantitative indicators to measure its innovative
capacity before and after the introduction of OSS at the Tools department. How-
ever, the qualitative findings suggest that it has made the development environment
more stable and flexible. One key reason, other than commits from communities,
regards the possibility of tailoring the tools to internal needs. Still, it is left for
future research efforts to further investigate in how OI adoption affects product
quality and time to market.

When looking at the impact of OI adoption on requirements and testing pro-
cesses (RQ5), Sony Mobile uses dedicated internal resources to gain influence,
which together with an openness toward direct competitors and communities is
used to draw attention to issues relevant for Sony Mobile, e.g. scalability of tools
to large production environments. Social presence outside of online channels is
highly valued in order to manage communication challenges related to distributed
development. Another way of tackling such challenges regards co-creation on a
feature-by-feature basis between two single parties. Choice of partner fluctuates
and depends on the feature in question and individual needs of the respective par-
ties. Further, prioritization is made in regards to how an issue or feature may be
seen as beneficial, in contrast to the pressing needs of the moment. Regarding
testing, much focus is directed towards automating test activities in order to raise
quality standards and professionalize communities to organizational standards.

The scope of the study findings is limited to software organizations with similar
context, domain and size as Sony Mobile. It is also worth mentioning that the
involvement of stakeholders in the Jenkins and Gerrit OSS communities suggests
that the continuous integration processes of these OSS projects are comparable to
the corresponding process at Sony Mobile. Thus, we believe that findings of this
study may also be applicable to incumbents as well as small software organizations
identified in this study.

Future work includes investigation of other contexts and cases where compa-
nies use OSS aiming to leverage OI, and to cross-analyze the presented findings in
this paper with findings from future case studies.

APPENDIX C

SUPPLEMENTARY INTERVIEW
QUESTIONNAIRE

Demographics

• Where do you work?

• What is your job title?

• Which department do you work for in the organization?

• How many years of experience do you have?

• Could you, in short, describe your daily work and responsibilities?

General involvement

108 Supplementary interview questionnaire

• Are you, or have been, in any way actively involved in any open source
community in your daily work? (Gerrit, Jenkins, any other?)

• Could you describe your involvement?

• What is/was the reasons for your involvement in these open source com-
munities? (Volunteered or tasked by management?)

• How much time are you allowed to spend on community interaction?

• How is your involvement with these community in your spare time, out-
side of your daily work?

• What development process/methodology do you use and how does it
interact with the community? (process of working)

Requirements

• What are the sources (internal and external) behind the requirements/fea-
tures? (by tool developers, tool users, pm’s, othersâĂę)

• How do you manage and implement the requirements/features?

• How are the requirements approved and prioritized? (By developers
alone, pm’s, communityâĂę)

• How is your involvement perceived from the community? Positive or
negative? How come? (competitors)

• Are there any internal (organizational) obstacles in contributing to the
community? (Time, IP, managementâĂę.)

• Are there any external obstacles related to the involvement in the com-
munity related to the addition of new requirements/features?

• How did you overcome these?

Testing

109

• How does your internal process of reporting bugs differ from the com-
munity’s? (tools for reporting bugs in community)

• How do you manage traceability between tests and requirements?

• Who is responsible for fixing those bugs? (Process behind, consequence
on quality and resolution time)

• How does your internal process for correcting bugs or issues, differ from
the community’s?

• Are there any obstacles related to the involvement in the community re-
lated to the testing process? How did you overcome these? (Communi-
cation, synchronized level of quality/tests between contributors)

Business/strategy

• What motivates your organization to contribute to open source
project(s)? (Beyond lower cost, improved quality?)

• What is the strategy behind these commits?

• Did you consider alternate strategies such as buying proprietary tools
(COTS) or hiring people/outsourcing for the development these tools?
Why?

• How are these strategies supported by your internal procedures (IP de-
partment)?

• Is it a local strategy or global strategy? Who are the sponsors?

• How has the commits effected the relation with other (corporate) stake-
holders in the communities? (Free-riding, governance structure, con-
straints, Sony Authority, collaboration, balance between community and
Sony’s needs, community buildup)

• How has the commits effected the relation with other competitors?
(Free-riding, governance structure, collaboration)

Perception on innovation and outcome

110 Supplementary interview questionnaire

• How has the usage/development of these tools effected the Sony Mo-
bile’s product development? (Developers, testers)

• How has the usage of these tools effected the products?

• Is innovativeness of a requirement/issue/bug considered, and if so, what
effect does it have on the requirements and contribution process?

• How has the involvement in the communities implicated on innovation
in your: 1) Processes? 2) Products 3) Organization 4) Business strategies

• How do you measure the impact from the development/usage of these
tools on Sony Mobile’s product development? Metrics etc.

• Is the knowledge gained from the OSS tool development transferred and
exploited outside of the tools development? (Absorptive capacity âĂŞ
Firm level, individual level)

Ending remarks

CHAPTER III

A THEORY OF OPENNESS
FOR SOFTWARE

ENGINEERING TOOLS
INSOFTWARE

ORGANIZATIONS

Abstract

Context. The increased use of Open Source Software (OSS) affects how software-
intensive product development organizations (SIPDO) innovate and compete, mov-
ing them towards Open Innovation (OI). Specifically, software engineering tools
have the potential for OI, but require better understanding regarding what to de-
velop internally and what to acquire from outside the organization, and how to
cooperate with potential competitors.
Aim. This paper aims at synthesizing a theory of openness for software engineer-
ing tools in SIPDOs, that can be utilized by managers in defining more efficient
strategies towards OSS communities.
Method. We synthesize empirical evidence from a systematic mapping study, a
case study, and a survey, using a narrative method. The synthesis method entails
four steps: (1) Developing a preliminary synthesis, (2) Exploring the relationship
between studies, (3) Assessing the validity of the synthesis, and (4) Theory forma-
tion.
Result. We present a theory of openness for OSS tools in software engineering in
relation to four constructs: (1) Strategy, (2) Triggers, (3) Outcomes, and (4) Level
of openness.
Conclusion. The theory reasons that openness provides opportunities to reduce
the development cost and development time. Furthermore, OI positively impacts

112 A Theory of Openness for Software Engineering Tools inSoftware . . .

on the process and product innovation, but it requires investment by organizations
in OSS communities. By betting on openness, organizations may be able to sig-
nificantly increase their competitiveness.

1 Introduction

The introduction of Open Source Software (OSS) in commercial settings have
opened new possibilities for innovation in software-intensive product development
organizations (SIPDOs)1. This shift implies that the internal research and devel-
opment (R&D) is no longer the only strategic asset for the companies in creating
products and services. Access to, and interplay with, external sources and actors
provide new opportunities but also create new challenges.

One specific type of OSS is software engineering tools used in the development
of software-intensive products. The tools themselves are not the core business of
the SIPDOs, but they rely heavily on them to be efficient in their software develop-
ment. Further, the costs of improving the tools and keeping them up to date may be
significant, and thus SIPDOs may want to share the costs with other organizations.

In 2003, Chesbrough proposed the term Open Innovation (OI), later defined
as “a distributed innovation process based on purposively managed knowledge
flows across organizational boundaries, using pecuniary and non-pecuniary mech-
anisms in line with the organization’s business model” [30]. Cheshbrough’s def-
inition of openness hints at valuable ideas that can emerge and commercialize
from inside and outside the organization. OI entails various activities, e.g., in-
bound (also called inside-out), outbound (also called outside-in) and coupled ac-
tivities [66], and each of these activities can be more or less open. Dahlander
and Gann [39] defined inbound versus outbound OI, and pecuniary versus non-
pecuniary interactions. Researchers have used the term inside-out/outbound and
outside-in/inbound synonymously in the OI literature. The terms used in this paper
are defined in Table 1.

This paper uses the openness classification by Huizingh [83] who categorized
processes and outcomes as closed or open, see Table 2. Open processes deal with
either using the input from outside the organizations, or by externally exploiting an
internally developed innovation. This is in contrast to closed processes, where the
innovation process is kept in-house [83]. On the other hand, open outcomes entail
devoting the scarce resources to innovation, and then giving away the outcome
(e.g., proprietary solutions) for free to OSS communities, in contrast to closed
outcomes where organizations keep their solution in-house.

OI has two important implications on the organizational structures [39]: 1)
globalization enables increased division of labor, and 2) introduction of OSS en-
ables professionals to seek for portfolio careers instead of working for a single

1SIPDO refers to organizations developing products or services with a substantial amount of soft-
ware defining the product/service behavior, mostly embedded in physical products.

1 Introduction 113

Table 1: Definition of terms used in the study
Term(s) Definition(s)
Pecuniary Pecuniary resources refer to competitive assets,

which are revealed against financial rewards, for
example licensing proprietary software tools [30,
39].

Non-pecuniary Non-pecuniary resources refer to non-competitive
assets, which are revealed without immediate fi-
nancial rewards for a company [30,39], for exam-
ple, OSS tools (e.g., Jenkins and Gerrit) used in
the development of proprietary products.

Outside-In (or In-
bound) innovation

The inward flow of knowledge from outside the
boundaries of an organization to inside [39, 66,
189], for example, the extraction of knowledge
from OSS communities.

Inside-out (or Out-
bound) innovation

The outward flow of knowledge from inside the
boundaries of an organization to outside [39, 66,
189], for example, sharing the internal knowledge
of an organization to OSS communities.

Coupled Innovation The outward and inward flow of knowledge from
the boundaries of an organization [39,66,189], for
example, acquiring and sharing the knowledge to
OSS communities.

employer. Therefore, SIPDOs need to find alternate ways of finding talented work-
ers that might not be interested in exclusive or direct employments. Furthermore,
intellectual property rights (IPR) utilization, technology standards, and venture
capital allow software organizations to trade ideas.

Bosch [23] claims that speed, data and ecosystems are the main factors that
impact SIPDOs in their software engineering practices. At the same time, the size
of software-intensive products continues to grow. This growth incurs the need
for faster and better adoption of applications, technologies, components, services,
and ecosystem partners. In order to address this challenge, SIPDOs may utilize
OSS communities to find more resources to increase the speed and reduce the de-
velopment and maintenance costs. Linåker et al. [118] presented a Contribution
Acceptance Process (CAP) model, which provides operational guidelines for SIP-
DOs regarding when and what features to contribute to OSS communities. CAP
underlines four objectives for OI adaption: cost saving, time-to-market, control in
the ecosystem, and strategic alliances and investments.

114 A Theory of Openness for Software Engineering Tools inSoftware . . .

Table 2: Huizingh’s classification of openness [83]

Innovation Process
Innovation Outcome

Closed Open

Closed Closed Innovation Public Innovation

Open Private Open Innovation Open Source Innovation

However, we have found no guidelines for SIPDOs in order to make strategic
decisions regarding OSS tools, i.e. what role in Huizing’s taxonomy to choose in
the open innovation (i.e. open processes, open outcomes), for OSS tools which
are not the core business (non-pecuniary) for the organization (e.g., OSS tools like
Jenkins and Gerrit) but are vital to support the internal product development.

We present a theory of openness for software engineering tools in software or-
ganizations that complements and expands our previous research efforts [137,141]
and provides the necessary organizational aspects that support SIPDOs in their
transformation towards OI. The scope of this study covers the use of non-pecuniary
OSS tools in organizations’ proprietary software development for outside-in and
inside-out innovation (i.e. coupled innovation). This study focuses on the strategic
role of OSS tools in an organization, where we use software build tools as cases,
due to their strategic role in the build chain [137] [App D].

We synthesize the theory from two previous empirical studies [137,141], com-
plemented by a survey in the Git, Gerrit and Jenkins communities [App D]. The
theory provides strategic guidelines and helps SIPDOs to adopt OI tools in rela-
tion to reduced development cost, shorter time-to-market and process, and product
innovation.

The paper is structured as follows. Section 2 presents related work for this
study, section 3 provides an overview of the research methodology, and section 4
shows the research synthesis process. Section 4 describes the narrative synthesis
process, followed by section 5, which explains the theory of openness for tools in
software engineering. We conclude the paper in section 5.

2 Background studies and related work

This work is conducted in the context of OI and OSS, which is explored in sec-
tion 2.1. We define theory for software engineering, and summarize thus related
work on theory in SE in section 2.2. Our recent systematic mapping study [141]
and the case study on OI using OSS tools [137], as well as the validating survey
presented in Appendix D are summarized in section 2.3.

2 Background studies and related work 115

2.1 Open innovation using OSS

SIPDOs get involved in OSS communities to leverage their internal development
resources, to steer the communities towards organizations’ interest, to reduce time-
to-market and development costs [137, 141]. Increased openness towards OSS
communities constitutes a challenge of keeping companies’ competitive advantage
while contributing software to OSS communities.

Our systematic mapping study [141] identified some of the OSS contribution
strategies, such as engaging in OSS communities [41], open business models [27],
and adopting selective revealing [76]. Furthermore, the knowledge acquired from
OSS communities helps organizations to improve internal development processes,
e.g., adopting continuous integration, leading to faster releases etc, which leads to
product innovation [117].

However, it should be pointed out that OSS is not OI by definition. In order
for an OSS project to be a representative example of OI, it is necessary that OSS
is incorporated into the organization’s business model and contributes to value
creation in the organization’s product development [137]. Thereby, OSS can be
used to implement an OI strategy.

2.2 Theory building in SE

Theories offer common conceptual frameworks for more precise and structured
organization of facts and knowledge. Theories also facilitate communication of
ideas and knowledge through analytical generalization [165, 198]. Many au-
thors in the SE research community have raised concerns about lack of theories
in SE [14, 20, 53, 80, 162, 169, 177] and pointed on the limited nature of the work
about SE theories.

The theory of distances by Bjarnason et al. [20] is an example creating a the-
ory in SE [175]. Like their study, we also follow the guidelines provided by
Sjøberg [169] defining four theory constituents: the constructs (basic elements),
propositions (interaction of constructs), explanation (reasons for propositions spec-
ification) and scope (application of the theory).

2.3 Background studies

Three studies constitute the background for the theory creation: a systematic map-
ping study (S1), a case study (S2), and a survey study (S3).

S1 – A systematic mapping study was conducted to investigate OI in software
engineering [141]. The findings suggest that a large majority of the studies have
industry relevance. Therefore, we conclude that OI in software engineering is
oriented towards industry practice. At the same time, the majority of studies were
evaluation studies. This indicates a research gap in terms of conducting more
solution and validation research.

116 A Theory of Openness for Software Engineering Tools inSoftware . . .

Furthermore, the mapping study indicates that managers have too little time
and resources to invest in significant contributions to OSS communities, even when
an organization has a well defined OSS contribution strategy. Another important
hurdle for organizations in embracing openness is the risk of losing intellectual
property rights to competitors. In order to deal with it, business strategies are
important to reveal a competitive asset and to avoid committing extra resources to
commodity parts of the software. Thus, organizations can pursue a differentiation
strategy with a controlled degree of openness.

The key message of the systematic mapping study is that the OI does not re-
place the existing R&D capabilities of an organization. Rather, it complements or
boosts the existing R&D activities of an organizations to accelerate the innovation
process.

S2 – The Gerrit/Jenkins case study was conducted to explore Sony Mobile’s
participation in the Jenkins and Gerrit communities and to highlight the innovation
outcomes attached to coupled (inside-out and outside-in) OI processes [137]. The
study describes the shift of Sony Mobile from using a closed innovation model
to an open innovation model. This shift allowed Sony Mobile to utilize the Jenk-
ins and Gerrit communities and improve their internal software development pro-
cesses. We discovered that both small and large scale organizations are involved
in the Jenkins and Gerrit communities along with Sony Mobile. However, Sony
Mobile is the largest contributor in the development of aforementioned tools.

The key trigger that embraced openness at Sony Mobile was the paradigm shift
from Windows to Linux development environments. However, this openness was
limited to the tools that are not considered a direct source of revenue. Further-
more, they used dedicated internal resources (within the tools department), to gain
influence and steer OSS communities towards its own business interests.

The study also underlines the lack of quantitative metrics to measure the ef-
fect of OI adaption on Sony Mobile’s innovation capacity, but the qualitative data
suggests more stability and flexibility in the internal development environment.

S3 – The survey in Jenkins, Gerrit and Git communities was designed to
validate the findings from the case study, especially with respect to generalization
to other SIPDOs. A questionnaire was distributed in the Jenkins, Gerrit and Git
communities. Respondents include employees working in SIPDOs and OSS com-
munities simultaneously and were classified as either users or contributors to OSS
communities.

The results show that SIPDOs participate in OSS communities to bring in in-
novative ideas, save development costs, get the latest patches, gain control and
influence communities for the organization’s own process and product innovation.
However, 62 % of the respondents spent less than ten hours per week to work with
OSS communities, which indicates that software organizations may not have fully
understood the benefits of openness yet. The details from the survey are presented
in Appendix D.

3 Research design 117

Table 3: Studies used as a theoretical frame of reference
Study_ID Study_name References

S1 Open innovation in Software En-
gineering: A Systematic Mapping
Study [141]

[24,40,42,46,
49,76,84,106,
130, 131, 145,
156, 168, 173,
176, 182, 187,
194]

S2 Open Innovation using Open
Source Tools: A Case Study at
Sony Mobile

[137]

S3 Survey on OI [App D]

3 Research design

Most research in software engineering related to OI focuses on exploration of the
OI notion [S1]. We identified a need to synthesize the existing knowledge in order
to propose a solution to the problems faced by software organizations due to the
adoption of OI using OSS tools. This study aims to find common themes among
the three background studies [S1, S2 and S3], using a synthesis method adapted
from Popay et al. [152] and Cruzes et al. [38].

3.1 Research goals

The scope of the research encompasses the use and impact of OSS tools on the
internal software development of SIPDOs. First, we focus on the synthesis of
factors associated with OI for OSS tools in SE literature. Second, we derived
the theoretical constructs for OSS tools in SIPDOs from the synthesis. The first
research goal is addressed in Sections 4.2 to 4.2, while the second research goal is
addressed in Sections 4.2 and 5.

3.2 Narrative synthesis design

We performed narrative synthesis [37, 152], as summarized in Figure 1. The syn-
thesis integrates the systematic mapping study [S1], the Sony Mobile case study
[S2], and the Git, Jenkins and Gerrit survey [S3], see Table 3. Furthermore, the
findings of S1 were taken into account to design S2 and S3. The details of each
step in Figure 1 are explained in Section 4.

It is to be noted that S1 is a mapping study which contains 33 primary studies,
addressing open innovation in SE. However, only 18 studies were selected from

118 A Theory of Openness for Software Engineering Tools inSoftware . . .

Figure 1: Synthesis method and theory formulation

 Systematic
mapping study

[S1]

18/33
studies selected

4.1 Develop a preliminary synthesis

4.2 Exploring the relationship between
studies (see Fig. 2)

4.1.1 Tabulation
4.1.2 Develop a common
rubric

a. Rigor and relevance
scores
b. Multiple authors
validation

 4.3 Assessing the validity of the
synthesis

M
o

ve
m

e
nt

 b
/w

 s
ta

ge
s

5. Theory formulation (see Fig. 5)

Survey in OSS
communities

 (See Appendix A)
[S3]

57 responses

 Case study at
Sony Mobile [S2]

5 Interviews
+

Jenkins and
Gerrit commits

analysis

4.2.1 Organizational
characteristics
4.2.2 Why and When
4.2.3 Quality Assurance
4.2.4 OI Measurement
4.2.5 Hinders

4 Narrative synthesis 119

S1 for this work, which pertains to the scope of this study, and thereafter included
in the synthesis process. The selected studies are listed in Table 3 next to S1. The
selection criteria of the studies from S1 are as follows.

• Studies pertaining to the scope of OSS communities used by SIPDOs.

• Studies addressing the integration of external knowledge with internal know-
ledge (outside-in) in organization’s software product development.

• Studies highlighting selective revealing (inside-out) of the internal know-
ledge to OSS communities by SIPDOs.

• Studies discussing the investment of organization’s internal resources in
OSS communities.

• Studies reporting the factors that encourage SIPDOs to choose openness
in terms of processes and outcomes in relation to Huizing’s classification
(Table 2).

4 Narrative synthesis

The empirical evidence on OI for SE tools is synthesized according to the research
design steps presented in Figure 1.

4.1 Developing a preliminary synthesis

We developed preliminary synthesis based on the identified data. We performed
an initial data assessment and concluded that the data is predominantly qualita-
tive [152]. The pre-synthesis qualitative data comes from the systematic mapping
study [S1] and the case study [S2]. Furthermore, a mix of quantitative and qual-
itative data is extracted from the survey study [S3]. The survey was distributed
using Google forms and thus responses were stored in a Google sheet, which was
downloaded to analyze the responses

Tabulating the data

The first author extracted the data related to the first research goal, presented in
Section 3.1. The data was stored from S1, S2 and S3 into a separate spreadsheet.
The preliminary data extraction criteria include the organizations, the rationale
behind adopting OI in software organizations, strategies, and the challenges faced
by the organizations while working with OI. In 1, Table 3 shows a part of raw data
collected from S1, S2 and S3.

Outcome: The outcome of this step is a table of raw data extracted from S1,
S2 and S3.

120 A Theory of Openness for Software Engineering Tools inSoftware . . .

Table 4: Definition of the joint rubrics for the three studies (S1–S3)

Themes Definition

1. Who What characterizes the organizations in-
volved in open innovation using OSS tools
e.g., Jenkins, Gerrit, Git?

2. Why Key factors considered by software organi-
zation before adopting openness

3. When What are the strategies used by software
organizations to be open ?

4. Quality assur-
ance

What are the tools used to automated test
execution and the key challenges attached
to software quality assurance in open inno-
vation?

5. OI measurement What metrics are used by software organi-
zation to measure the impact of Open inno-
vation on development process?

6. Hinders Challenges faced by organizations to adopt
OI

Developing a common rubric

The first author defined a common rubric for all three studies. Next, the first author
repeated the data extraction process from S1, S2 and S3 to ensure correctness and
look for additional evidence. Initially, we did not find all the themes mentioned in
Table 4. For example, the quality assurance and and OI measurement themes were
not obvious, but after collecting the data, these two new recurring patterns were
identified.

Outcome: The result of this step leads to Table 4, which highlights the six
joint rubrics from the preliminary data extraction process.

4.2 Exploring the relationships between the studies

We used the common rubrics outlined in Table 4 to identify the common char-
acteristics between the systematic mapping study [S1], the case study [S2] and
the survey in OSS communities [S3]. We wrote a short summary for each of the
rubrics (tabular textual description) of each study [S1,S2,S3]. This allows accu-
racy and consistency checks with previous steps and helps to draw aspects from
individual studies that may not have seemed relevant at the start of synthesis, but
have become of interest during the subsequent stages of the synthesis.

4 Narrative synthesis 121

Figure 2: Mind map of relationship between studies

Outcome: This step leads to the mind map presented in Figure 2. Each of the
categories mentioned in the mind map is discussed below.

Organizational characteristics (Who)

Both small and large companies use OSS tools as a means for OI. Figure 3 shows
the distribution of companies in S2 and S3 contributing or using OSS tools in their
internal product development. The contextual details of the organizations such as
name, product type, size and OSS tools can be found in F. From the contextual
details of the studies in S1, it is not obvious whether they are contributors or non
contributors. Therefore, the companies included in this study are extracted from
S2 and S3 only.

Figure 3 shows that 16 software organizations are not only involved in using
but also contributing back to OSS communities, such as Jenkins, Gerrit and Git.
Out of the 16 contributing software organizations, 13 have more than 200 employ-
ees, see Figure 2. This confirms that not only small software organizations are
using OI but also larger organizations realize the importance of contributing to
OSS communities to improve their internal development process. This observa-
tion is in line with the concept of process innovation [117] and the coupled open
innovation process (inside-out and outside-in [54].

122 A Theory of Openness for Software Engineering Tools inSoftware . . .

Figure 3: The number of contributors vs non contributors in S2 and S3, dis-
tributed over size categories

0 2 4 6 8 10 12 14

1 to 50

51-200

>201

Univs

No of organizations

Si
ze

 o
f o

rg
an

iz
at

io
ns

Contributors Non Contributors

Why – When

We explore the relation between the two themes entitled Why and When by creating
a 2x2 matrix depicted in Figure 4, which is referred as a visual representation of
Why and When.

The horizontal axis of the model shows the two main driving forces related to
the motivations for adapting OI; 1) Cost saving and 2) Inspiration. Firstly, the cost
saving driving force refers to the aim of reducing the product development cost.
Examples of cost saving entail incorporating an OSS solution instead of making
it in-house, or spending more resources on differentiating features instead of on
commodity features. The inspirational driving force refers to software engineers
taking initiatives on their own to optimize the daily software engineering workflow
by embracing openness. A typical example of inspiration is the employees work-
ing for SIPDOs that develop proprietary solutions, but also actively contribute to
seek better solutions to OSS communities using the outside-in OI principle [54].

The vertical axis in Figure 4, distinguishes between reactive and proactive OI
adoption strategies. The reactive OI adoption strategy considers reacting to events
rather than taking the leading role. In other words, the reactive strategy prevents
software organizations from taking initiatives and they mostly adopt the wait-and-
see strategy. On the contrary, the proactive OI adoption strategy enables organiza-
tions to anticipate what the future will be, and to react accordingly before a threat
actually happens.

Empirical evidence of the aforementioned strategies is combined with the cost

4 Narrative synthesis 123

Figure 4: Visual representation of Why and When

W
h

en

A14 - New community building [S1, S3]
A15 - Better technologies [S1, S3]
A16 - Innovation support [S1, S2, S3]
A17 - Culture change i.e. hackathon, openness
[S1, S2]
A18 - Improved competitiveness [S1, S2, S3]

A9 - Reputation and steering existing
communities [S1, S2, S3]
A10 - Platform and software reuse [S1]
A11 - Access to workforce [S1, S3]
A12 - Knowledge building and exchange [S1]
A13 - Time to market [S1,S2]

A19 - Exchanging innovative ideas [S1, S3]
A20 - Customer satisfaction [S3]
A21 - Fun way of working [S2, S3]
A22 - Upto date with tools/frameworks out side
of the Company i.e. inner source [S1, S3]
A23 - Easier to find a solution to an issue [S1]

A1 - A paradigm shift [S2]
A2 - Cheaper OSS solutions [S2, S3]
A3 - Ease off the complex integration and
building process [S2, S3]
A4 - Cost of maintaining forks of OSS
Code [S1, S2, S3]
A5 - When the product loses competitiveness
[S2, S3]
A6 - Get latest patches [S3]
A7 - Difficult to compete with the community's
pace due to lack of resources [S1, S2, S3]
A8 - Free new features and Bug corrections [S1,
S2, S3]

Cost Saving Inspirational

P
ro

ac
ti

ve
 S

tr
at

eg
y

R
ea

ct
iv

e
St

ra
te

gy

WHY

factor in Figure 4. Each attribute in Figure 4 can be traced back to its original
study S1, S2 or S3, and each quadrant is described in detail below.

Reactive strategy – Cost saving. The reactive strategy in relation to cost sav-
ing entails cost reduction of the development activities. The following are the
attributes along with the definitions extracted from S1, S2 and S3.

A1 – A paradigm shift [S2]: Refers to the switch from Windows based software
development environment to Linux [137].

A2 – Cheaper OSS solutions [S2, S3]: It is more cost effective for software
organizations to adopt OSS code (even when integration efforts are substantial)
instead of developing an in-house solution from scratch [137], [App D].

A3 – Ease off the complex integration and building processes [S2, S3]: The
introduction of OSS tools (Jenkins, Gerrit etc.) made the continuous integration
process easier for software developers and testers [137], [App D].

A4 – Cost of maintaining forks of the OSS code [S1, S2, S3]: To fork off
the OSS code and its internal maintenance only makes sense if it adds significant
value. In case of commodity software, it does not give any business advantage.

124 A Theory of Openness for Software Engineering Tools inSoftware . . .

Therefore, contributing commodity parts of the products alleviates software orga-
nizations from patching the code [137, 156], [App D].

A5 – When the product loses competitiveness [S2, S3]: Refers to making the
project OSS in order to attract interest from the community and receive contribu-
tions as well. Making a product that loses competitiveness OSS also opens up for
alternative revenue sources. Keeping the software closed only causes additional
maintenance costs with no business benefits [137], [App D].

A6 – Get the latest patches [S3]: This is also connected to costs of maintaining
forks of OSS code. Organizations make the commodity code open to share the
patching cost with the OSS community instead of spending unnecessary resources
to maintain it internally [App D].

A7 – Difficult to compete with the community’s pace due to lack of resources
[S1, S2, S3]: OSS communities are often comprised of skilled development work
forces from around the world. It is difficult for software organizations to find such
resources and hire them all [40, 137], [App D].

A8 – Free new features and bug corrections [S1, S2, S3]: Refers to software
organizations actively participating in OSS communities and in return receiving
new features and free bug corrections to facilitate the development process [46,76,
137, 182, 194], [App D].

Summary. A factor that leads organizations to adopt the reactive cost saving
strategy, is the substantial costs of proprietary tools vs. the much lower cost of
using OSS tools. Therefore, many software organizations choose to switch from
Windows to Linux development environments to ease off the complex source code
integration and building processes [137]. Factors that motivate organizations to
adopt reactive cost saving strategies include patching cost, products losing their
competitive advantages, to get new features, licenses that demand organization to
contribute back, and difficulty to keep up with ever-growing OSS communities
[Appendix D]. Forking an OSS solution leads to internal maintenance of com-
modity software. As the core of the reactive strategy is to save maintenance costs,
organizations choose to open up commodity solutions and share the maintenance
cost with all stakeholders in the community.

Proactive strategy – Cost saving. The following attributes are extracted in rela-
tion to the proactive cost saving strategy.

A9 – Reputation and steering existing communities [S1, S2, S3]: Refers to
becoming an active contributor in OSS communities and influence or steer these
communities towards organizational interests [42, 137, 176], [App D].

A10 – Platform and software reuse [S1]: Refers to reusable software compo-
nents used together with proprietary software in the products [130].

A11 – Access to workforce [S1, S3]: Refers to the utilization of smart develop-
ment workforce, which does not work directly for an organization, but possible to
utilize through OSS communities [42, 76] [App D].

4 Narrative synthesis 125

A12 – Knowledge building and exchange [S1]: Refers to in-flows and out-flows
of knowledge in software organizations [24, 40, 84, 106, 130, 173, 176, 187].

A13 – Time to market [S1, S2, S3]: Adopting the commodity code from OSS
communities is not only cheaper but also reduces the time it would require to
develop that code in-house [130, 137, 176] [App D].

Summary. The proactive cost saving strategy allows SIPDOs to engage in
OSS communities and become their trustworthy member to steer communities to-
ward their own business models and use the community developers for organiza-
tional focused development. This, in turn, makes it possible for organizations to
access all the software developers, that exist beyond the organizational borders,
without hiring them. Organizations are required to invest in existing communities
to reduce the time-to-market and development costs by utilizing developers from
OSS communities.

Proactive strategy – Inspirational. The following attributes are extracted in re-
lation to the proactive inspirational strategy.

A14 - New community building [S1, S3]: This is one of the ways to further en-
hance the organization’s internal innovative capacity. It is desired by organizations
when existing communities are not fulfilling the expectations of the organizational
needs [40, 42, 84, 131] [App D].

A15 - Better technologies [S1, S3]: Refers to building new features with the
help of, or suggestions from, hundreds of developers in the community in relation
to a handfull of developers inside the organization [130, 131, 173, 176] [App D].

A16 - Innovation support [S1, S2, S3]: Refers to complementing the orga-
nization’s internal R&D process by indulging organizational resources into OSS
communities and using this knowledge to improve the organizations’ innovative
capacity [84, 130, 137, 145, 176] [App D].

A17 - Culture change [S1, S2]: Deals with promoting the embracing of an
openness culture in product and process development, without the fear of losing
competitive advantage and being able to solve problems using hackathons [137,
168].

A18 - Improved competitiveness [S1, S2, S3]: This is primarily in relation
to decreased time-to-market. Using OSS code helps organizations to get their
products out in the market faster and thus increase competitiveness [130,137,176],
[App D].

Summary. The proactive inspirational strategy driven by the managers pro-
vide inspiration to create new communication channels between developers be-
longing to different organizations. The objective is to build new OSS communities
if the existing communities are not supporting the organization’s internal innova-
tion processes. Software development teams empowered by proactive strategies,
search for innovative solutions and embrace an openness culture (e.g., hackathons)
for the shared knowledge building. Consequently, the exploration of the proactive

126 A Theory of Openness for Software Engineering Tools inSoftware . . .

strategy frees up time for development teams to focus on differentiating tasks,
which improves competitiveness and supports internal innovation.

Reactive strategy – Inspirational. The following are the definitions of factors
relevant to inspire developers in an organizations by working with OSS communi-
ties.

A19 – Exchanging innovative ideas [S1, S3]: Refers to utilizing OSS com-
munities as a forum for exchanging ideas and helping each other [40, 49, 130]
[App D].

A20 – Improved customer satisfaction [S3]: Continuous development and soft-
ware updates lead to improved customer satisfaction [App D].

A21 – Fun way of working [S2, S3]: Software developers involved in OSS
communities find it a fun way of working. Furthermore, organizations also use
communities to keep their workforce motivated by finding news way of working
[137], [App D].

A22 – Up-to-date with tools/frameworks [S1, S3]: Allows software developers
to stay up-to-date with the new tools/frameworks outside the organizational border,
using OSS communities. In addition, it allows developers to acquire knowledge
from OSS communities and integrate that across different units of an organiza-
tion [130],[App D].

A23 – Easier to find a solution to an issue [S1]: Gives software developers in
organizations the possibility to look for solutions to their problems beyond orga-
nizational borders [130].

Summary. The reactive inspirational strategy leads organizations to use OSS
communities for the exchange of ideas and helps developers to find better solu-
tions. To keep the motivation and to be up-to-date with the tools, organizations
encourage their developers to engage in OSS communities. Furthermore, develop-
ers find it easier to find a solution to their problems by being open.

Quality Assurance

Quality assurance in relation to OI is an under-researched area, while there are
several challenges in testing the OSS tools. For organizations who have to test
OSS tools together with OSS communities (e.g., Jenkins, Gerrit), they identify the
need of automated testing. However, it is still not possible to have a complete test
coverage due to many configuration settings and the open nature of these tools, but
automation helps developers to identify the defects quickly [139].

Out of the survey respondents [App D], 34.5 % highlighted that manual testing
consumes too much time, and there is a need for an automated testing framework.
The Jenkins community introduced an acceptance test harness [139], which is an
automated test suite to test Jenkins core and its plug-ins. However, the Gerrit
community is not as mature as the Jenkins community, and the community is trying

4 Narrative synthesis 127

Table 5: Metrics to measure Open Innovation

OI Measurement Metrics Definition

Count measures

Number of users
[S3]

Number of users using OSS
tools

Time to market
[S2, S3]

Measure the time difference
with and without OSS tools

Quality assurance
[S3]

Frequency of bugs using
with or without using OSS
tools

Process measures

Ball park estima-
tions [S2]

How much development up-
time lost if the organization
is not able to quickly fix the
show stopper bugs

Spared devel-
opment time
[S2,S3]

Time required for own de-
veloped solution vs OSS

Satisfaction [S3] Five point Likert scale from
Not at all satisfied to some-
what satisfied

Revenue/Cost based
measures

Money [S2, S3] Licensing cost of OSS vs
non-OSS tools

to replicate the automated testing harness from Jenkins. Further details of quality
assurance from the survey can be found in 2.

OI Measurement

We identified evidence regarding the metrics used by software organizations to
measure the impact of OI as reported in Table 5.

We categorized these measures based on the criteria provided by Edison et
al. [50] and divided them into the three categories: 1) count measures (number
of users, time taken to introduce new products in the market, etc.), 2) process
measures (assess the innovation capability of an organization), 3) revenue and cost
measures (money, licensing cost). It must be mentioned that these metrics came
up as suggestions from interviewees [S2] and survey respondents [S3].

Hinders

Embracing openness is also associated with barriers. The lack of time, resources
and understanding of OSS communities hinders organizations to commit the re-

128 A Theory of Openness for Software Engineering Tools inSoftware . . .

Table 6: Rigor and relevance scores for the studies

Ref. C D V Rigor
Sum

U S RM C Rel.
SUM

S2 [137] 1 1 1 3 1 1 1 1 4
S3 [App D] 1 1 1 3 1 0.5 1 1 3.5

sources dedicated for OSS communities [S1, S3]. Although, software organiza-
tions recognize the benefits of participating in or creating a strong community,
there are a few limitations associated with it. Those limitations entails manage-
ment constraints due to the lack of funding, understanding, contributor agreements
lawyers/significant internal paperwork, unfamiliarity, distrust with regards to OI
contribution strategies of working [137][App D].

Executives and R&D legal experts need to evaluate OSS contributions for li-
censing, protecting organization’s IP rights and patent infringements [S2]. The
value of being in control of an OSS community is not well understood [S3]. More-
over, a slow approval process [S2] for contributions also leads to lack of motiva-
tion among employees to contribute to OSS communities. This is also connected
to working with the development methodology (Scrum) since there is no room in
the sprints to prioritize OSS contributions [35, 137, 194].

4.3 Assessing the validity of the synthesis

We used the rigor and relevance criteria followed by multiple authors validation
in which all authors were involved in validating the synthesis process to test the
validity of the synthesis.

We applied the criteria, previously used by Munir et al [138] to the case study
[S2] and survey [S3] underpinning this work, see Table 6. The rigor and relevance
criteria used for [S2] and [S3] are available in 2.1 and 2.2. Scores between (0–1.5)
are considered as low rigor, while high rigor entail scores of 2 or above. On the
other hand, studies with the score from (0–2) have low relevance, while scores
from 2.5 or above are seen as high relevance. The systematic mapping study [S1]
was not scored based on the criteria because the criteria are not meant for literature
reviews. However, the study S1 itself used the rigor and relevance criteria to rate
all the primary study used in the synthesis process.

Below, the four types of validity threats [155, 159] related to the synthesis are
addressed with their mitigation strategies.

Internal Validity

Internal validity refers to causal relationships and the introduction of potential con-
founding factors [159].

4 Narrative synthesis 129

Peer examination. The objective behind conducting the synthesis study was
to generate theoretical guidelines based on the three studies that explored OI in
software engineering. Since the data synthesis process entails qualitative data, this
introduces the risk of subjectivity. In order to minimize this risk, the second and
third authors were involved in validating the synthesis.

The theoretical foundation for the theory of openness for software engineering
tools in software organization included studies S1, S2 and S3. However, S1 com-
prised of studies where the scope of the few studies was not limited to OSS tools
only, while the theory of Openness is limited to OSS non-competitive tools. The
underlying phenomena may be different and thus present a validity threat to the
theory.

External Validity

External validity deals with the extent to which it is possible to generalize the study
findings to other contexts [159]. Merriam [125] viewed external validity from the
perspective of assumptions underlying qualitative research and proposed several
reformulations of generalizations such as working hypothesis, concrete universals
and readers or user generalizations.

In this study concrete universals [56] seems more applicable where a particular
context is applied to similar contexts subsequently encountered. The context in this
study refers to SIPDOs using OSS tools in their internal software development. To
be specific, S2 presents a case study at Sony Mobile using OSS tools (e.g., Jenkins,
Gerrit, Git) in their proprietary software development and S3 contains 26 organi-
zations either using or contributing to OSS communities. The contextual details
of each organization are presented in F. The broad representation of organizations
that support the findings of this study, indicate generalizability to organizations
using OSS tools for their internal software product development.

Construct Validity

This deals with choosing the suitable measures for the concepts under study. This
study used two primary and 18 secondary studies from S1 for narrative synthe-
sis. Although, it is possible to use secondary studies for narrative synthesis, the
difficulty in achieving the abstraction of results at the same level presents a valid-
ity threat. In order to minimize this risk, studies S2 and S3 were conducted by
taking inputs from the findings of S1, which enables researchers to find common
relationships among studies for the comparison (see Table 4).

The survey study is susceptible to the threat of subjects trying to guess the in-
tent of the study and altering their behavior. Further, we use the survey in OSS
communities to understand whether or not openness helps organizations to accel-
erate the organization’s internal development process. This introduces the risk of
respondents guessing the hypothesis correctly and start responding from commu-
nity’s view point to be more open. Consequently, the respondents may completely

130 A Theory of Openness for Software Engineering Tools inSoftware . . .

ignore the organizational interest to affect the results, which can be used to con-
vince software organizations to be open even when it is not desirable for an orga-
nization to be open. To mitigate this risk, all respondents were clearly instructed
to answer the survey questions according to their associated organizational unit
instead of OSS communities.

Reliability

The reliability deals with to what extent the data and the analysis are dependent on
the specific researcher, and the ability to replicate the study.

Member checking. All three authors analyzed the extracted data from the stud-
ies included in the related work. Furthermore, the guidelines provided by Popay et
al. [152] were used to make the synthesis process objective, reliable, transparent
and repeatable.

Audit trail. The first author kept track of all the data sheets created from the
studies and monitored data consistency and correctness during the synthesis itera-
tions.

5 Theory formulation

Based on the synthesized empirical evidence, summarized above, we here present
the the theory of openness for software engineering tools in software organiza-
tions, according to the theory-building framework proposed by Sjøberg et al. [169].
According to the framework, a theory consists of: 1) constructs, 2) propositions,
and 3) explanation, outlined in the subsections that follow.

5.1 Defining constructs for the Theory of Openness for
Tools

We derived four constructs from the visual representation of When and Why in
Figure 4: Strategy, Trigger(s), Outcome(s), and Level of openness. These are ab-
stracted during the data synthesis, as described in Figure 1. The synthesis also
resulted in a further abstracted openness model, presented in Figure 5. Further-
more, the mapping of constructs from the attributes in openness model is shown in
Table 7. The definitions of constructs are below.

Strategy refers to managerial decisions on when and why a software orga-
nization should only use or use and contribute to OSS tools communities (e.g.,
Jenkins, Gerrit etc.) . An example strategy is to engage software developers in OSS
tools communities (A14) for knowledge building and exchange of innovative ideas
to support innovation (A15, A16) in organizations’ proprietary products. Further-
more, when the product loses it competitiveness (A5), it could become a candidate
to become open source to create a community around it. Consequently, it helps

5 Theory formulation 131

Table 7: Attributes (see Figure 4) mapping between constructs and proposition

ID (s) Construct (s) Proposition (s)

A9 [S1, S2, S3]

Strategy

P4 – Degree of investmentA16 [S1, S2, S3]

A20 [S3]

A5 [S2, S3]

P5 – Requires management approval
A12 [S1]

A14 [S2, S3]

A15 [S1, S3]

A1 [S2]

Triggers

P3 – Process and product InnovationA3 [S2, S3]

A23 [S1] P4 – Degree of investment

A19 [S1, S3] P5 – Requires management approval

A2 [S2, S3]

Outcomes

P1 – Reduce development costA11 [S1, S3]

A8 [S1, S2, S3]
P2 – Shorten development timeA13 [S1,S2]

A18 [S1, S2, S3]
P3 – Process and product innovationA22 [S1, S3]

A4 [S1, S2, S3]

Level of Openness

P1 – Reduce development costA6 [S3]

A10 [S1] P2 – Shorten development time

A7 [S1, S2, S3]

P3 – Process and product innovationA17 [S1, S2]

A21 [S2, S3]

132 A Theory of Openness for Software Engineering Tools inSoftware . . .

SIPDOs to create a good reputation in the community and steer them towards their
own needs (A9, A20).

Trigger(s) highlight(s) the actors involved in either decision-making of open-
ness or its implementation(e.g., managers and software developers). The initial
trigger might come from managers as a result of paradigm shift (e.g., switch from
Windows to Linux) or from software developers due to complex continuous in-
tegration process (A1, A3). For example, S2 showed a case where Sony Mobile
switched from a proprietary tool ElectricCommander to an OSS tool Jenkins be-
cause it was easier to find solutions (A23) in OSS communities and adopt the tools
according to the internal development work-flow (A19).

Outcome(s) deal(s) with the affect (implications) of adopting openness for
tools in SIPDOs. Reduction in the development cost can be achieved by choosing
open tools instead of licensed tools in SIPDOs for the internal software develop-
ment (A2). It not only allows developers to stay up to date with their tool chain
(A22), but also provides an opportunity for an organization’s employees to interact
with the developers in the tools communities (A11) and receive free new features
and bugs corrections (A8). Open tools make the internal development environment
more flexible since the developers themselves can enhance the tool to better suit
their needs. Consequently, it can have an impact on the reduced development time
which leads to shorter time-to-market (A13).

Level of openness entails the extent to which an organization should be open,
which may be a property of both the development process and the outcome, ac-
cording to Huizingh et al. [83]. For example, an openness of the development
process for a SIPDO may include arranging a hackathon with tools community
developer to allow internal developers to work together to implement new func-
tionality (A7, A17). On the outcome level, an organization may choose to release
the code to OSS communities instead of maintaining an internal fork for a com-
modity code (A4). Forking will only lead to more patching and code maintenance
every time there is a new release from the community. Therefore, choosing the
right level of openness may allow the organization to share the maintenance cost
with the community to free up the internal developers time by receiving the latest
patches from the community (A6).

5.2 Propositions for the Theory of Openness for Tools

The deduction of propositions can be traced back to constructs and attributes, see
figure 4) and Table 7.

Proposition 1 (P1) Openness of tools provides opportunities to reduce develop-
ment costs.

P1 relates to two constructs: 1) Level of openness and 2) Outcome(s). Openness of
tools can lead to reduced development costs for multiple reasons. First, instead of
“re-inventing the wheel” software organizations can choose the OSS tools already

5 Theory formulation 133

developed (A11, A2). Second, the costs of maintaining software can be shared
with OSS communities (A4, A6) as showed by S2.

Proposition 2 (P2) Openness of tools provides opportunities to shorten the devel-
opment time.

P2 relates to two constructs: 1) Level of openness and 2) Outcome(s). Openness
of tools may lead to shorter development time (A13) due to the following reasons.
First, bugs related to OSS tools (e.g., Jenkins and Gerrit) could be fixed by the or-
ganization itself since they have access to the source code of the tools or they may
receive fixes (A8) from community developers (S2). Second, software reuse (A10)
and free features and bug fixes from communities enable software organizations to
shorten the development time. S3 [App D] shows that contributors (57%) and non-
contributors (59%) to OSS communities think that openness reduces development
time.

Proposition 3 (P3) Openness of tools complements internal processes and prod-
uct innovation.

P3 links to three constructs: 1) Level of openness, 2) Outcome(s), and 3) Trig-
ger(s). S2 shows that the use of Gerrit and Jenkins communities in Sony Mobile’s
internal software development, leads to better internal development environment
(e.g., continuous integration). The initial trigger of open tools came from the com-
plex integration and building process (A3) and the shift from Windows to Linux
(A1) As an outcome of this openness towards tools, it introduced a new fun way
of working with tool communities for internal developers (A17, A21). Moreover,
it enabled other units of Sony (e.g., Sony Entertainment) to replicate (inner source
initiatives) the same development environment (A22), without having to pay for
it. The better internal development process due to the openness towards Jenkins
and Gerrit communities can be seen as an example of process innovation, which
in-turns affects the improved competitiveness in products (A18).

Proposition 4 (P4) The degree of investment in OSS communities has an affect
on the outcome.

P4 relates to two constructs 1) Trigger(s) and 2) Strategy. SIPDOs may need to
invest in OSS tools communities to build the reputation (A9), which helps organi-
zations to gain influence and control over the communities (S2, S3). Consequently,
an organization may have a better support external support for their internal prod-
uct innovation (A16, A20).

Proposition 5 (P5) Introducing a proactive strategy, in relation to openness of
tools, requires conscious management involvement.

P5 refers to two constructs 1) Trigger(s) 2) Strategies. The idea of acquiring the ex-
ternal knowledge (A19) to support internal innovation (A12, A15) may require or-
ganizations to move from a closed innovation model to an open innovation model.

134 A Theory of Openness for Software Engineering Tools inSoftware . . .

Figure 5: Model of Openness for Tools
Re

ac
tiv

e
st

ra
te

gy

Strategy: Invest in existing communities to reduce
time-to-market, spot business opportunities
Trigger(s): Managers
Outcome(s): Product and Process innovation
Level of Openness: Open process – Closed outcome

Cost Saving

Laggards (Business as usual)

Pr
oa

ct
iv

e
st

ra
te

gy

Inspirational

Leverage (Resource optimization)

Lucrativeness (Think tank) Leaders (Growth through ecosystems)

Strategy: Reaction to paradigm shifts and cost
reduction.
Trigger(s): Managers and developers
Outcome(s): Reduced licensing and patching cost
Level of Openness: Open process – Open outcome

Strategy: Motivate developers through engaging in
OSS communities i.e., look inside/outside for
technological improvements
Trigger(s): Managers and developers
Outcome(s): Product and Process innovation
Level of Openness: Open process – Open outcome

Strategy: Create new ecosystems to support brand
proposition
Trigger(s): Managers
Outcome(s): Product innovation
Level of Openness: Open process – Closed outcome

One such example is the creation of new open tools communities (A14), if the
existing communities are not in-line with the organization’s business model. This
proposition is hinting that management may have to make proactive strategies to
harness the power of internal employees, as well as the outside crowd in OSS
communities, while still safeguarding the competitive edge (S3).

5.3 Explanation of the Theory of Openness for Tools

The synthesized model, underpinning the theory of openness for software engi-
neering tools in software organizations, is presented in Figure 5. The constructs
of the theory, and instances thereof, are presented in boldface in the description
below.

The theory explains four categories of organizations, represented by the quad-
rants in Figure 5. Each category has the different levels of openness, based on
their strategies (proactive or reactive) in relation to goals (cost saving or inspi-
rational) and associated with propositions (see Table 7). The theory presents four
classifications of openness with their respective focus: 1. Laggards – Routine
business, 2. Leverage – Resource optimization, 3. Lucrativeness – Acting as a
think-tank, and 4. Leaders – Growth through ecosystems.

5 Theory formulation 135

Laggards (Reactive strategy – Cost saving)

The underlying assumptions for the laggards is that they respond to paradigm shifts
and all strategies are reactive in order to reduce the development cost, wanting to
run business as usual. Organizations that position themselves in this quadrant un-
derstand that their software tools are not competitive and that alternative options
are available, often as OSS. Studies indicate [22, 118, 120] that in the absence of
intellectual property rights, there may be greater chances of commutative advance-
ments and reduction of the patching cost, by avoiding forking of OSS.

For example, the introduction of Git made IBM’s ClearCase an expensive
proposition for SIPDOs due to licensing costs. Forking an OSS tool for internal
use may lead to patching costs (e.g., internal maintenance) as a result of new re-
leases from the community. Therefore, managers and developers in organizations
categorized as laggards should keep their development processes and outcomes
open in order to receive all the latest updates from the community without patch-
ing it.

Leverage (Reactive strategy – Inspiration)

Organizations that are categorized in the leverage category, use external sources
of innovation by inspiring their internal developers to participate in various OSS
communities, prior to internal R&D work. The objective is to create synergy and
synchronization between the organization’s own processes and externally available
ideas that could be incorporated in products, thereby optimizing the resources of
the organization. This is a deliberate ploy from managers to absorb the external
ideas and to make them fit for internal process. Furthermore, it not only adds to
product and process innovation, but also inspires developers to participate in the
discussion forums and exchange ideas to develop competence. The participation
of organizations in communities like Opensource.com [192], Gerrit [137], and
Acceptance test harness [139] are examples of open principles of catalyzing a
community and engaging people through a common platform.

Lucrativeness (Proactive strategy – Cost saving)

Lucrativeness deals with investing in existing OSS communities to be able to in-
fluence and steer these communities in the same direction as the organizational
interests, functioning as a think-tank for the organization. The objective is to sup-
port internal innovation and reduce costs by investing in OSS communities. The
use of platforms helps organizations to reduce time-to-market. The key goal for
the organization is to build the capability for its employees to make independent
decisions, act quickly, take initiatives, and creatively solve problems. However,
this goal requires employees’ engagement, which need to be recognized by the
managers. In order to make this work, managers need to ensure that processes are

136 A Theory of Openness for Software Engineering Tools inSoftware . . .

open for the exchange of ideas, but innovation outcomes are closed to achieve the
competitive edge.

For example, CloudBees used Jenkins and added an extra layer of enterprise-
grade security, scalability, manageability and expert-level support to improve the
continuous integration in enterprise applications and started selling their product
portfolio based on differentiation. Therefore, CloudBees utilized on Proactive –
Cost saving strategy to not only reduce cost but also created a business opportunity
to create revenue.

Leaders (Proactive strategy – Inspiration)

Leaders are organizations who look for emerging markets and breakout technolo-
gies by identifying the set of target areas, in order to create growth through
ecosystems. These target areas are identified using lucrativeness. This is a top
down exercise tied to strategic product planning lead by top management. The
focus is on creating new communities and ecosystems that have the ability to dis-
rupt business models.

For example, Sony created an ecosystem by making an Authoring Tools Frame-
work (ATF) open source, which is used to make game development tools on
Windows. It relieved PlayStation developers from contract barriers and made it
quicker, easier and cheaper for developers to create development tools and game
engines. By creating an ecosystem, Sony not only reduced the game development
cost for its users but also strengthened the use of its PlayStation. The key is to
safe-guard the competitive edge by keeping the processes open.

5.4 Definition of scope for the Theory of Openness for
Tools

The scope defines the boundaries under which the theory of openness for software
engineering tools in software organizations holds. We follow the advice of El
Eman et al. [52], to “be sure to specify as much of the industrial context as possible.
In particular, clearly define the entities, attributes and measures that are capturing
the contextual information”.

This information about the software organizations underpinning the theory,
is addressed in Section 4.2 and reported in detail in F. It includes all software
organizations, either only using or contributing as well to OSS communities, from
which the empirical evidence is collected. F highlights the size, roles and OSS
tools used by the software organizations that are adopting openness. Below we
summarize the scope in terms of technology, actors and software systems.

Technology

Scope of validity: The use of OSS communities in the internal development of a
software organization is compulsory. The organizations size may range from 1–50,

5 Theory formulation 137

51–200 or >201 as mentioned in Figure 3.
Scope of interest: The knowledge extraction from OSS communities to facili-

tate organization’s internal process, product innovation and reduced development
time.

Actors

Scope of validity: Actors include software developers and managers. Software
developers are employees associated with software organizations and also active
members of OSS communities.

Scope of interest: To engage internal developers from SIPDOs in OSS tools
communities for process and product innovation.

Software systems

Scope of validity: Although the case study [S2] included in the synthesis process
was performed at Sony Mobile with the focus on using and contributing to specific
OSS tools communities, namely Jenkins and Gerrit, the survey includes software
organizations with the wide range of OSS tools mentioned in Tables 1 and 2, the
column Product type.

Scope of interest: Projects that involve the use of OSS tools.

5.5 Theory evaluation

In this section, we evaluated the Theory of Openness for Tools using the criteria
proposed by Sjøberg [169]. The criteria are comprised of testability, empirical
support, explanatory power, parsimony, generality and utility. For each criterion,
we rated Theory of Openness on the scale of low, moderate or high.

Testability

The theory of openness for software engineering tools in software organizations
presents understandable, consistent and unambitious constructs and propositions
from the viewpoint of software developers and managers. Hypotheses are derived
from the propositions since the scope conditions are clearly defined in the previous
section. However, the adoption of OI using OSS needs to be understood by the
readers in order to understand the theory.

There are a few studies conducted on the definition of openness in OI [39,
66, 114]. However, in this study, we choose the openness classification by Huiz-
ingh [83] since it was related to the opening of processes and outcomes, and the
theory of openness has the level of openness as a construct (see Section 5.1).

We intend to validate the theory by conducting a workshop in multiple com-
panies using OSS tools for their proprietary software product development. The
workshop will be performed in two steps. In the first, the participants will be asked

138 A Theory of Openness for Software Engineering Tools inSoftware . . .

to select a tool from their own settings and categorize the constructs given to them
using a Likert scale in relation to proactive/reactive strategy and cost/inspiration.
Second, the discussion will be held to identify the differences in the participant’s
ratings and to verify the propositions. We thus rate the testability of this theory as
high.

Empirical support

We identified three studies [131, 137, 176] highlighting the reduction in develop-
ment cost (P1) and two studies [130, 137] pointed out the reduced time-to-market
for software organizations due to the use of OI (P2). It must be mentioned that the
reduced time-to-market refers to shorter development time only, and not the mar-
keting. Furthermore, eight studies [78, 130, 131, 137, 145, 168, 173, 176] underpin
the proposition on process and product innovation (P3) as a result of Open Innova-
tion. Table 8 shows that P1 and P3 has relatively stronger empirical evidence sup-
port compared to P2, P4 and P5. The interview data from studies [130, 137, 176]
suggest that OI helped organizations to reduce time-to-market (P2), improve inno-
vation capacity and speed (P3), and reduce the development cost (P1).

Henkel et al. [78] and Parida et al. [145] conducted a case study on drivers
for embedded systems and a survey in 252 IT organizations, respectively. Both
studies conclude that OI needs to put on the “radar screen of the top management”
(P5) in order to increase competitiveness, better and faster development releases
(P3). In relation to P4, Parida et al. [145] concluded that outside-in OI is positively
associated with the organization’s radical innovation performance (products new
to the world) and incremental innovation (products new to the firm) performance.
Henkel et al. [78] also concluded that disruptive innovation challenges managers
to look for customers’ demands and competitors implementing open models of
innovation. However, it raises the question of making new proactive strategies (P5)
to respond to disruptive innovation challenge. For example, disruptive innovation
may suggest to make a separate organizational unit tasked with this challenge as
highlighted in S2.

Morgan et al. [131] presented a study of 13 managers in the software sector
in Europe and examined how their perceptions of the benefits and drawbacks of
OSS using OI affected their decision to use OI in their organizations. The study
shows benefits in terms of increased collaboration, escape from vendor lock-in and
encouraging innovation, permit companies to team up with other companies, cus-
tomers, and universities to overcome certain adoption factors, like technological
complexity and facilitate product development.

It should be noted that neither of the aforementioned studies state whether ben-
efits of openness were as a result of a reactive or proactive strategy. Furthermore,
the scope of the studies are not limited to tools only, and therefore addressed re-
lated to the internal validity threats (Section 4.3). The proposed theory is supported

5 Theory formulation 139

Table 8: Empirical evidence to support propositions. P1, P2, P3, P4 and P5
represent propositions mentioned in Section 5.2

.

Proposition Evidence Summary

P1 – Reduce devel-
opment cost

[131, 137, 176] E.g., reduced licensing cost,
patching cost

P2 – Shorten devel-
opment time

[130, 137] E.g., reuse of OSS, out-
sourcing of software testing
and bug fixing and mainte-
nance

P3 – Process and
product innovation

[78, 130, 131, 137]
[145, 168, 173, 176]

E.g., faster testing and de-
bugging, better work-flow
management for developers,
free-up time, incremental in-
novation, better continuous
integration

P4 – Degree of in-
vestment

[145] Positively associated with
radical and incremental in-
novation

P5 – Requires man-
agement approval

[78] E.g., creation of new depart-
ments working with innova-
tion through openness

or partly supported by the studies mentioned in Table 8. Therefore, we consider
the empirical support for this theory to be moderate.

Explanatory power

The proposed theory is defined from the abstractions of the synthesis process
[26,126,198]. The theory highlights the openness for software engineering tools in
software organizations in relation to reduced development cost, reduced develop-
ment time and increased product and process innovation. Furthermore, the theory
highlights the motivations of why (conscious management strategy) organizations
should become open. Therefore, we consider the explanatory power of this theory
as moderate.

Parsimony

Parsimony deals with how economically a theory has been constructed in relation
to a number of constructs and propositions. The proposed theory is derived from
the rich amount of qualitative data extracted from the mapping study (S1), case

140 A Theory of Openness for Software Engineering Tools inSoftware . . .

study (S2) and survey (S3). However, the formulated theory of openness, uses a
high level of abstraction, with clear explanation of transitions between theoretical
steps. The number of constructs and propositions related to OSS tools were kept
low. Therefore, we consider the parsimony of the theory as moderate.

Generality

The scope of the proposed theory is limited to software organizations using OSS
tools in the internal software development, which makes the generality of the the-
ory low.

Utility

From a software organization’s perspective, the proposed theory can be utilized
for choosing the right level of openness while working with OSS communities.
Most software organizations have to work with OSS communities therefore, we
see utility of the theory high.

6 Conclusion and future work
This paper presents a theory of openness for software engineering tools in software
organizations, that helps SIPDOs to understand why and how organizations should
capitalize the potential that OSS communities bring to leverage the internal R&D.
In relation to the first research goal defined in section 3.1, the presented theory
highlights which type of organizations are involved in embracing openness, and
what are the possible challenges (intellectual property rights, complete test cover-
age, the absence of business strategy etc.) faced by these organizations in relation
to openness. Furthermore, this paper highlights some of the potential metrics that
could be used to measure innovation as a consequence of openness (see Figure 2).

However, there are some drivers that need to be understood by SIPDOs to be
successful and open at the same time. These drivers entail cost, time-to-market,
speed, process and product innovation. Based on the aforementioned objectives,
the theory fulfills the second research goal by introducing the level of openness
and associated strategies that should be adapted, based on objectives (e.g., cost
reduction, reduced development time etc.). Further, it helps positioning an orga-
nization with respect to its strategy to act as Laggard, Leverage, Lucrativeness or
Leader (see Figure 5).

Future work includes validating the theory with organizations using OSS tools
in their product development to generalize the findings across a broader range of
SIPDOs. The validation could possibly discover more reasons for openness de-
pending upon the organizational context. Furthermore, the validation may lead to
guidelines for managers depending upon the objectives to achieve using openness.

APPENDIX D

SURVEY DESIGN

This appendix presents the survey design details as well as the outcomes. The
questionnaire1 was divided into two branches, namely contributors and non con-
tributors. The survey questionnaire was distributed among 500 employees working
for software-intensive organizations either using Gerrit, Jenkins and Git communi-
ties in their development or also, contributing to those communities. The questions
were divided into the following categories.

1. Demographics

2. Involvement in OI using OSS projects

3. Operationalization of OI in software engineering

4. Quality assurance

First, five questions were common for both contributors and non-contributors
related to the demographics e.g., organization, working experience with OSS, job
title, work responsibilities etc. We received 57 responses including contributors
and non contributors to the communities.

We extracted the email list of Jenkins, Gerrit and Git communities from GitHub
and distributed the survey among all those contributors and non contributors hav-
ing organizational affiliations in their email addresses. Contributors refer to all
those employees who are contributing source code, documentation, test cases etc.
to Jenkins Gerrit and Git. On the other hand, users refer to employees only us-
ing OSS software e.g, the use of Jenkins and Gerrit, in the development of their
organization’s products or services.

The study aimed at responses from the perspective of employees in the con-
text of the nearest organizational unit, using or contributing to OSS communities
(Jenkins, Gerrit and Git). The underlying assumption was that the managers may
know the overall strategy of the organization, but software developers/testers may
only have the local knowledge of their unit. Furthermore, during the pilot survey,

1http://fileadmin.cs.lth.se/cs/Personal/Hussan_Munir/Surveyform.
pdf

142 Survey design

respondents highlighted that they could only respond based on their organizational
unit since they do not know the OSS contribution strategy of the whole organiza-
tion, and it may vary from one unit of another unit.

1 Demographics

Figure 1: Distribution of survey respondents’ experience (%)

Type < = 3 4 to 6 7 to 9 10 to 13 14 to 16

Non contributors 35.7 17.9 17.9 14.3 0.0

Contributors 13.7 10.3 34.5 3.4 10.3

Type Jenkins Gerrit Linux Mozilla Git

Non contributors 50.0 21.4 57.4 46.4 82.1

Contributors 58.6 44.8 58.6 27.6 44.8

Time spent % Development Methodology %

Less than 5 hours 48.3 Waterfall 6.9

6 ‐ 10 hours 13.8 Scrum 34.5

10‐15 hours 3.4 Kanban 24.1

16‐20 hrs. 0.0 Other 34.5

21‐25 hrs. 3.4

Full time 31.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

< = 3

4 to 6

7 to 9

10 to 13

14 to 16

> = 17

% of respondents

N
o
. o

f
ye
ar
s

Contributors Non contributors

Of the survey respondents 61% were software developers, followed by man-
agers (14%), system architects (11%) and testers (9%) and CEOs (4%). Fig-
ure 1 represents the number of years of experience of the respondents and Fig-
ure 2 shows the association of respondents to OSS communities. 68% of the
non contributors have 7 or more years of experience using OSS communities in
their respective organizations. On the other hand, 79% of contributors have 7 or
more years of using and contributing to OSS communities. It must be mentioned
that survey was initially distributed among Gerrit, Jenkins and Git communities to
reach to desired sample population, but it turns out that respondents are working
for multiple OSS communities. Therefore, Figure 2 shows that a respondent may
be associated with multiple OSS communities simultaneously.

1 Demographics 143

Figure 2: Distribution of respondents’ association with OSS communities (%)

< 17 Others
14.3 21.4 14.3 21.4
27.6 3.4 10.3 3.4

MySQL Others
42.9 42.9

6.9 69.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

Jenkins

Gerrit

Linux

Mozilla

Git

MySQL

Others

% of respondents

O
SS

 c
om

m
un

iti
es

Contributors Non contributors

APPENDIX E

WHY GET ORGANIZATIONS
INVOLVED IN OI USING OSS?

Why refers to the factors considered by SIPDOs adopting OI using OSS. OI adop-
tion is not only driven top down, but also bottom up since the majority of the
respondents (72%) in the survey are either tasked by the management to take OI
initiatives or volunteered (62%) to do so. Some respondents (21%) also see it as
a fun way of working with communities as a part of their daily work. The others
category (38%) revealed more factors considered by software organizations before
opening up. These factors entail the cost of maintaining forks of OSS code, good
discussions forums for exchanging innovative ideas, easier to find a solution to
an issue, saves own development cost, create the base ecosystem to innovate and
create innovative products that can delivered to the clients, cheaper than in-house
development, to motivate/educate engineers in the organization, reduced mainte-
nance cost, continuous development and customer satisfaction.

The survey results also highlighted that organizations see the need to build
OSS communities to attract external knowledge into the organization. It is clear
from the responses that software organizations make a project open if it is a non-
competitive tool or a products that is not a direct source of revenue anymore. The
respondents highlighted more contribution strategies (see Figure 1): 1) employees
working with OSS communities encourage organizations to become open and to
gain good reputation in the community, 2) when there are patches involved with
the bug correction and licenses that mandate organizations to reveal code, 3) when
the contributions are not only specific to the organization and have value for the
community as well, 4) competitors’ pressure is also one of the main motivations
for adopting Open Innovation and acquiring new features in OSS tools such as
Jenkins, Gerrit etc.

Figure 1 presents the differences between contributors and non contributors
in incentives to contribute to OSS communities. The incentives are rated by re-
spondents on a likert scale from less important to very important. The majority of
contributors and non contributors agreed in highlighting the importance of getting
the latest patches from OSS communities (59% and 57%, respectively). However,

146 Why get organizations involved in OI using OSS?

Figure 1: Motivating factors to contribute to OSS communities

0 5 10 15 20 25 30 35

Access to the free resources

To steer the community towards my organization's interests

 Due to the participation of competitors

To leverage smart communities' developers

To gain reputation in the community

To promote your company's solution

Get the latest patches

Access to the free resources

To steer the community towards my organization's interests

 Due to the participation of competitors

To leverage smart communities' developers

To gain reputation in the community

To promote your company's solution

Get the latest patches

N
on

 C
on

tr
ib

ut
or

s
Co

nt
rib

ut
or

s

No. of respondents

Less important Not Important Average Important Very important

Figure 2: Factors gained by companies after contributing to OSS communities

0 5 10 15 20 25 30

Free features

Free maintenance

Freed up time

Retaining knowledge through communities

Faster time to market

Increased quality assurance

Improved product releases and upgrades

Inner source initiatives

Free features

Free maintenance

Freed up time

Retaining knowledge through communities

Faster time to market

Increased quality assurance

Improved product releases and upgrades

Inner source initiatives

N
on

 C
on

tr
ib

ut
or

s
Co

nt
rib

ut
or

s

No. of respondents

Less important Not Important Average Important Very important

1 Operationalization of Open Innovation in software engineering 147

Table 1: Time spent on OI

Time spent %

Less than 5 hours 49

6 – 10 hours 14

10 – 15 hours 3

16 – 20 hours 0

21 – 25 hours 3

Full time 31

there is a difference of opinion between contributors and non contributors when
comparing the reputation gain in the community and steering the communities to-
wards organizational interests. 72% of of contributors think that gaining a good
reputation is important to steer the community towards their organizational inter-
ests. At the same time, only 46% of non contributors think that is important to
gain reputation in the community in order to steer the community towards organi-
zational interests.

Figure 2 shows the potential gains reported by contributors and non contribu-
tors by involving themselves in OSS communities. Both contributors (57%) and
non contributors (59%) agreed that the use of OSS communities reduces time to
market for the development of products as it frees up developer time. However,
more contributors 62% think that using and contributing to OSS communities re-
sulted in improved product releases and upgrades as oppose to 47% of non con-
tributors.

1 Operationalization of Open Innovation in soft-
ware engineering

Table 1 shows that 63% of the respondents spent less than ten hours per week
working with OI. At the same time, 31% respondents in the organizations spent
their full time with OI by working with the OSS communities, which indicates
that software organizations are realizing the importance of OI to extract and as-
similate the external knowledge from communities in the organization’s product
development.

Regarding contributions to OSS communities, engineers (69%), middle (55%)
and top level management (52%) are involved in deciding whether or not to con-
tribute organization’s internal source code to OSS communities. However, there is
an extra layer of legal managers (45%) helping organizations to deal with licens-
ing, intellectual property rights and patent infringements.

148 Why get organizations involved in OI using OSS?

2 Quality assurance
Of the respondents 59% use OSS tools e.g., JIRA while 31% use Google’s issues
tracker for bug reporting. However, bugs are reported to communities by email
(28%) and weekly/monthly meetings (21%) among the contributors. One possible
explanation of reporting bugs through email or meetings is that those bug could be
relevant to the organizations only and contributing it to the community would not
give any value.

Among the the respondents 45% reveal more than 75% of their organization’s
source code to the communities. A plausible explanation of this could be that the
source code is not seen as a competitive advantage, or to build a community around
the non competitive tools such as Jenkins or Gerrit. On the other hand, 52% of the
respondents choose to reveal less than 25% of the code to the communities, due to
the risk of losing the intellectual property rights or due to lack of understanding of
the OSS culture in the organization.

Out of the respondents 79% mentioned that bug fixing is prioritized based on
the needs of organizations. It was also confirmed by S2 that if a bug is a make
or break for the organization’s development process then the organization choose
to fix it. Otherwise, bugs are pushed into the Google’s issue tracker for someone
else to fix it. Furthermore, 38% of the respondents think the bugs are prioritized
based on the communities needs as well in order to gain good reputation in the
community.

APPENDIX F

WHO – ORGANIZATIONS
INVOLVED IN OPEN

INNOVATION

150 Who – Organizations involved in Open Innovation

Ta
bl

e
1:

N
on

co
nt

ri
bu

to
rs

O
rg

an
iz

at
io

n
na

m
es

Pr
od

uc
tt

yp
e

Pe
op

le
:(

Si
ze

,R
ol

es
,e

xp
er

ie
nc

e
)

O
SS

To
ol

s

Pe
rt

en
In

st
ru

m
en

ts
A

B
M

ec
ha

ni
ca

lo
r

In
du

st
ri

al
E

ng
in

ee
r-

in
g

W
eb

ba
se

d
m

on
ito

ri
ng

an
d

an
al

-
ys

is
ap

pl
ic

at
io

ns

51
-2

00
em

pl
oy

ee
s,

Pr
es

en
ti

n
ov

er
10

0
co

un
-

tr
ie

s
Sy

st
em

ar
ch

ite
ct

,S
of

tw
ar

e
de

ve
lo

pe
r7

-
9

ye
ar

s

L
in

ux
,G

it,
jQ

ue
ry

,k
no

ck
ou

t,
bo

ot
-

st
ra

p,
jc

an
va

s,
re

qu
ir

ej
s.

ne
t,

Je
nk

-
in

s,
M

oz
ill

a
Fi

re
fo

x

Sy
sa

rt
,F

in
la

nd
C

om
pu

te
rS

of
tw

ar
e

51
-2

00
em

pl
oy

ee
s,

So
ft

w
ar

e
de

ve
lo

pm
en

t,
Sy

st
em

ar
ch

ite
ct

,4
-6

ye
ar

s
Je

nk
in

s,
G

er
ri

t,
L

in
ux

,
M

oz
ill

a
Fi

re
fo

x,
G

it,
M

yS
Q

L
,n

gi
nx

,o
pe

n-
jd

k,
ap

ac
he

ht
tp

d,
po

st
gr

es
ql

V
no

m
ic

s,
In

c.
Tr

an
sp

or
ta

tio
n

51
-2

00
em

pl
oy

ee
s,

So
ft

w
ar

e
de

ve
lo

pe
r,

7-
9

ye
ar

s
Je

nk
in

s,
L

in
ux

,
M

oz
ill

a
Fi

re
fo

x,
G

it,
M

yS
Q

L
,M

er
cu

ri
al

,J
av

a

H
en

an
U

ni
ve

rs
ity

,C
hi

na
A

ca
de

m
ic

s
12

50
0

st
ud

en
ts

,
So

ft
w

ar
e

de
ve

lo
pe

r,
<

17
ye

ar
s

Je
nk

in
s;

L
in

ux
;M

oz
ill

a
Fi

re
-

fo
x;

G
it;

an
t,

lib
re

of
fic

e
Po

ly
te

ch
in

c
of

M
ila

n,
It

al
y

A
ca

de
m

ic
s

40
,0

00
st

ud
en

ts
,

M
an

ag
er

,
Te

ac
he

r,
<

17
m

or
e

M
oz

ill
a

Fi
re

fo
x;

G
it

Sp
ir

os
of

t
E

xp
er

tis
e

in
bo

th
em

be
dd

ed
sy

s-
te

m
s

an
d

de
sk

to
p

co
m

pu
tin

g.
1-

10
em

pl
oy

ee
s,

So
ft

w
ar

e
te

st
er

,W
ri

te
te

st
-

ca
se

s,
E

xe
cu

tio
n,

>
3

M
oz

ill
a

Fi
re

fo
x,

G
it

D
at

en
c

C
lo

ud
co

m
pu

tin
g

C
lo

ud
So

lu
tio

ns
D

at
a

st
or

ag
e

so
lu

tio
ns

1-
10

em
pl

oy
ee

s,
So

ft
w

ar
e

D
es

ig
ni

ng
,D

ev
el

-
op

m
en

ta
nd

M
an

ag
em

en
t,

Sy
st

em
A

rc
hi

te
ct

>
3

L
in

ux
,M

yS
Q

L

G
R

ID
Sy

st
em

s
Pa

ki
st

an
E

-c
om

m
er

ce
se

rv
ic

es
,

So
ft

w
ar

e
D

ev
el

op
m

en
ta

nd
te

am
w

or
k.

C
lin

ic
So

ft
w

ar
e

1-
10

em
pl

oy
ee

s,
So

ft
w

ar
e

D
es

ig
ni

ng
,D

ev
el

-
op

m
en

ta
nd

M
an

ag
em

en
t,

So
ft

w
ar

e
te

st
er

4-
6

ye
ar

s

L
in

ux
,M

yS
Q

L

O
SS

E
,U

SA
M

ec
ha

ni
ca

lo
r

In
du

st
ri

al
E

ng
in

ee
r-

in
g

51
-2

00
em

pl
oy

ee
s,

So
ft

w
ar

e
de

ve
lo

pe
r,

7-
9

ye
ar

s
G

it

151

M
el

tw
at

er
In

fo
rm

at
io

n
Te

ch
no

lo
gy

an
d

Se
r-

vi
ce

s
10

01
-5

00
0

em
pl

oy
ee

s,
So

ft
w

ar
e

de
ve

lo
pe

r,
N

A
Je

nk
in

s,
L

in
ux

,G
it,

M
yS

Q
L

A
gi

le
cr

m
an

d
H

yd
C

us
to

m
er

R
el

at
io

ns
hi

p
M

an
ag

e-
m

en
ts

ys
te

m
51

-2
00

em
pl

oy
ee

s,
So

ft
w

ar
e

te
st

er
,4

-6
ye

ar
s

L
in

ux
,M

oz
ill

a
Fi

re
fo

x,
G

it

X
L

N
A

ud
io

A
B

,S
to

ck
ho

lm
M

us
ic

so
ft

w
ar

e
11

-5
0

em
pl

oy
ee

s,
so

ft
w

ar
e

de
ve

lo
pe

r,
sy

s-
te

m
ar

cc
hi

te
ct

,1
0-

13
ye

ar
s

G
it,

JU
C

E
,j

uc
e,

M
yS

Q
L

C
on

fiz
,P

ak
is

ta
n

Sp
ec

ia
lti

es
Po

rt
al

A
pp

lic
at

io
ns

,
M

ob
ili

ty
,

C
lo

ud
C

om
pu

tin
g,

C
on

-
te

nt
M

an
ag

em
en

t,
C

ro
ss

Pl
at

fo
rm

Fr
am

ew
or

ks
,A

nd
ro

id
ap

pl
ic

at
io

ns

20
1-

50
0

em
pl

oy
ee

s,
Pr

in
ci

pa
lS

of
tw

ar
e

E
n-

gi
ne

er
,

So
ft

w
ar

e
te

st
er

,
Te

am
le

ad
er

,
7-

9
ye

ar
s

L
in

ux
,

G
it,

M
yS

Q
L

Je
nk

in
s,

M
oz

ill
a

Fi
re

fo
x,

G
it,

M
yS

Q
L

Fo
llo

w
-u

p
Sy

st
em

,S
to

ck
ho

lm
In

fo
rm

at
io

n
Te

ch
no

lo
gy

an
d

Se
r-

vi
ce

s
11

-5
0

em
pl

oy
ee

s,
So

ft
w

ar
e

de
ve

lo
pe

r,
>

3
ye

ar
s

Je
nk

in
s,

L
in

ux
,

M
oz

ill
a

Fi
re

fo
x,

G
it,

M
yS

Q
L

Sa
ud

iT
el

ec
om

or
ga

ni
za

tio
n

Te
le

co
m

m
un

ic
at

io
ns

se
ct

or
10

,0
01

+
em

pl
oy

ee
s,

Sy
st

em
ar

ch
ite

ct
,1

0-
13

ye
ar

s
Je

nk
in

s,
G

er
ri

t,
G

it,
M

yS
Q

L

152 Who – Organizations involved in Open Innovation

Ta
bl

e
2:

C
on

tr
ib

ut
or

s

O
rg

an
iz

at
io

n
na

m
es

Pr
od

uc
tt

yp
e

Pe
op

le
:(

Si
ze

,R
ol

es
,e

xp
er

ie
nc

e
)

O
SS

To
ol

s

E
ri

cs
so

n
Te

le
co

m
m

un
ic

at
io

ns
In

du
st

ry
M

or
e

th
an

10
0,

00
0

em
pl

oy
ee

,
M

or
e

th
an

37
,0

00
pa

te
nt

s,
40

%
of

m
ob

ile
ca

lls
ar

e
m

ad
e

th
ro

ug
h

ou
r

sy
st

em
s

18
0

co
un

tr
ie

s,
M

an
ag

er
,S

of
tw

ar
e

de
ve

lo
pe

r,
<

10
ye

ar
s

Je
nk

in
s,

G
er

ri
t,

L
in

ux
,

G
it,

So
na

r-
qu

be
,C

as
an

dr
a

SA
P

E
nt

er
pr

is
e

ap
pl

ic
at

io
n

so
ft

w
ar

e
10

,0
01

+
em

pl
oy

ee
s,

So
ft

w
ar

e
de

ve
lo

pe
r,

7-
9

ye
ar

s
Je

nk
in

s,
G

er
ri

t,
L

in
ux

,G
it,

B
U

IL
D

,
E

cl
ip

se

G
oo

gl
e,

U
SA

Sp
ec

ia
lti

es
in

cl
ud

e
se

ar
ch

,a
ds

,m
ob

ile
,

an
dr

oi
d,

on
lin

e
vi

de
o,

ap
ps

,
m

ac
hi

ne
le

ar
ni

ng
,v

ir
tu

al
re

al
ity

10
,0

01
+

em
pl

oy
ee

s,
So

ft
w

ar
e

E
ng

in
ee

r,
7-

9
ye

ar
s

G
er

ri
t,

L
in

ux
,G

it

A
xi

s,
Sw

ed
en

Sp
ec

ia
lti

es
in

cl
ud

e
N

et
w

or
k

vi
de

o,
IP

V
id

eo
su

rv
ei

lla
nc

e,
Se

cu
ri

ty
ca

m
er

a,
C

C
T

V,
IP

ca
m

er
a

In
du

st
ry

C
om

pu
te

r
N

et
w

or
ki

ng

10
01

-5
00

0
em

pl
oy

ee
s,

ov
er

80
,0

00
pa

rt
ne

rs
,

So
ft

w
ar

e
de

ve
lo

pe
r<

17
ye

ar
s

Je
nk

in
s,

G
er

ri
t,

L
in

ux

So
ny

M
ob

ile
Sw

ed
en

10
,0

01
+

em
pl

oy
ee

s
So

ft
w

ar
e

de
ve

lo
pe

r,
M

an
ag

er
,S

ys
te

m
ar

ch
ite

ct
<

7
ye

ar
s

Je
nk

in
s,

G
er

ri
t,

L
in

ux
,

M
oz

ill
a

Fi
re

fo
x,

G
it,

Jg
it,

ec
lip

se
,r

ep
o,

gi
t-

la
b,

an
dr

oi
d,

Jg
it,

G
itL

ab
,

R
ep

o,
C

hr
om

iu
m

,m
ai

nl
y

A
nd

ro
id

M
oz

ill
a

V
an

co
uv

er
Sp

ec
ia

lti
es

in
cl

ud
e

br
ow

se
r,

in
te

rn
et

,
so

ft
w

ar
e,

m
ob

ile
,

w
eb

ap
ps

,
O

S,
id

en
-

tit
y

50
1-

10
00

em
pl

oy
ee

s,
So

ft
w

ar
e

de
ve

lo
pe

r
te

st
in

g,
<

17
or

m
or

e
M

oz
ill

a
Fi

re
fo

x,
m

er
cu

ri
al

In
te

lL
un

d
Sp

ec
ia

lti
es

in
cl

ud
es

se
m

ic
on

du
ct

or
de

-
si

gn
an

d
m

an
uf

ac
tu

ri
ng

10
,0

01
+

em
pl

oy
ee

s,
63

co
un

tr
ie

s,
M

an
ag

er
M

an
ag

in
g

a
te

am
of

SW
en

gi
ne

er
s

an
d

m
an

-
ag

in
g

th
e

In
te

l
L

un
d

si
te

,
M

an
ag

er
<

17
ye

ar
s

L
in

ux

153

T
ha

le
s

U
K

Sp
ec

ia
lti

es
in

cl
ud

e
A

er
os

pa
ce

,D
ef

en
ce

,
Se

cu
ri

ty
,S

pa
ce

,T
ra

ns
po

rt
at

io
n,

C
yb

er
-

se
cu

ri
ty

10
,0

01
+

em
pl

oy
ee

s,
So

ft
w

ar
e

de
ve

lo
pe

r
su

pp
or

t
(i

ns
ta

lla
tio

n/
co

nfi
gu

ra
tio

n)
of

al
l

so
ft

w
ar

e/
sy

st
em

de
ve

lo
pm

en
t

to
ol

s,
lin

ux
ad

m
in

,
vi

rt
ua

l
da

ta
ce

nt
er

ad
m

in
,

14
-1

6
ye

ar
s

G
it

E
SO

,G
er

m
an

y
Sp

ec
ia

lti
es

in
cl

ud
e

as
tr

on
om

ic
al

re
-

se
ar

ch
te

ch
no

lo
gy

an
d

pr
od

uc
in

g
sc

ie
n-

tifi
c

lib
ra

ri
es

un
de

rG
PL

50
1-

10
00

em
pl

oy
ee

s,
So

ft
w

ar
e

de
ve

lo
pe

r
Sc

ie
nt

ifi
c

so
ft

w
ar

e
de

ve
lo

pm
en

ta
nd

m
ai

nt
e-

na
nc

e,
re

gr
es

si
on

te
st

in
g,
<

14
ye

ar
s,

Ju
ni

t,
Se

le
ni

um
,

A
ls

o
cu

st
om

is
ed

to
ol

s
to

in
te

rf
ac

e
w

ith
C

/C
++

an
d

Py
th

on
co

de
.

Sm
ar

tK
om

pa
re

.c
om

D
ha

ka
Sp

ec
ia

lti
es

in
cl

ud
es

Fi
na

nc
ia

l
Te

ch
no

l-
og

y,
In

fo
rm

at
io

n,
C

om
pa

ri
so

n
11

-5
0

em
pl

oy
ee

s,
C

E
O

M
an

ag
in

g
te

am
,

le
ad

in
g

te
ch

te
am

,W
e

de
ve

lo
p

m
od

ul
es

et
c

,>
3

ye
ar

s

D
ru

pa
l

R
ed

H
at

Sp
ai

n
Sp

ec
ia

lti
es

in
cl

ou
d

co
m

pu
tin

g,
hy

-
br

id
cl

ou
d

m
an

ag
em

en
t,

L
in

ux
,

op
en

so
ur

ce
,

vi
rt

ua
liz

at
io

n,
st

or
ag

e,
m

id
dl

e-
w

ar
e,

co
nt

ai
ne

rs
,m

ob
ile

,O
pe

nS
ta

ck

50
01

-1
0,

00
0

em
pl

oy
ee

s,
C

on
tin

uo
us

In
te

-
gr

at
io

n
E

ng
in

ee
rD

es
ig

n,
<

17
ye

ar
s

Je
nk

in
s,

G
er

ri
t,

L
in

ux
,

G
it,

M
yS

Q
L

,
Fe

do
ra

,
op

en
st

ac
k,

gn
om

e,
kd

e,
gi

m
p

Fl
ow

na
tiv

e
G

m
bh

,G
er

m
an

y
Fl

ow
na

tiv
e

he
lp

s
or

ga
ni

sa
tio

ns
cr

ea
tin

g
fir

st
-c

la
ss

N
eo

s
w

eb
si

te
s

an
d

so
ph

is
ti-

ca
te

d
Fl

ow
ap

pl
ic

at
io

ns
.

1-
5

em
pl

oy
ee

s,
D

ev
el

op
er

an
d

C
E

O
So

ft
-

w
ar

e
de

ve
lo

pm
en

ta
nd

te
st

in
g,
>

3
ye

ar
s

N
eo

s,
D

oc
tr

in
e

&
ot

he
r

(m
os

tly
PH

P)
pr

oj
ec

ts

A
N

at
io

na
lL

ab
or

at
or

y,
U

SA
R

es
ea

rc
h

an
d

de
ve

lo
pm

en
t

So
ft

w
ar

e
de

ve
lo

pe
r,
<

17
ye

ar
s

Je
nk

in
s,

L
in

ux
,

M
oz

ill
a

Fi
re

fo
x,

B
oo

st
C

++

G
ar

m
in

Sp
ec

ia
lti

es
in

cl
ud

e
C

on
su

m
er

E
le

ct
ro

n-
ic

s,
W

or
ld

w
id

e
le

ad
er

in
na

vi
ga

tio
n

&
co

m
m

un
ic

at
io

n
pr

od
uc

ts
,

Pr
od

uc
ts

in
av

ia
tio

n,
m

ar
in

e,
fit

ne
ss

,o
ut

do
or

,&
au

-
to

m
ot

iv
e

pr
od

uc
ts

10
,0

01
+

em
pl

oy
ee

s,
So

ft
w

ar
e

de
ve

lo
pe

r
L

ea
d

a
te

am
,7

-9
ye

ar
s

Je
nk

in
s,

G
er

ri
t,

L
in

ux
,G

it

154 Who – Organizations involved in Open Innovation

Q
va

nt
el

,K
ar

ls
lr

on
a

Sw
ed

en
Sp

ec
ia

lti
es

in
cl

ud
e

C
lo

ud
ba

se
d

B
us

i-
ne

ss
Su

pp
or

t
Sy

st
em

s
(B

SS
),

So
ft

-
w

ar
e

D
ev

el
op

m
en

t
Se

rv
ic

es
,

O
ff

sh
or

e
So

ft
w

ar
e

D
ev

el
op

m
en

t
fo

r
sm

al
l/m

id
si

ze
so

ft
w

ar
e

ve
nd

or
s,

B
us

in
es

s
Pr

oc
es

s
M

an
ag

em
en

t(
B

PM
)S

er
vi

ce
s

20
1-

50
0

em
pl

oy
ee

s,
A

ut
o

ex
ec

ut
io

n
of

in
te

-
gr

at
io

n
te

st
,

B
ui

ld
fa

ilu
re

/S
uc

ce
ss

,
R

eg
re

s-
si

on
te

st
in

g,
4-

6
ye

ar
s

Je
nk

in
s,

L
in

ux
,

M
oz

ill
a

Fi
re

fo
x,

G
it,

B
ig

da
ta

,S
ta

sh

C
on

fiz
Sp

ec
ia

lti
es

in
cl

ud
e

Po
rt

al
A

pp
lic

at
io

ns
,

M
ob

ili
ty

,
C

lo
ud

C
om

pu
tin

g,
C

on
te

nt
M

an
ag

em
en

t
To

uc
h,

Q
ua

lit
y

E
ng

in
ee

r-
in

g,
.N

E
T

Fr
am

ew
or

ks
,J

S
Fr

am
ew

or
ks

,
W

in
do

w
s

8,
A

nd
ro

id
ap

pl
ic

at
io

ns

20
1-

50
0

em
pl

oy
ee

s,
So

ft
w

ar
e

de
ve

lo
pe

r,
Pr

oj
ec

td
oc

um
en

ta
tio

n,
R

eq
ui

re
m

en
tA

na
ly

-
si

s
an

d
w

ri
te

s
A

ut
om

at
io

n
Sc

ri
pt

,7
-9

ye
ar

s

Je
nk

in
s,

L
in

ux
,G

it,
M

yS
Q

L
Je

nk
-

in
s,

M
oz

ill
a

Fi
re

fo
x,

G
it,

M
yS

Q
L

Y
at

ta
So

lu
tio

ns
G

er
m

an
y

Sp
ec

ia
lti

es
in

cl
ud

e
E

cl
ip

se
,s

of
tw

ar
e

de
-

ve
lo

pm
en

t,
so

ft
w

ar
e

ar
ch

ite
ct

ur
e,

so
ft

-
w

ar
e

en
gi

ne
er

in
g,

U
M

L

11
-5

0
em

pl
oy

ee
s,

So
ft

w
ar

e
de

ve
lo

pe
r,

7-
9

ye
ar

s
E

cl
ip

se

1 Example of raw data collected from S1, S2 and S3 155

1
E

xa
m

pl
e

of
ra

w
da

ta
co

lle
ct

ed
fr

om
S

1,
S

2
an

d
S

3

Ta
bl

e
3:

Se
le

ct
ed

ra
w

da
ta

fr
om

S1
,S

2,
an

d
S3

.P
le

as
e

no
te

th
at

it
is

on
ly

a
sm

al
lp

ar
to

fr
aw

da
ta

co
lle

ct
ed

fr
om

th
e

th
re

e
st

ud
ie

s
to

sh
ow

an
ex

am
pl

e.

Fa
ce

ts
S1

S2
S3

O
rg

an
iz

at
io

ns
us

in
g

O
SS

to
ol

s
e.

g.
,

Je
nk

in
s,

G
er

ri
t,

G
it

N
ok

ia
,I

B
M

,R
dH

at
,H

P
So

ny
,G

oo
gl

e,
E

ri
cs

so
n,

H
P,

SA
P,

In
te

l,
L

at
om

be
,B

la
ck

-
B

ui
ld

,
R

ed
ha

t,
C

od
ea

ur
or

a,
Q

ue
llt

ex
tli

ch

Pe
rt

en
,

So
ny

,
In

te
l,

X
L

N
A

ud
io

A
B

,C
on

fiz

St
ra

te
gi

es
us

ed
by

SI
PD

O
s

fo
ro

pe
nn

es
s

A
cc

es
si

ng
an

d
ex

te
nd

in
g

th
e

re
so

ur
ce

-b
as

e
of

th
e

fir
m

,
A

lig
ni

ng
th

e
fir

m
’s

st
ra

te
gy

w
ith

th
e

co
m

m
un

ity
,

In
te

-
gr

at
in

g
an

d
sh

ar
in

g
re

su
lts

,
Se

le
ct

iv
e

re
ve

al
in

g

D
iffi

cu
lt

to
ke

ep
up

w
ith

th
e

co
m

m
un

ity
’s

pa
ce

du
e

to
la

ck
of

re
so

ur
ce

s,
M

or
e

pa
tc

hi
ng

as
re

su
lt

of
di

ff
er

-
en

t
di

re
ct

io
n

th
an

th
e

co
m

-
m

un
ity

,A
cc

es
s

to
pr

ag
m

at
ic

so
ft

w
ar

e
de

ve
lo

pm
en

tw
or

k-
fo

rc
e,

To
in

flu
en

ce
or

st
ee

r
co

m
m

un
ity

to
w

ar
ds

co
m

-
pa

ny
’s

bu
si

ne
ss

m
od

el

To
bu

ild
a

co
m

m
un

ity
ar

ou
nd

th
e

pr
oj

ec
t,

W
he

n
th

e
pr

od
uc

t
lo

os
es

co
m

-
pe

tit
iv

en
es

s,
W

he
n

th
e

pr
od

uc
t

is
th

e
m

ai
n

so
ur

ce
of

re
ve

nu
e,

B
ec

au
se

yo
ur

co
m

pe
tit

or
s

ar
e

m
ak

in
g

th
ei

r
pr

oj
ec

ts
op

en
so

ur
ce

,
N

on
co

m
pe

tit
iv

e
to

ol
s

on
ly

156 Who – Organizations involved in Open Innovation

Fa
ct

or
s

co
ns

id
er

ed
by

so
ft

-
w

ar
e

or
ga

ni
za

tio
n

fo
r

op
en

-
ne

ss

K
no

w
le

dg
e

bu
ild

in
g

an
d

ex
-

ch
an

ge
,

Pl
at

fo
rm

an
d

so
ft

-
w

ar
e

re
us

e,
In

no
va

tio
n

su
p-

po
rt

,
Ti

m
e

to
m

ar
ke

t,
co

st
,

m
ai

nt
en

an
ce

C
ul

tu
re

ch
an

ge

To
m

ov
e

fr
om

W
in

do
w

s
to

L
in

ux
,P

ro
pr

ie
ta

ry
so

lu
tio

ns
to

O
SS

so
lu

tio
ns

,
E

as
e

of
f

th
e

co
m

pl
ex

in
te

gr
at

io
n

an
d

bu
ild

in
g

pr
oc

es
s,

Fu
n

w
ay

of
w

or
ki

ng
,T

as
ke

d
by

m
an

ag
em

en
t,

co
st

of
m

ai
nt

ai
ni

ng
fo

rk
s

of
O

SS
co

de
,

go
od

di
sc

us
si

on
s

fo
-

ru
m

s
fo

r
ex

ch
an

gi
ng

in
no

-
va

tiv
e

id
ea

s
,

In
flu

en
ce

an
d

re
pu

ta
tio

n

C
ha

lle
ng

es
fa

ce
d

by
or

ga
ni

-
za

tio
ns

to
ad

op
tO

I
B

us
in

es
s

st
ra

te
gy

(i
.e

un
-

cl
ea

r
co

nt
ri

bu
tio

n
st

ra
te

gy
),

St
ra

te
gi

c
O

I
ba

rr
ie

rs
(i

.e
.

la
ck

of
ex

pe
rt

is
e)

,
G

ov
er

-
na

nc
e

(i
.e

.
gi

vi
ng

up
co

n-
tr

ol
)

L
eg

al
is

su
es

,
In

te
lle

ct
ua

l
pr

op
er

ty
ri

gh
ts

,
L

ac
k

of
O

SS
cu

ltu
re

,
la

ck
of

un
-

de
rs

ta
nd

in
g,

R
is

k
of

lo
si

ng
co

m
pe

tit
iv

e
ad

va
nt

ag
e

Ti
m

e,
Pr

ot
ec

tin
g

in
te

lle
c-

tu
al

pr
op

er
ty

D
ep

en
de

nc
y

to
w

ar
ds

an
op

en
so

ur
ce

co
m

m
un

ity
fo

r
su

pp
or

t,
It

st
ea

l’s
fo

cu
s

fr
om

ou
r

m
ai

n
ta

sk
s,

I
gu

es
s

th
e

po
te

nt
ia

l
ha

s
no

t
be

en
id

en
tifi

ed
by

th
e

m
an

ag
er

s.
,

E
nd

us
er

re
qu

ir
em

en
ts

ar
e

hi
gh

es
t

pr
io

ri
ty

,
B

us
in

es
s

se
cr

et
s/

po
lic

ie
s,

L
ac

k
of

re
-

so
ur

ce
s,

L
ac

k
of

de
ve

lo
pe

r
tim

e

2 Rigor and relevance criteria 157

2 Rigor and relevance criteria

2.1 Rigor

Context(C)

1. Strong description: The context is described to the extent where it becomes
comparable to other settings [85]. In particular, we emphasized subject type
(graduate, undergraduate, professionals, researcher), development experi-
ence, development methodology, duration of the observation. If all these
aforementioned factors are highlighted, then C is evaluated to 1.

2. Medium description: If any of the above mentioned factors is missing in
the study, then C is evaluated to 0.5.

3. Weak description: If no description of context is provided in the study,
then C is evaluated to 0.

Design (D)

1. Strong description: The research design is described to the extent where
it becomes transparent and detailed enough for the reader to understand the
design [85]. To be specific, if the study underlined the outcome variables,
measurement criteria, treatments, number of subjects , and sampling, then
D is evaluated to 1.

2. Medium description: If a study is missing out on any of the factors related
to design and data collection is missing (see above), then D evaluates to 0.5.

3. Weak description: If no design description is provided at all then, D is
evaluated to 0.

Validity threats (V)

1. Strong description: If different types of validity (i.e. internal, external,
conclusion and construct validity) are evaluated and reflected upon then, V
is evaluated to 1.

2. Medium description: If a study only highlights the subset of the relevant
threat categories then, V is evaluated to 0.5

3. Weak description: If a study is missing out on validity discussion com-
pletely, then V is evaluated to 0.

158 Who – Organizations involved in Open Innovation

2.2 Relevance
Users/Subjects (U)

1. Contribute to relevance: If the subjects used in the study are from industry
(professionals) then, U is evaluated to 1 for industry.

2. Partially contribute to relevance: The subjects are partially representative,
i.e. they are master(Msc.) or graduated students then, U is evaluated to 0.5

3. Does not contribute to relevance: If the subjects are bachelor/undergrad
students or the information is missing then, U is evaluated to 0

Scale (S)

1. Contribute to relevance: If an industrial size application is used in the
study then, S is evaluated to 1.

2. Does not contribute to relevance: The application is down-scaled or a toy
example hence, S is evaluated to 0.

Research Methodology (RM)

1. Contribute to relevance: The chosen research methodology is suitable to
scrutinize real world contexts and situations with relevance for practitioners
(action research, case study, industry interviews, experiment investigating a
real situation, and surveys/interviews). If study belongs to any of the afore-
mentioned research methodologies then, RM is evaluated to 1

2. Does not contribute to relevance: If a Study is using Lab experiment (hu-
man subjects/software) or missing information then, RM is evaluated to 0.

Context (C)

1. Contribute to relevance: If a study is executed in a setting that matches
real industrial usage (industrial setting) then, C is evaluated to 1.

2. Does not contribute to relevance: If a study is investigated under under
artificial setting (e.g. lab) or others that do not represent a context matching
real world situations, or not reported then, C is evaluated to 0.

CHAPTER IV

MOTIVATING THE
CONTRIBUTIONS: AN OPEN

INNOVATIONPERSPECTIVE
ON WHAT TO SHARE AS

OPEN SOURCE SOFTWARE

Abstract

Open Source Software (OSS) ecosystems have reshaped the ways how software-
intensive firms develop products and deliver value to customers. However, firms
still need support for strategic product planning in terms of what to develop inter-
nally and what to share as OSS. Existing models accurately capture commoditiza-
tion in software business, but lack operational support to decide what contribution
strategy to employ in terms of what and when to contribute. This study proposes a
Contribution Acceptance Process (CAP) model from which firms can adopt con-
tribution strategies that align with product strategies and planning. In a design
science influenced case study executed at Sony Mobile, the CAP model was it-
eratively developed in close collaboration with the firm’s practitioners. The CAP
model helps classify artifacts according to business impact and control complexity
so firms may estimate and plan whether an artifact should be contributed or not.
Further, an information meta-model is proposed that helps operationalize the CAP
model at the organization. The CAP model provides an operational OI perspective
on what firms involved in OSS ecosystems should share, by helping them motivate
contributions through the creation of contribution strategies. The goal is to help
maximize return on investment and sustain needed influence in OSS ecosystems.

160 Motivating the Contributions: An Open InnovationPerspective on . . .

1 Introduction

Open Innovation (OI) has attracted scholarly interest from a wide range of disci-
plines since its introduction [186], but remains generally unexplored in software
engineering [141]. A notable exception is that of Open Source Software (OSS)
ecosystems [87, 185, 188]. Directly or indirectly adopting OSS as part of a firm’s
business model [32] may help the firm to accelerate its internal innovation pro-
cess [31]. One reason for this lies in the access to an external workforce, which
may imply that costs can be reduced due to lower internal maintenance and higher
product quality, as well as a faster time-to-market [176, 180]. A further potential
benefit is the inflow of features from the OSS ecosystem. This phenomenon is
explained by Joy’s law as “no matter who you are, not all smart people work for
you”.

From an industry perspective, these benefits are highlighted in a recent study
of 489 projects from European organizations that showed projects of organizations
involving OI achieved a better financial return on investment compared to organi-
zations that did not involve OI [48]. Further, two other studies [109, 137] have
shown that organizations with more sources of external knowledge achieved better
product and process innovation for organization’s proprietary products. Moreover,
a recent survey study [28] in 125 large firms of EU and US showed that 78% of
organizations in the survey are practicing OI and neither of them has abandoned it
since the introduction of OI in the organization. This intense practicing of OI also
leads 82% of the organizations to increase management support for it and 53% of
the organizations to designate more than 5 employees working full-time with OI.
Moreover, the evidence suggests that 61% of the organizations have increased the
financial investment and 22% have increased the financial investment by 50% in
OI.

To better realize the potential benefits of OI resulting from participation in OSS
ecosystems, firms need to establish synchronization mechanisms between their
product strategy and product planning [62], and how they participate in the ecosys-
tems and position themselves in the ecosystem governance structures [10,141,173,
194]. This primarily concerns firms that either base their products on OSS or em-
ploy OSS as part of their sourcing strategy. To achieve this synchronization, these
firms need to enrich their product planning and definition activities with a strategic
perspective that involves what to keep closed and what to contribute as OSS. We
label this type of synchronization as strategic product planning in OI. Contribu-
tion strategies [194], i.e., guidelines that explain what should be contributed, and
when play a vital role here. A common strategy is to contribute parts considered
as a commodity while keeping differentiating parts closed [76, 185]. The timing
aspect is critical as functionality sooner or later will pass over from being differen-
tiating to commodity due to a constantly progressing technology life-cycle [120].
This strategy is further emphasized by existing commoditization models [22,120].
However, these models are not designed with active OSS ecosystem participation

2 Related work 161

in mind and lack support for strategic product planning and contribution strategies.
In this paper, we occupy this research gap by presenting a Contribution Ac-

ceptance Process (CAP) model. The model was developed in close collaboration
with Sony Mobile. Sony Mobile is actively involved in a number of OSS ecosys-
tem, both in regard to their products features and their internal development in-
frastructure1. With the consideration of OSS as an external asset, the CAP model
is based on the Kraljic’s portfolio purchasing model which helps firms analyze
risk and maximize profit when sourcing material for their product manufactur-
ing [104]. The original model is adapted through an extensive investigation of
Sony Mobile’s contribution processes and policies, and designed to support firms’
strategic product planning. More specifically, the model helps firms to create con-
tribution strategies for their products and software artifacts such as features and
components. Hence, the CAP model is an important step for firms that use OSS
ecosystems in their product development and want to gain or increase the OI bene-
fits, such as increased innovation and reduced time-to-market. Moreover, we help
firms to operationalize the CAP model by proposing an information meta-model.
The meta-model is an information support that should be integrated into the re-
quirements management infrastructure and enables contribution strategies to be
communicated and followed up on a software artifact-level throughout a firm’s de-
velopment organization. As a first validation outside of Sony Mobile, the CAP
model was presented to and applied in three case firms. This provided understand-
ing of the model’s generalizability, and also input to future design cycles.

The rest of the paper is structured as follows: In section 2, we position our
study with related work and further motivate the underlying research gap. This is
followed by section 3 in which we describe the research design of our study, its
threats to validity and strategies used to minimize these threats. In section 4 we
present our CAP model and in section 5 we present an information meta-model
for how contribution decisions may be traced. In section 6, we present an example
of how the CAP model and meta-model may be used together inside Sony Mobile.
In section 7 we present findings from three exploratory case studies outside Sony
Mobile where we focused on early validation the CAP model’s applicability and
usability. Finally, in section 8 we discuss the CAP model in relation to related
work, and specific considerations, while we summarize our study in section 9.

2 Related work

Below we describe the context of our research with respect to how software engi-
neering and OSS fits into the context of OI. Further, we give a background on con-
tribution strategies and commoditization models. Moreover, we provide a back-
ground of the sourcing model on which the CAP model is based. We than provide

1http://developer.sonymobile.com/knowledge-base/open-source/

162 Motivating the Contributions: An Open InnovationPerspective on . . .

an overview on what we label as strategic product planning, as well as on software
artifacts, and conclude by describing the research gap, that this study aims to fill.

2.1 Open Innovation in Software Engineering

OI is commonly explained by a funnel model [31] representing a firm’s R&D
process, see Fig. 1. The funnel (1) is permeable, meaning that the firm can interact
with the open environment surrounding it. This conceptualization fits onto many
contexts, e.g., a firm that takes part in a joint-venture or start-up acquisition. In
our case, we focus on ecosystems (2) and specifically those based on OSS [64,
87]. An OSS ecosystem consists of the focal firm along with other actors who
jointly see to the development and maintenance of an OSS project, which may
be seen as the technological platform underpinning the relationships between the
actors [90, 123]. In the context of this study, the focal firm represented by the OI
funnel is Sony Mobile and their internal software development process. The OSS
ecosystem could, for example, be represented by that surrounding the Android
Open Source Project2 (AOSP). The interactions between the focal firm and the
ecosystem (see Fig. 1) are represented by the arrows going in and out and can
be further characterized as knowledge exchange between the firm and the OSS
ecosystem (e.g., Sony Mobile and AOSP). Examples of transactions can include
software artifacts (e.g., bug fixes, features, plug-ins, or complete projects), but
also opinions, knowledge, and support that could affect any step of the internal or
external development.

The interactions (3) may be bi-directional in the sense that they can go into the
development process from the open environment (outside-in), or from the develop-
ment process out to the open environment (inside-out). Coupled innovation [55]
happens when outside-in and inside-out transactions occurs together (i.e., con-
sumption of and contribution to OSS). This may be expected in co-development
between a firm and other ecosystem participants in regard to specific functionality
(e.g., Sony Mobile’s developer toolkits3).

How firms choose to work with and leverage these interactions with OSS
ecosystems impact how they will realize the potential benefits of OI, such as in-
creased innovation, shorter time-to-market, and better resource allocation [176,
180]. The CAP model presented in this paper provides operational and decision-
making guidelines for these firms in terms what they should contribute to and
source of from the OSS ecosystems. I.e., how they should interact with the open
environment in an inside-out, outside-in, or coupled direction. Hence, what the
CAP model brings in terms of novelty is an operational OI perspective on what
firms involved in OSS ecosystems should share, by helping firms motivate the
contributions through the creation of tailored contribution strategies.

2https://source.android.com/
3https://github.com/sonyxperiadev

2 Related work 163

Figure 1: The OI model illustrated with interactions between the firm (1) and its
external collaborations (2,4). Adopted from Chesbrough [31].

164 Motivating the Contributions: An Open InnovationPerspective on . . .

2.2 Contribution Strategies in Open Source Software Ecosys-
tem

Wnuk et al. [194] define a contribution strategy as a managerial practice that helps
to decide what to contribute as OSS, and when. To know what to contribute, it is
important for firms to understand how they participate in various OSS ecosystems
in regards to their business model and product strategy from an OI perspective.
Dahlander & Magnusson [40] describe how a firm may access the OSS ecosystems
in order to extend its resource base and align its product strategy with ecosystems’
strategies. In another study, Dahlander & Magnusson [41] describe how a firm
can adapt its relationships with the OSS ecosystems based on how much influence
the firm needs, e.g., by openly contributing back to the OSS ecosystem, or by
keeping new features internal. To build and regulate these relationships, a firm
can apply different revealing strategies in this regard: differentiating parts are kept
internal while commodity parts are contributed [76, 185]. Further, licenses may
be used so that the technology can be disclosed under conditions where control is
still maintained [185]. Depending on the revealing strategy the level of openness
may vary from completely open, partly transparent conditions [32], to completely
closed. As highlighted by Jansen et al. [89], the openness of a firm should be
considered as a continuum rather than a binary choice.

2.3 Commoditization Models

With commoditization models, we refer to models that describe a software arti-
fact’s value depreciation [97] and how it moves between a differential to a com-
modity state, i.e., to what extent the artifact is considered to help distinguish the
focal firm’s product offering relative to its competitors. Such models can help firms
better understand what they should contribute to OSS ecosystems, and when, i.e.,
provide a base to design contribution strategies [194]. Van der Linden et al. [120]
stressed that efficient software development should focus “. . . on producing only
the differentiating parts” and that “. . . preferably, firms acquire the commodity
software elsewhere, through a distributed development and external software such
as [commercial software] or OSS”. Firms should hence set the differentiating
value of a software artifact in relation to how it should be developed, or even if
it should be acquired. Commoditization is also related to the product’s life-cycle
and, is more often experienced towards the end of the life cycle [101].

Van der Linden et al. [120] present a commoditization model that highlights
how commoditization is a continuous and inevitable process for all software arti-
facts. Therefore, firms should consider whether the software or technology should
be developed, acquired, or kept internally, shared with other firms, or made com-
pletely open (e.g., as OSS) [11]. Ideally, differentiating software or technology
should be kept internal, but as their life-cycle progresses their value depreciates
and they should be made open. This is particularly relevant for software artifacts

2 Related work 165

that have an enabling role for cross-value creation, data collection or support value
creation when combined with other parts of the offering, e.g., an artifact that col-
lects and analyzes anonymous customer data that could be offered as business
intelligence to customers [97]. Bosch [22] presents a similar commoditization
model, which classifies the software into three layers and describes how a soft-
ware’s functionality moves from an early development stage as experimental and
innovative, to a more mature stage where it provides special value to customers
and advantage towards competition, then finally transitioning to stage where it is
considered as commodity, hence it “. . . no longer adds any real value” [22].

A challenge identified by both van der Linden et al. [120] and Bosch [22] is
the risk of losing Intellectual property rights (IPR) to competitors, a challenge that
has also been highlighted in numerous other studies [76, 77, 188, 194]. By not
contributing software and technology that are considered differentiating, firms can
avoid the risk of giving away its added value to competitors. However, both van der
Linden et al. [120] and Bosch [22] highlight how the acquisition of the commodity
functionality may help firms to reduce the development and maintenance cost,
and potentially shorten time-to-market. Instead, they can shift internal focus to
differential features and better-justified R&D activities [120].

2.4 The Kraljic Portfolio Purchasing Model

From the software product planning perspective, sourcing refers to decisions of
what parts of the software that should be developed internally or acquired exter-
nally, from where and how [101], and is an important part of a firm’s product
strategy [62]. A recent literature review of software component decision-making
making lists four sourcing strategies: in-house, outsourcing, COTS and OSS and
brings supporting evidence that two sourcing strategies are often considered [11].
From an OSS perspective, sourcing, therefore, regards decisions on if, and what,
parts of the internal software that should be based on and/or co-developed as OSS
(also referred to as Open-Sourcing [5]). This is further highlighted in existing com-
moditization models (see section 2.3), which argues how commodity parts should
be acquired, contributed and sourced in different ways, while internal development
should be focused on differenting parts [22, 120]. With this background, we have
chosen to base the CAP-model presented in this study on the portfolio purchasing
model by Peter Kraljic [104].

Kraljic’s model describes how to develop a sourcing strategy for the supply-
items (e.g., material and components) required for a product. First, the supply-
items are classified according to the Profit impact and Supply risk dimensions on
a scale from low to high. The profit impact concerns the strategic importance of
the item, as well as the added value and costs which that it generates for the firm.
The supply risk refers to the availability of the item, ease to substitute its suppliers,
and how it is controlled. The supply items are then positioned onto a matrix with
four quadrants, based on the two dimensions, see Fig. 2. Each quadrant represents

166 Motivating the Contributions: An Open InnovationPerspective on . . .

a specific item category with its own distinctive purchasing strategy towards the
suppliers [104].

Figure 2: The matrix used in Kraljic’s portfolio purchasing model [104], which
allows supply-items needed for a product to classified into four item categories
based on the two dimensions Business impact and Supply risk.

• Strategic items: These are items with high-profit impact and high supply
risk. They can usually only be acquired from a single supplier. A com-
mon strategy is to form and maintain a strategic partnership with the sup-
plier [25].

• Leverage items: These are items with high-profit impact and low supply
risk. Can generally be obtained from multiple suppliers at a low switching
cost. A common strategy is to exploit buying power within the supplier
market [25].

• Bottleneck items: These are items with low-profit impact and high supply
risk. Suppliers are usually in a dominant position. A common strategy is to
accept dependence and strive to reduce negative effects, e.g., through risk
analysis and stock-piling [25].

• Non-critical items: These are items with low-profit impact and low supply
risk. They generally have a low added-value per item. A general strategy is
to reduce related costs, such as logistic and administrative [25].

Determining how a material or component should be classified may be done in
several ways. Gelderman et al. [68] report how a consensus-seeking method is fre-
quently used by inviting cross-functional competencies and internal stakeholders
to discuss how items should be rated in regard to the two dimensions [68]. Other

2 Related work 167

measurement approaches involve representing each dimension with a specific vari-
able (e.g., supply risk as a number of available suppliers), or using a set of variable
and weighting them together. After a set of items have been analyzed and put on
the matrix, discussions, and reflections are performed and can potentially lead to
a revision of the item categorization [68]. This discussion may concern how the
firm should maintain the items’ current positions or strive to move certain items
between the quadrants.

The model inspired several industries and academics. Among some examples,
Caniëls and Gelderman [25] studied the choice of various purchasing strategies
and empirically quantified the "relative power" and "total interdependence" as-
pects among Dutch purchasing professionals. Ulkuniemi et al. [178] looked at
purchasing as a market shaping mechanism and identified five types of market
shaping actions. Shaya discussed the usage of the Kraljic’s portfolio model for
optimizing the process of sourcing IT and managing software licenses at Skanska
ITN [166]. Gangadharan et al. proposed using Kraljic’s portfolio model for map-
ping SaaS services and sourcing structure [63]. To the best of our knowledge, no
study has suggested using Kraljic’s model in the context of OSS ecosystems and
creation of contribution strategies for software artifacts.

2.5 Strategic Product Planning in OI

A software product strategy defines the product and describes how it will evolve
for a longer period of time [62]. It should consider aspects such as the prod-
uct definition in terms of functional and quality scope, target market, delivery
model, positioning and sourcing 4. Product planning executes product strategy
with the help of roadmapping, release planning, and requirements management
processes [62]. Hence, decisions regarding if, and what parts of the product should
be based on OSS concerns executive management and the software product man-
agement (SPM) as they usually oversee the product strategy [122], but also the
development organization as they, together with SPM, oversee the product plan-
ning and development.

To the best of our knowledge, the current literature offers limited operational
support for creating contribution strategies that help synchronize product strategies
and product planning with OSS ecosystems. Therefore, we present the CAP model
to support software firms in building strategic product planning that looks beyond
realizing a set of features in a series of software releases that reflects the overall
product strategy and adds the strategic OI aspect with the help of contribution
strategies.

4http://community.ispma.org/body-of-knowledge/

168 Motivating the Contributions: An Open InnovationPerspective on . . .

2.6 Artifacts in Software Engineering

The CAP model presented in this paper offers a tool for firms to decide whether
or not a software artifact should be contributed to an OSS ecosystem or not. In
this context, a software artifact may refer to a functionality of different abstrac-
tions, e.g., bug-fixes, requirements, features, architectural assets or components.
These artifacts may be represented and linked together in software artifact reposi-
tories [124], often used for gathering, specification and communication of require-
ments inside a software development organization’s requirements management in-
frastructure [16].

Artifacts may be structured and stored in different ways depending on the con-
text and process used [124]. The resulting artifact structure (also called infrastruc-
ture) supports communication between different roles and departments inside an
organization, e.g., to which product platform a certain feature belongs, what re-
quirements a certain feature consists of, what test cases that belong to a certain re-
quirement, which release a certain requirement should be implemented in, or what
artifacts patches that represent the implementation of a certain requirement. The
communication schema should be altered dependent on the firms’ needs and pro-
cesses [58], e.g. to follow-up what requirements are contributed. In this study, we
introduce an information meta-model that proposes how a set of repositories may
be set up to support the above-mentioned communication and decision-making.

Firms often store software artifacts in a central database and require certain
quality criteria in terms of completeness and traceability etc [7]. In contrast, OSS
ecosystems constitute an opposite extreme with their usually very informal prac-
tices [57]. Here, a requirement may be represented by several artifacts, often
complementing each other to give a more complete picture, e.g., as an issue, in
a mail thread, and/or as a prototype or a finished implementation. These artifacts
are examples of what Scacchi refers to as informalisms [163] and are stored in
decentralized repositories (such as issue trackers, mailing lists, and source code
repositories respectively).

2.7 Summary

Software engineering has received limited attention in the context of OI, specifi-
cally in relation to OSS, which is widespread in practice [141]. Hence, the limited
attention that contribution strategies have gotten is not surprising with some ex-
ceptions [173,194]. There is literature explaining general incentives and strategies
for how firms should act [40, 79, 188], but neither of the aforementioned or ex-
isting models [22, 120] consider aspects specific to OSS, and how firms should
synchronize internal product strategy and planning with OSS ecosystem participa-
tion [141]. This study aims to address this research gap through a close academia
and industry collaboration.

3 Research methodology 169

3 Research methodology
In this section, we describe the research design, the process of our study, and our
research questions. Further, we motivate the choices of research methods and how
these were performed to answer the research questions. Finally, we discuss related
validity threats and how these were managed.

3.1 Case Firm
Sony Mobile is a multinational firm with roughly 5,000 employees, developing
mobile phones and tablets. The studied branch is focused on developing An-
droid based phones and tablets and has 1600 employees, of which 900 are directly
involved in software development. Sony Mobile develops software using agile
methodologies and uses software product line management with a database of
more than 20,000 features suggested or implemented across all product lines [149].

As reported in earlier work [137], Sony Mobile is a mature OSS player with
involvement in several OSS projects. Their existing processes for managing contri-
bution strategies and compliance issues is centrally managed by an internal group
referred to as their OSS governance board [137] (cf. OSS Working group [96]).
The board has a cross-functional composition as previously suggested with engi-
neers, business managers, and legal experts, and applies the reactive approach as
described in section 4.3.

3.2 Research Questions
This study aims to support software-intensive firms involved in OSS ecosystems
with integrating their internal product strategy and planning [62] with the decision-
process of what software artifacts that they should contribute to the OSS ecosys-
tems, and when, formalized as contribution strategies [194]. Strategic product
planning in OI primarily concerns what parts should be revealed (contributed) in
an inside-out direction [31] from the firm to the ecosystem. This contribution af-
fects the OSS which in turn is sourced in an outside-in direction [31] from the
ecosystem to the firm and is a key enabler in achieving the potential benefits of
OI [141]. Earlier research in this area of OI [186], and OSS [141], is sparse and
often limited to a management level (e.g., [40, 41, 76, 120]). To occupy this re-
search gap, we aim to design a solution that supports firms in strategic product
planning. We pose our first research question (RQ1) as:

RQ1: How can contribution strategies be created and structured to support strate-
gic product planning from an OI perspective?

Product planning is a broad practice and usually involves a cross-functional
set of internal stakeholders (e.g., legal, marketing, product management, and de-
velopers) [103]. This is also the case for strategic product planning and associated

170 Motivating the Contributions: An Open InnovationPerspective on . . .

contribution strategies. For a firm with a small development organization, these
internal stakeholders may be co-located and efficiently communicate and discuss
decisions on a daily basis, but for larger (geographically-distributed) development
organizations this may not be possible and cumbersome [43]. A contribution strat-
egy for a certain feature needs to be communicated from the product planning
team to the development teams who should implement and contribute accordingly.
Conversely, product planning is responsible for monitoring the realization of the
approved contribution strategies and what impact they have.

One of the main challenges for market-driven firms is to know what requirements-
associated information to obtain, store, manage, and how to enable efficient com-
munication across all stakeholders involved in the crucial decisions that lead to
product success [94, 154]. Handling information overload [195] and efficiently
connecting the necessary bits and pieces of information is important for strategy
realization and follow up analysis. This is particularly important when introduc-
ing new concepts that require close collaboration and efficient communication be-
tween product management and product development organizations. Thus, RQ2
focuses on the information meta-model that should be integrated into the software
artifact repositories used for requirements management and product planning. Our
goal is to develop an information meta-model that describes how contributions to
OSS ecosystems can be traced to internal product requirements and platforms, and
vice versa, and allow for an organizational adoption of contribution strategies for
concerned firms. This leads us to pose our second research question (RQ2):

RQ2: What software and product planning artifact types and repositories are re-
quired and how should they be represented in a meta-model to enable com-
munication and follow-up of contribution strategies in strategic product plan-
ning?

By answering these two research questions our goal is to create a practical
solution for uncovering further benefits that OI brings [141].

3.3 Research Design and Operation

This study is a design science [81] inspired case study [159]. The work was ini-
tiated by problem identification and analysis of its relevance. This was followed
by an artifact design process where the artifacts (the CAP model and information
meta-model) addressing the research problems (RQ1 & RQ2) was created. Fi-
nally, the artifacts were validated in the context of the research problem. These
steps were performed in close academia-industry collaboration between the re-
searchers and Sony Mobile. We performed data collection and analysis throughout
the steps and concluded with reporting of the results (see Fig. 3).

3 Research methodology 171

Problem Identification

The objectives of the problem investigation phase in the design process [81] are
to further understand the problem context and current practices. To gain greater
understanding, we conducted informal consultations with four experts (I1-I4) at
Sony Mobile who is involved in the decision-making process of OSS contribu-
tions (see Table 1). This allowed us to further refine both RQ1 and RQ2 and
confirmed their importance and relevance for the industry. Simultaneously, in-
ternal processes and policy documentation at Sony Mobile were studied. Next,
we received permission to access additional data sources and were able to inves-
tigate requirements and contribution repositories. The consultations and investi-
gations confirmed that a suitable solution requires a combination of a technology-
based artifact and an organization-based artifact (see guidelines one and two by
Hevner [81]). The technology-based artifact (RQ1) should allow firms to create
contribution strategies for software artifacts and the organizational-based artifact
(RQ2) should support the organizational adoption and operationalization of the
technology-based artifact.

Table 1: Consultation with experts

Expert Id Years of experience Role

I1 6 Years Team Lead
I2 8 Years Director OSS SW Operations
I3 15 Years Senior Manager
I4 5 Years Software Developer

Artifact Design

RQ1 is addressed by designing an artifact that would allow the practitioners to
decide whether a software artifact should be contributed to an OSS ecosystem
or not. As this is a sourcing issue at the product strategy-level [11, 62, 101], we
decided to base the artifact on Kraljic’s portfolio purchasing model [104] following
the advice and experience of I2 in sourcing. The model consists of a matrix that
allows firms to analyze how they source and purchase material and components
for their production (see section 2.4).

With this foundation, we iteratively formalized our findings from the consulta-
tions with I1-I4 and studies of internal processes and policy documentation. The
results of this formalization are the CAP model and the associated meta-model of
information required to instantiate the CAP model, supporting strategic product
planning in OI. Each item category from the original model [104] has a corre-
sponding type of contribution strategy [194], and instead of supply items, we refer
to software artifacts, e.g., features or components. The two dimensions are re-

172 Motivating the Contributions: An Open InnovationPerspective on . . .

Figure 3: Overview of the research methodology used in this study. The de-
sign process was performed iteratively through the three steps involved: problem
investigation, artifact design, and artifact valuation [81].

fined to represent Business impact and Control complexity, inspired by existing
commoditization models [22, 120] and literature on OSS ecosystem governance
(e.g., [10,41,142]). The measurement process is proposed to employ a consensus-
seeking approach [68] with the involvement of cross-functional competencies and
internal stakeholders [103]. To help frame the measurement discussion process,
questions are defined inspired by literature related to the Kraljic portfolio purchas-
ing model (e.g., [25, 68]), commoditization models [22, 120], software value map
(e.g., [9, 97], and OSS ecosystem governance (e.g., [10, 41, 142]). An overlay is
created on top of the CAP model to highlight which contribution objective should
be the primary driver for the chosen contribution strategy. The objectives repre-
sent important value incentives inspired by OI literature [31, 176, 180, 185]. The
intention is to help users of the model to fine-tune the contribution strategy for the
classified artifact. The CAP model is presented in more detail in section 4.

To address RQ2 and enable an organizational adoption and operationalization
of the CAP-model, we created an information meta-model that facilitates com-
munication and follow-up on software artifacts and their contribution strategies.
In the problem investigation phase, it became apparent that the information sup-
port should be integrated into the software artifact repositories used for require-
ments management. The information support would then be able to reach every-
one who is involved in the product planning and development. This required us to
expand our investigation of Sony Mobile’s requirements and contribution reposi-
tories, which included a broad set of software artifact repositories that are used in

3 Research methodology 173

the product planning of mobile phones. We focused the repository investigation
on understanding how contributions could be traced to product requirements and
platforms, and vice versa. Through consultation with I1-I4, we selected six rele-
vant repositories: the internal product portfolio, feature repository, feature-based
architectural asset repository, patch repository, contribution repository and commit
repository (see section 5).

These repositories and their unique artifact IDs (e.g., requirement id, patch id,
and contribution id) allowed us to trace the contributions and commits to the archi-
tectural assets, product requirements and platforms, via the patches that developers
create and commit to internal source code branches. This analysis resulted in the
information meta-model presented in Fig. 5. The meta-model creation process was
driven by the principles of finding a balance between research rigor and relevance,
moving away from extensive mathematical formalizations of the CAP model and
focusing on the applicability and generalizability of the model, see guideline five
by Hevner [81].

Artifacts Validation

Validation helps confirm that candidate solutions actually address the identified
research problems. As we are in an early stage of the research and design process,
this study uses static validation [71]. This type of validation uses presentation of
candidate solutions to industry practitioners and gathering of feedback that can
help to further understand the problem context and refine candidate solutions, in
line with the design science process [81]. Dynamic validation [71], which con-
cerns piloting of the candidate solutions in a real-work setting, is a later step in the
technology transfer process and is currently under planning at the case firm and is
left for future work.

Both the CAP-model and its related information meta-model were validated
statically through continuous consultations with experts at Sony Mobile (I1-I4).
In these consultations, the models were explained and discussed. Feedback and
improvement ideas were collected and used for iterative refinement and improve-
ment. Experts were asked to run the CAP model against examples of features in
relation to the four software artifact categories and related contribution strategies
that CAP model describes. The examples are presented together with the CAP
model and provide further detail and validation of its potential use, see section 4.4.
A complete example of how the CAP model and meta-model are used is further
presented in section 6. These examples help to evaluate functionality, complete-
ness, and consistency of the CAP model and associated information meta-model.
The usability of the information meta-model was further validated by perform-
ing traces between the different types of artifacts and their repositories. These
traces were presented and used in the static validation of the meta-model. From
a design science perspective [81], we employed observational validation through
a case study at Sony Mobile where we studied the artifacts (models) in a busi-

174 Motivating the Contributions: An Open InnovationPerspective on . . .

ness environment. We also employed descriptive evaluation where we obtained
detailed scenarios to demonstrate the utility of the CAP model, see guideline three
by Hevner [81].

To improve the external validity of the CAP model, we conducted exploratory
case studies at three different case firms (see Section 7). In these case studies, we
used static validation [71] where we presented the CAP model to participants from
the respective firms and applied it in a simulated setting as part of the interviews.
In two of the cases, semi-structured interviews were used with one representative
from each firm. In the third case, a workshop setting was used with eight par-
ticipants from the firm. When collecting feedback from the three case firms, we
focused on applicability and usability of the CAP model.

3.4 Ethics and Confidentiality
This study involved analysis of sensitive data from Sony Mobile. The researchers
in the study had to maintain the data’s integrity and adhere to agreed procedures
that data will not be made public. Researchers arranged meetings with experts
from Sony Mobile to inform them about the study reporting policies. Data ac-
quired from Sony Mobile is confidential and will not be publicly shared to ensure
that the study does not hurt the reputation or business of Sony Mobile. Finally,
before submitting the paper for publication, the study was shared with an expert at
Sony Mobile who reviewed the manuscript to ensure the validity and transparency
of results for the scientific community.

3.5 Validity Threats
This section highlights the validity threats associated with the study. Four types of
validity threats [159] are mentioned along with their mitigation strategies.

Internal Validity

Internal validity refers to factors affecting the outcome of the study without the
knowledge of the researchers [159].

Researcher bias refers to when the researcher may risk influencing the results
in a wanted direction [158]. The proposed CAP model was created with an iter-
ative cooperation between researchers and industry practitioners. Thus, there was
a risk of introducing the researcher’s bias while working towards the creation of
the model. In order to minimize this risk, regular meetings were arranged between
researchers and industry experts to ensure the objective understanding and pro-
posed outcomes of the study. Furthermore, researchers and industry practitioners
reviewed the paper independently to avoid introducing researcher’s bias.

A central part of the CAP model involves estimating the business impact and
control complexity. These estimations involve several factors and can have mul-
tiple confounding factors that influence them. In this work, we assume that this

3 Research methodology 175

threat to internal validity is taken into consideration during the estimation process
and therefore is not in the direct focus of the CAP model. Moreover, the CAP
model does not prevent additions of new factors that support these estimates.

Triangulation refers to the use of data from multiple sources and also ensur-
ing observer triangulation [158]. In this study, our data analysis involved inter-
pretation of qualitative and quantitative data obtained from Sony Mobile. We
applied data triangulation by using Sony Mobile’s internal artifacts repositories,
documents related to contribution strategies and consultation with relevant experts
before proposing the CAP model. There were risks of identifying the wrong data
flows and subjective interpretation of interviews. In order to mitigate these risks,
concerned multiple experts with different roles and experiences (see Table 1) were
consulted at Sony Mobile. We ensured observer triangulation by involving all
researchers who authored this manuscript into the data collection and analysis
phases.

External Validity

External validity deals with the ability to generalize the study findings to other
contexts.

We have focused on analytic generalization rather than statistical generaliza-
tion [60] by comparing the characteristics of the case to a possible target and pre-
senting case firm characteristics as much as confidentiality concerns allowed. The
scope of this study is limited to firms realizing OI with OSS ecosystems. Sony
Mobile represents an organization with a focus on software development for em-
bedded devices. However, the practices that are reported and proposed in the study
has the potential to be generalized to all firms involved in OSS ecosystems. It
should be noted that the case firm can be considered a mature firm in relation to
OSS usage for creating product value and realizing product strategies. Also, they
recognize the need to invest resources in the ecosystems by contributing back in
order to be able to influence and control in accordance with internal needs and
incentives. Thus, the application of the proposed CAP model in an other context
or in other firms remains part of future work.

The CAP model assumes that firms realize their products based, in part, on
OSS code and OSS ecosystem participation. This limits its external generalizabil-
ity to these firms. At the same time, we believe that the innovation assessment
part of the CAP model may be applied to artifacts without OSS elements. In this
case, the CAP model provides only partial support as it only helps to estimate the
innovativeness of the features (as an innovation benchmark) without setting con-
tribution strategies. Still, this part of the CAP model should work in the same way
for both OSS and non-OSS based products. Finally, the classification of software
artifacts has a marked business view and a clear business connotation. A threat
remains here that important technical aspects (e.g. technical debt, architectural
complexity) are overlooked. However, throughout the static validation examples,

176 Motivating the Contributions: An Open InnovationPerspective on . . .

we saw limited negative impact on this aspect, especially in a firm experienced in
building its product on an OSS platform.

The meta-model was derived from Sony Mobile’s software artifact reposito-
ries. We believe that the meta-model will fit organizations in similar characteris-
tics. For other cases, we believe that the meta-model can provide inspiration and
guidance for how development organizations should implementing the necessary
adaptations to existing requirements management infrastructure, or create such, so
that contribution strategies for artifacts can be communicated and monitored. We
do acknowledge this as a limitation in regards to external validity that we aim to
address in future design cycles.

Construct Validity

Construct validity deals with choosing the suitable measures for the concepts under
study [159]. Four threats to the construct validity of the study are highlighted
below.

First, there was a risk that academic researchers and industry practitioners may
use different terms and have different theoretical frames of reference when ad-
dressing contribution strategies. Furthermore, the presence of researchers may
have biased the experts from Sony Mobile to give information according to re-
searchers’ expectations. The selection of a smaller number of experts from Sony
Mobile might also contribute to the unbalanced view of the construct.

Second, there was a potential threat to construct validity due to the used inno-
vation assessment criteria based on business impact and control complexity. Both
dimensions can be expanded by additional questions (e.g. internal business per-
spective or innovation and learning perspective [97]) and the CAP model provides
this flexibility. One could argue that also technical and architectural aspects should
be taken into consideration here. At the same time, the static validation results at
Sony Mobile confirm that these aspects have limited importance at least for the
studied cases. Still, they should not be overlooked when executing the CAP model
in other contexts.

Third, a common theoretical frame of reference is important to avoid misinter-
pretations between researchers and practitioners [158]. In this study, the Kraljic’s
portfolio model is used as a reference framework to the CAP model. However,
the horizontal and vertical dimensions of Kraljic’s portfolio model were changed
to control complexity and business impact respectively. Both industry practition-
ers and academic researchers had a common understanding of Kraljic’s portfolio
model [104] before discussions in the study. Furthermore, theoretical constructs
were validated by involving one of the experts in the writing process from Sony
Mobile to ensure consistent understanding.

Fourth, prolonged involvement refers to a long-term relationship or involve-
ment between the researchers and organization [158]. Since there was an involve-
ment of confidential information in the study, it was important to have a mutual

4 The Contribution Acceptance Process (CAP) Model (RQ1) 177

trust between academic researchers and practitioners to be able to constructively
present the findings. The adequate level of trust was gained as a result of long
past history of collaboration between academic researchers and experts from Sony
Mobile.

Reliability

The reliability deals with to what extent the data and the analysis are dependent on
the specific researcher and the ability to replicate the study.

Member checking may involve having multiple individuals go through the data,
or letting interviewees review a transcript [158]. In this study, the first two authors
proposed the meta-model after independent discussions and reviewed by the third
author. Furthermore, the model was validated by a team lead, software devel-
oper, and senior manager at Sony Mobile, involved in making contributions to
OSS communities, were consulted to ensure the correctness of the meta-model
and associated data.

Audit trail regards maintaining traceability between collected data during the
study [158]. For this study, the first two researchers kept track of all the mined data
from the software artifact repositories as well as the email and informal communi-
cation between researchers and Sony Mobile representative. Results were shared
with Sony Mobile for any possible misinterpretation or correction of data.

4 The Contribution Acceptance Process (CAP)
Model (RQ1)

The CAP model is an adapted version of the portfolio model introduced by Pe-
ter Kraljic [104]. Kraljic’s model was originally constructed to help firms with
creating purchasing strategies towards their suppliers of items needed for their
product manufacturing. The CAP model is focused on software artifacts and how
these should be sourced and contributed as OSS. The artifacts may be of differ-
ent abstraction levels, e.g., ranging from specific requirements or issues to sets of
requirements as features, frameworks, tools or higher level components.

The model may be used proactively or reactively. In the former, the model is
systematically used on a portfolio or set of artifacts to decide on specific contribu-
tion strategies for each artifact, but also to get a general overview and analyze the
artifacts relative each other. In the reactive case, the model is used to follow-up on
previously classified artifacts, and for individual contribution requests of artifacts
from the development organization. We start by describing how the model may be
used to classify artifacts and elicit contribution strategies. We then move on and
put the model into the context of the two approaches. Lastly, we give examples of
artifacts and related contribution strategies.

178 Motivating the Contributions: An Open InnovationPerspective on . . .

Figure 4: The Contribution Acceptance Process (CAP) model and its different
quadrants that help to determine what contribution strategy to use depending on
how a software artifacts are classified in terms of business impact and control
complexity. The overlaying arches marks up four contribution objectives which
help to further tailor the contribution strategy (see section 4.1).

4.1 Model Description

The focal point of the CAP model is the matrix presented in Fig. 4. Artifacts
are mapped on to the matrix based on how they are valued in regard to the two
dimensions Business impact and Control complexity, located on the vertical and
horizontal axis respectively. Business impact refers to how much you profit from
the artifact, and control complexity refers to how hard the technology and know-
ledge behind the artifact is to acquire and control. Both dimensions range from
low to high.

Artifact Types and Contribution Strategies

An artifact is categorized into one of the four quadrants, where each quadrant rep-
resents a specific artifact type with certain characteristics and contribution strategy.
The four types are as follows:

• Strategic artifacts: high business impact and high control complexity.

4 The Contribution Acceptance Process (CAP) Model (RQ1) 179

• Platform/leverage artifacts: high business impact and low control complex-
ity.

• Products/bottlenecks artifacts: low business impact and high control com-
plexity.

• Standard artifacts: low business impact and low control complexity.

Strategic Artifacts: This category includes artifacts that can be internally or
externally developed, have a differential value and makes up a competitive edge
for the firm. Due to their value and uniqueness, there is a need to maintain a
high degree of control over these artifacts. OSS contributions within this category
should generally be restricted and made in a controlled manner, ensuring that the
differentiation is kept. However, this does not account for possible enablers and/or
frameworks, i.e., parts of the artifact that are required for the artifact to work in
a given environment. Those have to be actively maintained and contributed. This
may require that the artifacts undergo special screening to identify the parts that
enable the differentiating parts. In case the artifact is already connected to an
existing OSS ecosystem, the firm should strive towards gaining and maintaining
a high influence in the ecosystem in regard to the specific artifact and attached
functionality. If this is not achievable, e.g., when the contribution terms of an
existing ecosystem require contributions to include the differential IP, the option
of creating a new and firm-orchestrated OSS ecosystems should be considered.
For examples of Strategic artifacts, see section 4.4.

Platform/Leverage Artifacts: These artifacts have a high degree of innova-
tion and positive business impact, but their development does not necessarily need
to be controlled by the firm. Examples include technology and market opportunity
enablers that have competing alternatives available, ideally with a low switching
cost. Generally, everything could be contributed, but with priority given to con-
tributions with the highest potential to reduce time-to-market, i.e., contributions
with substance should be prioritized over minor ones, such as error-corrections
and maintenance contributions that are purely motivated due to cost reduction.
Due to the lower need for control, firms should strive to contribute to existing
projects rather than creating new ones, which would require a substantial degree
of effort and resources and represent an unnecessary investment. For examples of
Platform/Leverage artifacts, see section 4.4.

Products/Bottleneck Artifacts: This category includes artifacts that do not
have a high positive business impact by itself but would have a negative effect
if not present or provided. For example, functionality firmly required in certain
customer-specific solutions but are not made available for the general market.
These artifacts are hard to acquire and requires a high degree of control due to the
specific requirements. The strategy calls for securing the delivery for the specific
customers, while and if possible, sharing the burden of development and mainte-
nance. Generally, everything could be contributed, but with priority given to con-
tributions with the highest potential to reduce time-to-market, or in this case rather

180 Motivating the Contributions: An Open InnovationPerspective on . . .

the time-to-customer. But, due to the unique nature of these artifacts, the number
of other stakeholders may be limited in existing OSS ecosystems. This may im-
ply that the artifact will be problematic to contribute in a general OSS ecosystem.
An option would then be to identify and target specific stakeholders of interest,
i.e. of customers and their suppliers, and create a limited project and related OSS
ecosystem. For examples of Products/Bottlenecks artifacts, see section 4.4.

Standard Artifacts: This category includes artifacts that may be considered as
a commodity to the firm. They do not have a competitive edge if kept internal and
has reached a stage in the technology life-cycle where they can create more value
externally. They may be externally acquired as easily as internally developed and
may, therefore, be considered to have a low level of control complexity. Generally,
everything should be contributed, but with priority given to contributions with the
highest cost reduction potential. Creating a competing solution to existing ones
could lead to unnecessary internal maintenance costs, which has no potential of
triggering a positive business impact for a firm. For examples of Standard artifacts,
see section 4.4.

Contribution Objectives

Mapping an artifact relative to the four quadrants brings an indication and guide-
line about its contribution strategy. There are also intrinsic objectives for making
contributions that are not fully captured by just accessing the business impact and
control complexity in the artifact classification process. These objectives include:

• Cost focus

• Time-to-market (TTM) focus

• Control focus

• Strategic Alliances and Investments

These objectives are closely coupled to the different strategies and are pre-
sented as an overlay of the matrix, thus emphasizing the main contribution objec-
tive per strategy.

Cost focus: Artifacts with a limited competitive advantage, i.e., they are con-
sidered as commodity or enablers for other artifacts, will have a contribution ob-
jective mainly focused on reducing the cost of development and maintenance. The
contribution strategy should focus on minimizing the number of internal patches
that need to be applied to each new OSS project release and reusing common solu-
tions available in OSS to fulfill internal requirements, i.e., overall reduce variants
and strive for the standardization that comes with OSS. As a consequence, internal
resources may be shifted towards tasks that have more differentiation value for a
firm.

4 The Contribution Acceptance Process (CAP) Model (RQ1) 181

Time-To-Market (TTM) focus: Artifacts that have higher levels of competi-
tive advantage, and/or require a higher amount of control and understanding than
commodity artifacts should likely to have the general objective to be advanced to
the marketplace as soon as possible, superseding the objective of reducing mainte-
nance costs. These artifacts may also be referred to as qualifiers, i.e., artifacts that
are essential but still non-differential, and should be contributed as soon and often
as possible in order to allow for the own solution to be established as the leading
open solution. This will potentially give the advantage of control and barring com-
peting solutions which would otherwise require additional patching or even costly
redesigns to one’s own product.

Control focus: Artifacts with a high level of competitive advantage and requir-
ing a high level of control are likely to provide differentiation in the marketplace,
and should thus not be contributed. Yet, in securing that these artifacts are enabled
to operate in an open environment, it is as important to contribute the enabling
parts to the OSS ecosystems. If an alternative open solution would become widely
adapted out of the firm’s control, the firm’s competitive edge will likely be dimin-
ished and make a costly redesign imperative. Hence, the contribution objective
for these artifacts is to take control of the OSS ecosystem with the general strat-
egy to gain and maintain necessary influence in order to better manage conflicting
agendas and levy one’s own strategy in supporting the artifact.

Strategic Alliances and Investments: These artifacts carry a very large part
of product innovation and competitive advantage, and require strict control. Thus,
these artifacts should be internally developed, or, if this is not feasible, co-developed
using strategic alliances and investments that secure IPR ownership, hence there is
generally no objective for making open source contributions.

Adapting Contribution Strategies with Contribution Objectives

Having just a single contribution objective for an artifact is rare except for the ex-
treme cases, e.g., when an artifact is mapped in the far corners of the matrix, such
as the bottom left as strictly standard and commodity. More common is to have
two or more contribution objectives in play, though one of the objectives would be
the leading one. The overlay of contribution objectives on the matrix’s different
contribution strategies is intended as a guidance for fine-tuning the contribution
strategy for individual artifacts when more than one contribution objective is in
play. E.g., although two artifacts who are found to have the same overall Plat-
form/Leverage contribution strategy, there might be a degree of difference in the
emphasis to be made in the time-to-market objective for an artifact closer to the
Strategic area, compared with an artifact closer to the Standard area where consid-
erations on cost of maintenance might overtake as the leading objective.

182 Motivating the Contributions: An Open InnovationPerspective on . . .

4.2 Proactive Approach
When proactively using the model, the following step-by-step approach is recom-
mended:

S1 Decision on scope and abstraction level.

S2 Classification and mapping artifacts to the matrix.

(a) Begin with an initial set of artifacts to the matrix.

(b) Synchronize and reiterate mapping.

(c) Map the rest of the artifacts to the matrix.

S3 Reiteration of the artifact mapping.

S4 Documentation and communication of the decisions.

S5 Monitoring and follow-up on the decisions.

Before the model is used, the scope and abstraction level of the analysis needs
to be decided (S1). The scope may, for example, entails a product, a platform or
functional area. Abstraction level concerns the artifacts relative to the scope, e.g.,
components, features, or requirements. Based on these limitations, the artifacts
should be listed, and necessary background information collected, e.g., market
intelligence, architectural notes and impact analysis, OSS ecosystem intelligence,
and license compliance analysis.

The collected information should then be used as input to an open consensus-
seeking discussion forum (S2), where relevant internal stakeholders help to clas-
sify the artifacts. As in the roadmapping process [103], these stakeholders should
bring cross-functional perspective to the decision-making to further explain and
argue based on the collected background information, e.g., representatives from
marketing, product management, development, and legal.

To facilitate the discussions and help assess the business impact of the artifacts,
a set of questions may be used. The joint answers to these questions are given on
a Likert scale with values between 1 and 4. The reason for this scale is to force
discussion participants to take a clear stand on which side of two quadrants they
think an artifact belongs. The questions are as follows (it equals an artifact):

1. How does it impact on the firm’s profit and revenue?

2. How does it impact on the customer and end user value?

3. How does it impact on the product differentiation?

4. How does it impact on the access to leading technology/trends?

5. How does it impact if there are difficulties or shortages?

4 The Contribution Acceptance Process (CAP) Model (RQ1) 183

As with the business impact, a set of questions are proposed to help asses the
control complexity of the artifact on a scale between 1-4:

1. Do we have knowledge and capacity to absorb the technology?

2. Are there technology availability barriers and IPR constraints?

3. What is the level of innovativeness and novelty?

4. Is there a lack of alternatives?

5. Are there limitations or constraints by the firm?

For an example of how these questions can be used, see section 6. When
all questions are answered, the mean values for both dimensions should be cal-
culated. Based on these values, the artifact is then mapped onto the matrix (see
Fig. 4), which will put it into one of the four quadrants. The group should then ask
themselves if the calculated position agrees with their general belief of where it
should be. They should also ask themselves where they want it to be. Further, they
should consider what contribution objective(s) that apply, and how this affects the
contribution strategy. This process should be allowed to take time and reiteration
of the first set of artifacts, as this is necessary for everyone to get accustomed with
the process and the classification criteria.

This classification process is not intended to be quantitative and rigorous, but
rather qualitative and informal. The process was facilitated through consensus-
seeking discussions within a cross-functional group. This approach helps to create
guidelines without introducing complexity which may risk introducing negative
effects on the usability and applicability of the CAP model. The questions should
further be seen as a mean to frame and drive the discussion, during which further
questions might come up.

When all artifacts have been classified and mapped onto the matrix, an overall
discussion and reflection should be performed (S3). When consensus is reached,
the decisions should be documented and handed over to product management for
communication out to the development organization (S4) through required chan-
nels supported by the information meta-model, e.g., the requirements management
infrastructure (see section 5). The contribution strategies for each artifact should
then be monitored and followed-up in a given suitable time frame (e.g., in relation
to internal release cycles) (S5). This task may be suitable for product or project
management with accountability towards the firm’s OSS executive.

4.3 Reactive Approach

The CAP model may also be used in a reactive mode which is based on Sony Mo-
bile’s current practices. This approach is critical in order to continuously follow-up
on previously classified artifacts as the classification may change with the artifacts’

184 Motivating the Contributions: An Open InnovationPerspective on . . .

technology life-cycle. The approach is also useful for managing individual con-
tribution requests of artifacts from the development organization, e.g. in response
when a manager or developer request to contribute a certain artifact, or be allowed
to work actively with a specific OSS ecosystem. The CAP model is used in this
case by a group of internal stakeholders, similarly to that of the proactive approach.
Sony Mobile applies this reactive approach through their OSS governance board
(see section 3.1).

When an individual wants to make a contribution, they have to pass through
the board. However, to avoid too much bureaucracy and a bottleneck effect, the
contribution process varies depending on the size and complexity of the contribu-
tion. In the CAP model, the contributions may be characterized in one of three
different levels:

• Trivial contributions are rather small changes to already existing OSS ecosys-
tems, which enhances the non-significant code quality without adding any
new functionality to the system e.g., bug fixes, re-factoring etc.

• Medium contributions entails both substantially changed functionality, and
completely new functionality e.g., new features, architectural changes etc.

• Major contributions are comprised of substantial amounts of code, with
significant value in regard to IPR. These contributions are a result of a signif-
icant amount of internal development efforts. At Sony Mobile, one example
of such a contribution is the Jenkins-Gerrit-trigger plug-in [137].

For trivial contributions, the approval of concerned business manager is suffi-
cient. For medium and major contributions, the business manager has to prepare a
case for the Open Source Governance board to verify the legal and IPR aspects of
the OSS adoption or contribution. The Open Source Governance board decides af-
ter case investigation that include IPR review. Consequently, the board accepts or
rejects the original request from the engineers. To further lessen the bureaucracy,
Sony Mobile uses frame agreements that can be created for OSS ecosystems that
are generally considered as having a non-competitive advantage for Sony Mobile
(e.g., development and deployment infrastructure). In these cases, developers are
given free hands to contribute what they consider as minor or medium contribu-
tions, while major contributions must still go through the board.

4.4 Contribution Strategies with Artifact Examples
In this section, we provide examples in regard to the four artifact types of the CAP
model, which we elicited from consultations with experts from Sony Mobile.

Strategic Artifacts:

Example 1 - Gaming, Audio, Video, and Camera: A typical example of a con-
tributable enabler is multimedia frameworks which are needed for services such

4 The Contribution Acceptance Process (CAP) Model (RQ1) 185

as music, gaming, and videos. The frameworks themselves are not of a strategic
value, but they are essential for driving the Sony brand proposition since they are
needed in order to provide the full experience of strategic media and content ser-
vices provided by Sony. Such artifacts may also be referred to as Qualifiers, as
they are essential, yet not strategic by themselves.

An example of such a multimedia framework that Sony Mobile uses is An-
droidâĂŹs Stagefright5. It is for example used for managing movies captured by
the camera. The framework itself could be contributed into, but not specific cam-
era features such as smile recognition as these are considered as differentiating to-
wards the competition, hence have a high business impact and control complexity
for Sony Mobile. In short, camera effects can not be contributed, but all enablers
of such effects should be, thus Sony Mobile contributes to the frameworks to steer
and open up a platform for strategic assets, e.g., an extended camera experience on
their mobile phones. A further example of a framework that has been made open
by Sony, but in the context of gaming, is the Authoring Tools Framework6 for the
PlayStation 4.

Platform/Leverage Artifacts

Example 1 - Digital Living Network Alliance: Digital Living Network Alliance
(DLNA) (originally named Digital Home Working Group) was founded by a group
of consumer electronics firms, with Sony and Intel in leading roles, in June 2003.
DLNA promotes a set of interoperability guidelines for sharing and streaming dig-
ital media among multimedia devices.

As support for DNLA was eventually included in Android, creating a pro-
prietary in-house solution would not have been wise given that the OSS solution
already was offered. Instead, Sony Mobile chose to support the Android DNLA
solution with targeted but limited contributions. This is a typical example of lever-
aging functionality that a firm does not create, own, or control, but that is good to
have. Hence, Sony Mobile did not need to commit extra resources to secure the in-
teroperability of an own solution. Instead, those extra resources could be used for
making the overall offering better, e.g., the seamless streaming of media between
Android devices and other DNLA compliant device, for instance, a PlayStation
console, and in that way promote DNLA across SonyâĂŹs all device offerings.

Example 2 - Mozilla Firefox: The most significant web browsers during the
1990s were proprietary products. For instance, Netscape was only free for indi-
viduals, business users had to pay for the license. In 1995, Microsoft stepped into
browser market due to the competitive threat from Netscape browser. Microsoft
decided to drive the price of web browsers market by bundling its competitive
browsers for free with the Windows operating system. In order to save the market
share, Netscape open sourced the code to its web browsers in 1998 which resulted

5https://source.android.com/devices/media/
6https://github.com/SonyWWS/ATF

186 Motivating the Contributions: An Open InnovationPerspective on . . .

in the creation of the Mozilla organization. The current browser known as Fire-
fox is the main offspring from that time. By making their browsers open source,
Netscape was able to compete against Microsoft’s web browsers by commoditiz-
ing the platform and enabling for other services and products.

Products/Bottleneck Artifacts

Example 1 - Symbian network operators requirements: In the ecosystem sur-
rounding the Symbian operating system, network operators were considered one
of the key stakeholders. Network operators ran the telephone networks to which
Symbian smart-phones would be connected. Handset manufactures are dependent
on the operators for distribution of more than 90% of the mobile phone handsets,
and they were highly fragmented, with over 500 networks in 200 countries. Con-
sequently, operators can impose requirements upon handset manufactures in key
areas such as pre-loaded software and security. These requirements can carry the
potential to one of those components that do not contribute in terms of a business
value but would make a negative impact on firm’s business if missing, e.g., by a
product not being ranged.

Example 2 - DoCoMo mobile phone operator: DoCoMo, an operator on
the Japanese market, had the requirement that the DRM protection in their pro-
vided handsets uses Microsoft’s PlayReady DRM mechanism. This requirement
applied to all handset manufacturers, including Sony Mobile’s competitors. Sony
Mobile, who had an internally developed PlayReady plug-in, proposed that they
could contribute it as OSS and create an ecosystem around it and also because
it already contributed the DRM framework. DoCoMo accepted, which allowed
Sony Mobile and its competitors to share maintenance and development of up-
coming requirements from DoCoMo. In summary, Sony Mobile solved a potential
bottleneck requirement which has no business value for them by making it OSS
and shared the development cost with all its competitors while still satisfying the
operator.

Standard Artifacts

Example 1 - WiFi-connect7: This OSS checks whether a device is connected to
a Wi-Fi. If not, it tries to join the favorite network, and if this fails, it opens an
Access Point to which you can connect using a laptop or mobile phone and input
new Wi-Fi credentials.

Example 2 - Universal Image Loader8: Universal Image Loader is built to
provide a flexible, powerful and highly customizable instrument for image loading,
caching and displaying. It provides a lot of configuration options and good control
over the image loading and caching process.

7https://github.com/resin-io/resin-wifi-connect
8https://github.com/nostra13/Android-Universal-Image-Loader

5 Operationalization of the CAP model (RQ2) 187

Both examples are considered standard artifacts because they can be consid-
ered as a commodity, accessible for competition and do not add any value to cus-
tomers in the sense that they would not be willing to pay extra for them.

5 Operationalization of the CAP model (RQ2)

Putting contribution strategies into practice requires appropriate processes and in-
formation support to know which artifacts, or what parts of them that should be
contributed. Furthermore, to follow up the contribution strategy execution and
make necessary adaptations as the market changes, there needs to be a possibility
to see what has been contributed, where, and when. In this section, we address re-
search question RQ2 and propose an information meta-model which can be used
to record and communicate the operationalization of the CAP model, e.g., by inte-
grating it into the requirements management and product management information
infrastructure.

The meta-model was created through an investigation of Sony Mobile’s soft-
ware and product management artifact repositories used in product planning and
product development. During this investigation, we focused on how the contri-
butions could be traced to product requirements and platforms, and vice versa.
Through consultation with I1-4, the investigation resulted in the selection of six
repositories, see Fig. 5:

Product Portfolio

Platform_ID

Software

Product name

Features

Feature_ID

Platform_ID

FBAA

FBAA_ID

Feature_ID(s)

Description

Patches

Patch_ID

Feature_ID

Title

FBAA_ID

Contributions

Contribution_ID

Patch_ID

State

Title

Commits

Patch_ID

FBAA name

Title

Category

Assets

Development state

Feature category

Description

DMS_ID

Status

Type

Community

Contributor

Figure 5: Software artifact repositories necessary to communicate and follow-up
on contribution strategies decided with the CAP model.

188 Motivating the Contributions: An Open InnovationPerspective on . . .

• Product Portfolio repository

• Features repository

• Feature-Based Architecture Assets repository

• Patch repository

• Contribution repository

• Commit repository

These repositories and their unique artifact ids (e.g., requirement id, patch id,
and contribution id) allowed us to trace the contributions and commits to their
architectural assets, product features, and platforms, via the patches that develop-
ers create and commits to internal source code branches. Table 2 presents the
repositories including their attributes.

The product portfolio repository is used to support Sony Mobile’s software
platform strategy, where one platform is reused across multiple phones. The repos-
itory stores the different configurations between platforms, hardware and other
major components along with market and customer related information. The fea-
ture repository stores information about each feature, which can be assigned to
and updated by different roles as the feature passes through the firm’s product
development process. Information saved includes documentation of the feature
description and justification, decision process, architectural notes, impact analy-
sis, involved parties, and current implementation state. The contribution strategy
attribute is used to communicate the decisions from the CAP model usage, on
whether the feature should be contributed or not.

Feature-Based Architectural Asset (FBAA) repository (FBAAs) groups fea-
tures together that make up common functionality that can be found in multiple
products, e.g. features connected to power functionality may be grouped together
in its own FBAA and revised with new versions as the underlying features evolve
along with new products. Products are defined by composing different FBAAs
which can be considered as a form of configuration management.

Even though Sony Mobile uses Android as an underlying platform, customiza-
tion and new development are needed in order to meet customers’ expectations.
These adaptations are stored as patch artifacts in the patch repository. The patch
artifacts contain information about the technical implementation and serve as an
abstraction layer for the code commits which are stored in a separate commit
repository. Each patch artifact can be traced to both FBAAs and features.

The patches that are contributed back to the OSS ecosystems have associated
contribution artifacts stored in the contribution repository. These artifacts store
information such as the type of contribution and complexity, responsible manager
and contributor, and concerned OSS ecosystem. Each contribution artifact can be
traced to its related patch artifact.

5 Operationalization of the CAP model (RQ2) 189

Table 2: Description of selected attributes from the software artifact repositories
mentioned in Fig. 5

Repository
Name

Attributes Description

Products

Platform ID A unique ID for platform name
Product name Product name with the platform.
Software Related software description, e.g., Android, OSE, Epice, Kept etc.
Status Current standing of the platform, e.g., expired, announced etc.

Features

Feature ID A unique Id for a feature, which refers to features.
Platform ID ID associated with the specific platform e.g. android, core etc.
Description Details of the feature.
Development state Refers to the current status a feature’s implementation, e.g., started, ex-

ecuted.
Feature category Refers to the type of feature, e.g., new functionality, bug fix, extension

etc.
Contribution
Strategy

Refers to whether the requirement is contributable or not.

FBAA

FBAA ID A unique Id for each Feature Based Architecture Asset (FBAA).
FP IDs A combination of FP IDs associated with the FBAA.
Description Details of a FBAA.

Patches

Patch ID A unique id for each patch.
FP ID A unique ID from the FP repository.
FBAA ID A unique ID from the FBAA repository.
Title A description of a patch.
Category Importance of a patch, e.g., market critical, development critical, stabil-

ity, ecosystem critical etc.
Assets Refers to the type of a patch, e.g., bug fix, extension, operator require-

ment, platform related, generic etc.

Contributions

Contribution ID A unique ID for each contribution.
Patch ID A unique ID from the patches repositories.
Title A description of a contribution.
State Refers the current state of the patch, e.g., ecosystem merged, already

fixed, CEO rejected, legal reject, ecosystem review etc.
Type Refers to criticality of a contribution, e.g., trivial, non-trivial, bug fix

etc.
ecosystem Refers to the ecosystem in which the contribution will be made, e.g.,

Google, Firefox etc.
Contributors Refers the contributor information.

Commits
Patch ID A unique Id from the patch repository.
Title A detailed description of a commit.
FBAA name Commits associated with the FBAA.

190 Motivating the Contributions: An Open InnovationPerspective on . . .

With this set-up of repositories and their respective artifacts, Sony Mobile can
gather information necessary to follow up on what functionality is given back to
OSS ecosystems. Moreover, Sony Mobile can also measure how much resources
that are invested in the work surrounding the implementation and contribution.
Hence, this set-up makes up a critical part in both the structuring and execution of
the CAP model.

This meta-model was created in the context of Sony Mobile’s development or-
ganization. Hence, it is adapted to fit Sony Mobile’ software product line strategy
with platforms from which they draw their different products from. The archi-
tectural assets (FBAAs) play a key part in this configuration management. As
highlighted in section 3.5, we believe that the meta-model will fit organizations in
similar characteristics, and for other cases provide inspiration and guidance. This
is something that we aim to explore and validate beyond Sony Mobile in future
design cycles.

6 Combining the CAP Model and the Informa-
tion Meta-model

In this section, we provide an example of how the CAP model may be used to
classify an artifact, and combine this with the information meta-model to support
communication and follow-up of the artifact and its decided contribution strategy.
The example is fictive9 and was derived together with one of the experts (I2) from
Sony Mobile with the intention to demonstrate the reasoning behind the artifact
classification. Following the proactive process defined in section 4.2, we begin by
discussing scope and abstraction level.

For Sony Mobile, FBAAs offer a suitable abstraction level to determine whether
certain functionality (e.g., a media player or power saving functionality) can be
contributed or not. If the artifact is too fine-grained it may be hard to quantify
its business impact and control complexity. In these cases, features included in a
certain FBAA would inherit the decision of whether it can be contributed or not.
Regarding the scope, we look at FBAAs related to the telephony part of a certain
platform-range. The FBAA that we classify regards the support for Voice over
Long-Term Evolution (VoLTE), which is a standard for voice service in the LTE
mobile radio system [151]. Note that this classification is performed when VoLTE
was relatively new to the market in 2015.

VoLTE is classified in regard to its business impact and control complexity.
The questions defined in section 4.2 were used. Under each question, we provide
a quote from I2 about how (s)he reasons, and the score which can be in the range
of 1-4. We start by addressing the business impact:

9Due to confidentiality reasons, we have to select this example.

6 Combining the CAP Model and the Information Meta-model 191

1. How does it impact on the firm’s profit and revenue?
“VoLTE is hot and an enabler for services and the European operators are
very eager to get this included. This directly affects the firm’s ability to range
its products at the operators. So very important. Is it super important? The
consumers will not understand the difference of it, they will get it either
way.” - Score: 3.

2. How does it impact on the customer and end user value?
“The consumers themselves may not know about VoLTE, but they will ap-
preciate that the sound is better and clearer because other coding standards
may be used.” - Score: 3.

3. How does it impact on the product differentiation?
“VoLTE has a positive effect. Some product vendors will have VoLTE en-
abled and some not. So there is a differentiation which is positive. Does this
have a decisive effect concerning differentiation? Is it something that the
consumers will interpret as something that is very important? No.” - Score:
3.

4. How does it impact on the access to leading technology/trends?
“VoLTE is very hot and is definitely a leading technology.” - Score: 3.

5. How does it impact if there are difficulties or shortages?
“If we cannot deliver VoLTE to our customers, how will that affect them? It
will not be interpreted as positive, and will not pass us by. But they will not
be fanatic about it.” - Score: 2.

This gives us a mean score of 2,8. We repeat the same process for control
complexity:

1. Do we have knowledge and capacity to absorb the technology?
“Yes, we have. We are not world experts but we do have good knowledge
about it.” - Score: 3.

2. Are there technology availability barriers and IPR constraints?
“Yes, there were some, but not devastating. There are patents so it is not
straight forward.” - Score: 2.

3. What is the level of innovativeness and novelty?
“It is not something fantastic but good.” - Score: 3.

4. Is there a lack of alternatives?
“Yes, there are not that many who have development on it so there are quite
a few options. So we implemented a stack ourselves.” - Score: 3.

5. Are there limitations or constraints by the firm?
“No, there are none. There is not a demand that we should have or need to
have control over.” - Score: 1.

192 Motivating the Contributions: An Open InnovationPerspective on . . .

Figure 6: The CAP model and the example of VoLTE which is classified in regard
to its business impact and control complexity.

7 Case studies 193

This gives us a mean score of 2,4. This places VoLTE in the bottom between
of the upper two quadrants; the strategic and platform/leverage artifact quadrants.
I2 elaborates on the strategy chosen:

“VoLTE is an opportunity for us. We should invest in this technology, but we
do not have to develop our own solution. Rather, we should take what is available
externally. We should do active contributions, not just to get rid of maintenance,
but also to push the technology forward with a time-to-market as our main contri-
bution objective. It does not matter if it is open source. This is not rocket science
that only we know about. We should have an open attitude towards VoLTE and
support it as OSS and invest in it.”

After reiterations and discussions, the decisions should be documented and
communicated to the development organization. In Sony Mobile’s case, the in-
formation meta-model is already integrated into requirements and product man-
agement infrastructure. Thus, these decisions would be added to the contribution
strategy attribute of the feature artifacts which belong to the VoLTE FBAA artifact.
To monitor and follow-up on the contribution strategy execution for VoLTE, prod-
uct management can trace patch artifacts connected to the VoLTE feature artifacts,
and see which of these that have contribution artifacts connected to them.

7 Case studies

To perform a first validation of the CAP model outside Sony Mobile, we have
conducted three exploratory case studies where we applied the CAP model and
investigated its applicability and usability. Further and more extensive application
and validation are planned for future design cycles. Below we present the results
from this validation per case firm, which due to confidentiality reasons are made
anonymous and referred to as firm A-C. For each firm, we present general char-
acteristics, and how we conducted the case study. We then give a brief overview
of their overall contribution strategy, followed a summary of the application of
the CAP model, and an evaluation of the model in terms of its usability. For an
overview, see table 3.

7.1 Case Firm A

Firm A operates in the agriculture business. The main product of the firm is soft-
ware designed to improve the efficiency of global grain marketing. The software
offers a communication platform between the growers and buyers combined with
real-time market intelligence. The main benefit is an enhanced ability to quickly
respond to domestic and global market demands. We interviewed the CTO of the
firm who has over 25 years of experience in the IT sector and was involved in
10 start-ups and many projects. The CAP model was used to analyze the current
product the firm is offering.

194 Motivating the Contributions: An Open InnovationPerspective on . . .

Table 3: Overview of the three case firms in regard to their domain, use of OSS,
scope and abstraction analyzed with the CAP, and the setting in which the model
was applied.

Description Use of OSS Scope & Ab-
straction

Setting

Firm A Small-sized firm
building a platform
product for the
agricultural domain.

OSS compo-
nents in plat-
form.

Features in
platform
product.

Interview
with CTO.

Firm B Small-sized firm
building mobile
games for mobile
platforms.

OSS com-
ponents
in game
products.

Features in a
specific game.

Interview
with Founder.

Firm C Large-sized firm in
the telecommunica-
tion domain.

OSS in ser-
vice infras-
tructure.

Internal in-
frastructure
project

Workshop
with 8 cross-
functional
participants.

Overall Contribution Strategy

The firm makes extensive use of OSS code as long as it is not released under
the GPL version 3 license. The firm keeps its own copy of the source code and
often contributes bug fixes or other small changes, however without following up
if they are integrated into the common code base. Decisions if to adapt the OSS
ecosystem’s version of the code are made on regular basis upon analysis.

The firm has currently a static code policy that is based on the following rea-
soning. If the existing code works at the time, the firm does not care if it evolves
and does not check if never versions are available. If there are changes, the firm
checks first if the suggested improvements are beneficial before any new version
is considered and integrated.

Maintenance cost reduction is important for the firm, however not for the price
of loosing competitive advantage. Thus, any functionality that has a differentiating
potential is kept proprietary for about 6-9 months to check the market response and
profitability. After this time, the firm analyzes if cost reduction is substantial be-
fore deciding to contribute the code or not. Estimating the current or future value
of an asset is challenging, mainly because of rapid market changes and high mar-
ket uncertainty. An example here is inventory management module that the firm’s
product has. This module (feature) turned out to be a strategic asset 12 months
after developing it. So what may seem to be a rational decision from the develop-
ment/technology perspective can be overwhelmed by market forces or conditions.
Moreover, it may take a substantial amount of time before an intellectual prop-

7 Case studies 195

erty asset reveals its true value in the market place due to delays in the technology
adoption curve. Therefore, cautious evaluation of the business and revenue values
are necessary. If the technology adoption is slow, it is much more challenging and
harder to see if and when to contribute.

Regarding the contribution strategy, the firm has the following rules:

• high profit and critical to maintain control features are never shared with the
OSS ecosystem as these build the firm’s value in the eyes of the shareholders

• high profit and not critical to maintain control features - some resources are
dedicated to investigate and see the potential of growing from low profit to
high profit before a decision to contribute is made

• low profit and critical to maintain control features - the firm can release these
features after commodity analysis.

• low profit and not critical to maintain control features - the firm contributes
these features as quickly as possible.

The firm is small and in a growing phase with limited resources that can be
dedicated to working with the OSS communities. The conclusion here is that OSS
ecosystem engagement can be very valuable for large enterprises, in a resource
constrained enterprise it is pretty risky policy.

Application of the CAP Model

Together with the firm’s CTO, we have analyzed the current product with the help
of the CAP model. The mapping of the product’s features on the CAP model
brings into focus the questions regarding: 1) where the differentiating value is, 2)
what is the nature of the market the firm is operating in and 3) how much value the
potential customers can absorb. This resulted in the following categorization:

• Standard artifacts - Covers about 20% of all features. The CTO adds that
not only OSS software is considered here but also binary modules.

• Product/Bottleneck artifacts - Covers about 20% of all features. These
are mostly purchased or obtained from OSS communities to a lower time-
to-market. An interesting aspect here is the usage of binaries that further
reduces time-to-market as the integration time is lower compared to OSS
modules that often require some scripting and integration efforts.

• Strategic artifacts - Covers only about 5% of all features. The main reason
is that the firm is afraid someone will standardize or control something in
that part (interfaces) and destroy the shareholders’ value.

• Platform/Leverage artifacts - Covers about 55% of all features because
complexity is low and the firm has high control in case the firm becomes
dominant in the market (they are currently not dominant).

196 Motivating the Contributions: An Open InnovationPerspective on . . .

According to the CTO, a firm can be a "big winner" in immature markets that
usually lack standards. Having a high portion of features in the Strategic artifact
corner indicate operating in an established market where alliances need to be made
do deliver substantial value.

Usability of the CAP Model

The CTO indicated that the CAP model can be used by both executives and op-
erational management. The primary stakeholder remains everyone who is respon-
sible for product strategies. However, the executives will focus mostly on the
strategy and if it reflects the direction given by the Board of Directors and main
shareholders. In that regard, the percentage mapping of the features on the CAP
model is considered useful as it shows where in those four quadrants (see Fig. 4)
a firm’s product is, but also where it should be. When applied, there should be a
cross-functional group as earlier suggested (see section 4). The CTO agrees that
a consensus-seeking approach should be used where opinions are first expressed
independently, shared and then discussed until the group converges. This shows
potential risks and additional uncovered aspects.

When classifying artifacts in terms of business impact and control complexity,
the CTO indicated that high-medium-low is sufficient in terms of scale. When sev-
eral people perform the estimations, the results can show the density of each level
for each aspect. The levels should be augmented with comments regarding addi-
tional risks or other important aspects. A scale of -1, 0 and 1 was also considered
as suitable.

The used frequency of the CAP model is estimated to be every major revision
cycle when new features are added to the product. The complete analysis based on
the CAP model should be performed when, e.g., entering the new market place or
moving to more stable places in the market place.

Our respondent believes that the CAP model usage delivers greater confidence
that the firm is not deviating from the strategic direction and helps to identify the
opportunities in the area in other quadrants. The usefulness was estimated as high
and could be improved with more guidelines on how to interpret the mapping re-
sults. At the same time, it appears that larger organizations can benefit more from
the CAP model application. The main problem for smaller firms with reaching
high utility of the CAP model would be to have the resources to do regular anal-
ysis and the experience to provide valuable opinions. Experience in working with
OSS and knowledge of the main driving forces for commoditization is considered
essential.

7.2 Case Firm B

Firm B develops mobile games for the Android and iOS platforms. The market
place that the firm operates in is rather disordered and characterized by several

7 Case studies 197

players who use the same game engine that has a very active ecosystem10 around
it. A substantial part of the product is available for free with little integration effort.
Reusing platforms and frameworks with large user base is an important survival
aspect, regardless if they are OSS or not since acquisition costs are marginal. Entry
barriers are negligible which implies that the commercial success is often a "hit and
miss". In many aspects, the environment resembles an inverted OSS ecosystem
where a given tool from a given provider or a given module is available with the
source. Where a given tool or module from a given provider is available, often with
source, at little or no charge. As a result, significant elements of the games are,
essentially, commodities and product differentiation principally occurs within the
media assets and the gameplay experience. The tool provider11 is open sourcing
back to the ecosystem and can gain those inverted benefits. The customers are
helping the provider to improve the quality of the offering. The studied firm only
report bugs to these ecosystems and never considers any active contributions or
extensions.

The mobile game users expect to play the game for free and perceive them as
commodities. This impacts profitability and ability to be commercially viable. If
the game is successful there are many opportunities to disturb the market place,
e.g. a competitor copies the first 5 levels of the game and offers a similar copy
to the market. About 80% of the revenue is generated in the first five days after
the game is released since the immediate customer behavior defines if the asset is
worth something or not.

Overall Contribution Strategy

Since profitability decreases rapidly after product launch, firm B wants to directly
minimize maintenance costs. This implies contributing the code base or using
commodity parts as much as possible. Contribution strategy associated decisions
need to be made rapidly based on the revenue trends and results. The odds of
having long term playability for games other than adventure are very low. So for
each release, the firm can receive a spike in the income and profitability and needs
to carefully plan how to utilize this income. Time to market remains the main
success factor in this market segment.

Analyzing this market segment with the help of the CAP model brings forward
how extreme the risk levels are in the mobile games business. CAP works well
here as a risk assessment tool that should be applied to investments. In this market
place, the quadrants of the CAP model can be merged and discussed together. The
main analysis should be along the Y-axis and the discussion should be profit driven
since the firm does not have any control over the platform, but controls the player
experience.

Regarding the contribution strategy, the firm has the following rules:

10https://unity3d.com/
11https://unity3d.com/

198 Motivating the Contributions: An Open InnovationPerspective on . . .

• high profit and critical to maintain control features - these features are con-
sidered as key differentiators but in this context there are very low barriers
to copying by fast followers that clone the features. So keeping the features
proprietary does not eliminate the risk of "fast clones".

• low profit and not critical to maintain control features - firm B obtains these
features from 3rd party suppliers.

• low profit and not critical to maintain control features - firm B tried to ob-
tain the components from 3rd parties and if it is not possible the software
architecture is changed to eliminate criticality.

• high profit and not critical to maintain control features - there are no features
with this characteristics according to firm B.

Application of the CAP Model

We mapped the product features to the CAP model grid. The results are: 0% of the
features in the low left quadrant (Standard artifacts), 15% in low right quadrant
(Product/Bottleneck artifacts), 80% in upper left quadrant (Platform/Leverage
artifacts) and 5% in top right (Strategic artifacts). Because firm B works cross
platform they are dependent on the platform provider and obtain other modules
from the ecosystem, e.g. the 2d elements and the networking elements. Firm B
hopes that remaining focused on the upper left corner is sufficient to get some
customers. The firm is "at the mercy of" the other firms dominating the top right
corner. CAP helps to points out here that the vast bulk of the technology that
enables the experience is already a commodity and freely available so the only
differentiating side is the game experience, but this is substantial investment in
media, marketing, UI, graphics, and art-work.

Usability of the CAP Model

The CAP model helps to raise attention that the market is very competitive. The
commodity price is very low, differentiation is difficult and acquisition costs are
marginal. For firm B, it means that it is cheaper to pay someone else for develop-
ment than to participate in OSS migration and integration. The main benefit from
CAP application remains the conclusion that in mobile game development the fo-
cus needs to be on business impact. It is important to perform extensive analysis on
the Y-axis for checking if a future game is commercially viable before analyzing
the complexity dimension.

The CAP model, in this case, can be used once and the clear conclusion for the
firm is that it should change its market focus. The model clearly points out that if
a firm is relatively new to mobile game development there is little profitability in
this market unless you have 20-30 million dollars to invest in marketing and other

7 Case studies 199

actions to sustain long terms revenues. Our respondent believes that every new
game concept can be and should be evaluated with the help of the CAP model.

Our respondent believes that the questions in the CAP model should be an-
swered with the high, medium and low scale during a consensus-driven discus-
sion. Since most of the discussion in on the Y-axis, the simple 3-point scale was
considered sufficient. Our respondent also pointed out that the CAP model could
potentially be extended to include hedonic qualities since a firm sells experience
rather than software applications. Investing in a high complex game is very risky
so firms in this domain tend to stay away from high complexity endeavors that are
risky.

7.3 Case Firm C

Firm C operates in the telecommunication domain and extensively uses OSS to
deliver software products and services. We applied the CAP model on one of the
internal software infrastructure projects with the objective to support the decision
process in regard to whether the project should be released as OSS. CAP was there-
fore used on a project level, instead of a set of features. We invited 8 participants
from various functions at the firm (open source strategy, community management,
legal, product management, and development) into a workshop session where the
CAP model was discussed and applied.

Overall Contribution Strategy

Decisions on what projects that are released as OSS and what may be contributed
to existing OSS projects are made by the OSS governance board, similar to that
of Sony Mobile (see section 4.3). The board is cross-functional and includes the
representatives from OSS strategy, legal, technology and software development.

Contribution requests are submitted to the OSS governance board from the
engineering teams and usually concern projects related to the development tool-
chain or the infrastructure technology stack. The requests are usually accepted
given that no security threats are visible or potential patents can be disclosed. In
addition, the board analyses the potential for creating an OSS ecosystem around
the project to be released.

Application of the CAP Model

The studied project was first discussed in terms of its background and functionality
in order to synchronize the knowledge level among the workshop participants.
This was followed by a discussion of the project’s business impact. The questions
outlined in Section 4.2 were used for framing the discussion, but instead of using
the Likert scale of 1-4, the workshop participants opted for an open consensus-
seeking discussion from start.

200 Motivating the Contributions: An Open InnovationPerspective on . . .

The workshop participants agreed that the project has a high impact in terms
profit and revenue, as it increases operational efficiency, decreases the license-
costs, and increases security. As it is an internal infrastructure project used to
deliver software products and services, it has limited impact on the customers and
end-users. The technology is not seen as differentiating towards competitors but
does enable easier access to new technology-standards that may have a substan-
tial impact on the business. The firm’s engineering department has managed to
perform the daily operations and deliver the firm’s services without the use of the
project, why it would not devastate business if it was no longer available. How-
ever, it does offer clear advantages which would cause a negative impact if it the
availability was reduced or removed.

In regard to control complexity, it was concluded that the firm has the com-
petence needed to continue developing the project. Further, the project did not
include any IP and patents from the firm’s defensive patent portfolio. The under-
lying knowledge and technology can be considered as commodity. However, there
is a lack of alternates as only two could be identified, both with shortcomings.
Internally of the firm, there is a defined need for the project, and that influence
on its development is needed. There is, however, no demand that the firm should
maintain absolute control, or act as an orchestrator for the project.

The workshop participants classified the project as a strategic artifact due to the
high business impact, as well as a relative need for control and lack of alternatives.
Due to the latter reasons, the project should be released as a new OSS ecosystem as
soon as possible in order to maintain the first-mover-advantage and avoid having
to adapt to competing solutions. Hence, the main contribution objective should
be to reduce time-to-market. The participants stated that the goal would be to
push the project towards commodity, where the main objective would be to share
the maintenance efforts with the ecosystem and refocus resources on more value-
creating activities.

Usability of the CAP Model

The workshop participants found that the CAP model provided a useful lens through
which their OSS governance board could look at contribution requests and strate-
gically plan decisions. One participant expressed that the CAP model offers a
blue-print to identify what projects that are more important to the firm, and align
contribution decisions with internal business and product strategies by explicitly
considering the dimensions of business impact and control complexity.

The workshop-participants preferred the open consensus-seeking discussions
as a mean to determine the business impact and control complexity, and based on
this classify the artifact to the most relevant artifact type and contribution strategy.
The chosen strategy and aligning contribution objective could then be used to add
further depth and understanding to the discussion, which helped the group to arrive
at a common decision and final contribution strategy for the reviewed project.

8 Discussion 201

The questions defined in section 4.2 were found useful to frame the discus-
sions. Participants expressed that these could be further customized to a firm, but
that this should be an iterative process as the OSS governance board applies the
CAP model when reviewing new projects. The participants further expressed that
some questions are more relevant to discuss for certain projects than others, but
they provide a checklist to walk through when reviewing a project.

8 Discussion

In this section, we discuss the applicability and usability of the CAP model. We
discuss the findings from the case studies how the CAP model should be improved
or adapted to fit other contexts.

8.1 Applicability and Usability of the CAP Model

The three cases presented in section 7 bring supporting evidence that the CAP
model can be applied on: a set of features, a product or on a complete project. The
model has proven to bring useful insights in analyzing a set of features in a prod-
uct with the indication that larger organizations can benefit more from the CAP
application than small organizations. In case B, the application of CAP provided
valuable insights regarding the nature of the market and the risks associated with
making substantial investment in this market. In case C, the application of the
CAP model provide a lens though which the OSS governance board can screen
current projects and decide upon their contribution or OSS release strategies.

CAP was found useful as decision-support for individuals, executives and man-
agers. However, as highlighted by respondents from firms A, B and C, CAP is
best suited for a cross-functional group where consensus-seeking discussions can
be used to bring further facets to the discussions and better answer the many ques-
tions that needs to be addressed. As for Sony Mobile and case firm C, a suitable
forum for large-sized firms would be the OSS governance boards or OSS program
offices.

The questions suggested in section 4.2 were found useful, but it was high-
lighted that these may need to be tailored and extended as CAP is applied to new
projects and features. When answering the questions and determining the dimen-
sions of business impact and control complexity, the cases further showed that on
scale does not fit all. Case firm A and B suggested a high-medium-low scale,
while case firm C preferred to use the consensus-seeking discussion with out the
help of a scale. These facts highlight that certain adaptations are needed for the
CAP model to maintain its usability and applicability in different settings. It also
highlights that the decision process should not be "over-engineered". Our results
suggest that complexity needs to be balanced in order to maintain usability for the
practitioners while still keeping the applicability on different types of artifacts and

202 Motivating the Contributions: An Open InnovationPerspective on . . .

settings. How to adapt this balancing act and tailor the CAP model to different
settings is a topic for future design cycles and case evaluations.

8.2 Influence Needed to Control

The Kraljic’s portfolio model was originally used to help firms to procure or source
supply-items for their product manufacturing [104]. One of the model’s two deci-
sion factors is supply risk. To secure access to critical resources, a certain level of
control is needed, e.g., having an influence on the suppliers to control the quality
and future development of the supply-items. For OSS ecosystems, this translates
into software engineering process control, for example in terms of how require-
ments and features are specified, prioritized and implemented, with the goal to
have them aligned with the firm’s internal product strategy.

Software artifacts with a high control complexity (e.g., the media frameworks
for Sony Mobile, see section 4.4) may require special ownership control and a high
level of influence in the concerned OSS ecosystems may be warranted to be able
to contribute them. In cases where a firm does not posses the necessary influence,
nor wish to invest the contributions and increased OSS activity [41] which may
be required, an alternative strategy is to share the artifact with a smaller set of
actors with similar agendas, which could include direct competitors [188]. This
strategy is still in-line with the meritocracy principle as it increases the potential
ecosystem influence via contributions [41]. Sharing artifacts with a limited number
of ecosystem actors leaves some degree of control and lowers the maintenance
cost via shared ownership [176, 180]. Further, time-to-market for all actors that
received the new artifacts is substantially shortened.

For artifacts with less complexity control, e.g., those concerning requirements
shared between a majority of the actors in the OSS ecosystem, the need for con-
trol may not be as high, e.g., the DLNA project or Linux commodity parts, see
sections 4.4 and 4.4. In these cases, it is therefore not motivated to limit control
to a smaller set of actors which may require extra effort compared to contributing
it to all ecosystem actors. An alternative implementation may already be present
or suggested which conflicts with the focal firm’s solution. Hence, these types of
contributions require careful and long term planning where the influence in the
ecosystem needs to be leveraged. In case of firm B, complexity is controlled by
the framework provider.

For both critical or less critical artifacts in regard to control complexity, a firm
needs to determine the level of influence in the involved ecosystems. This factor is
not explicitly covered by the CAP model and could be considered as an additional
discussion point or as a separate decision factor in the contribution strategies which
are elicited from the CAP model.

8 Discussion 203

8.3 Direct and Indirect Use of OSS ecosystems

The second decision factor originating from the Kraljic’s model [104] is the profit
impact. Profit generally refers to the margin between what the customer is will-
ing to pay for the final product and what the product costs to produce. For OSS
ecosystems, this translates into how much value a firm can offer based on the OSS,
e.g. services, and how much resources the firm needs to invest into integration and
differentiation activities. I.e., much of the original definitions are preserved in the
CAP model and the re-labeled decision factor business impact.

Artifacts with high profit, or high business impact are differential towards
competitors and add significant value to the product and service offerings of the
firm [120], e.g., the gaming services for Sony Mobile, see section 4.4. Analogous,
artifacts with low profit are those related to commodity artifacts shared among the
competitors, e.g., Linux commodity parts, see section 4.4. This reasoning works
in cases where the OSS and its ecosystem is directly involved in the product or ser-
vice which focal firm offers to its customers. The customers are those who decide
which product to purchase, and therefore mainly contribute in the value creation
process [9]. This requires good customer-understanding to judge which artifacts
are the potential differentiators that will influence the purchase decision.

In cases where an OSS has an indirect relation to the product or service of the
firm, the artifact’s value becomes harder to judge. This is because the artifact may
no longer have a clear connection to a requirement which has been elicited from a
customer who is willing to pay for it. In these cases, firms need to decide them-
selves if a particular artifact gives them an advantage relative to its competitors.

OSS ecosystems often facilitates software engineering process innovations that
later spark product innovations that increase the business impact of an artifact, e.g.,
if an artifact makes the development or delivery of the product to a higher quality
or shorter time-to-market respectively [117]. These factors cannot be judged by
marketing, but rather by the developers, architects and product managers who are
involved on the technical aspects of software development and delivery. In regard
to the CAP model, this indirect view of business impact may be managed by having
a cross-functional mix of internal stakeholders and subject-matter experts that can
help to give a complete picture of an artifact’s business impact.

8.4 Comparing to Other Commoditization Models

Both commoditization models suggested by van der Linden et al. [120] and Bosch [22]
consider how an artifact moves from a differential to a commoditized state. This is
natural as technology and functionality matures and becomes standardized among
actors on the same market or within the same OSS ecosystem. The impact of
whether an artifact is to be considered differential or commodity is covered by
the business impact factor of the CAP model. However, how quickly an artifact
moves from one state to another is not explicitly captured by the CAP model. This

204 Motivating the Contributions: An Open InnovationPerspective on . . .

dimension requires firms to continuously use the CAP model and track the evolu-
tion of features and their business impact. We recommend that the evaluation is
performed every time a new product is planned and use the reactive approach in
combination with the proactive (see section 4.3 and 4.2 respectively).

Relative to the level of commoditization of an artifact, the two previous mod-
els consider how the artifact should be developed and shared. Van der Linden et
al. [120] suggested to internally keep the differential artifacts and gradually share
them as they become commoditized through intra-organizational collaborations
and finally as OSS. In the CAP model, this aligns with the control complexity
factor, i.e., how much control and influence is needed in regard to the artifact.

The main novelty of the CAP model in relation to the other commoditization
models [22, 120] considers OSS ecosystem participation and enables improved
synchronization towards firms’ product strategy and product planning, via feature
selection, prioritization and finally release planning [101]. The strategic aspect
covered by the CAP model uses the commoditization principle together with busi-
ness impact estimates and control complexity help may firms to better benefit from
potential OI benefits. Assuming the commoditization is inevitable, the CAP model
helps firms to fully benefit the business potential of differential features and timely
share them with OSS ecosystems for achieving lower maintenance costs. More-
over, the CAP model helps to visualize the long term consequences of keeping
or contributing an internally developed software artifact (more patches and longer
time-to-market as consequence). Finally, the CAP model provides guidelines for
how to position in an OSS ecosystem’s governance structure [10] and how to in-
fluence it [41].

There may be various reasons why a firm would wish to contribute an artifact.
Thus, the drivers used by Sony Mobile in the CAP model may not be the same
for other firms wishing to adopt the model. The identified contribution drivers and
cost structures should be aligned with the firm’s understanding for how the value is
drawn from the OSS ecosystems. This may help to improve the understanding of
what should be contributed and how the resources should be planned in relation to
these contributions. How the contribution objectives and drivers for contributions
needs to be adapted is a topic for future research.

9 Conclusion

The recent changes in software business have forced software-intensive firms to
rethink and re-plan the ways of creating and sustaining competitive advantage.
The advent of OSS ecosystems has accelerated value creation, shortened time-
to-market and reshaped commoditization processes. Harvesting these potential
benefits requires improved support for strategic product planning in terms of clear
guidelines of what to develop internally and what to open up. Currently avail-
able commoditization models [22,120] accurately capture the inevitability of com-

9 Conclusion 205

moditization in software business, but lack operational support that can be used
to decide what and when to contribute to OSS ecosystems. Moreover, the exist-
ing software engineering literature lacks operational guidelines, for how software-
intensive firms can formulate contribution strategies for improved strategic prod-
uct planning at an artifact’s level (e.g., features, requirements, test cases, frame-
works or other enablers).

This paper introduces the Contribution Acceptance Process (CAP) which is
developed to bridge product strategy with operational product planning and fea-
ture definition (RQ1). Moreover, the model is designed with commoditization in
mind as it helps in setting contribution strategies in relation to the business value
and control complexity aspects. Setting contribution strategies allow for strate-
gic product planning that goes beyond feature definition, realization and release
planning. The CAP model was developed in close collaboration with Sony Mobile
that is actively involved in numerous OSS ecosystems. The model is an impor-
tant step for firms that use these ecosystems in their product development and
want to increase their OI benefits, such as increased innovation and shorter time-
to-market. This paper also delivers an information meta-model that instantiates
the CAP model and improves the communication and follow-up of current contri-
bution strategies between the different parts of a firm, such as management, and
development (RQ2).

There are several important avenues for future work around the CAP model.
Firstly, we aim to validate the CAP model and related information meta-model in
other firms, both statically and dynamically. We plan to focus on understanding the
firm specific and independent parts of the CAP model. Secondly, we plan to con-
tinue to capture operational data from Sony Mobile and the three case firms related
to the usage of the CAP model that will help in future improvements and adjust-
ments. Thirdly, we plan to investigate how a contribution strategy can consider
the influence a firm needs in an OSS ecosystems to be able to exercise control and
introduce new features as needed. We believe that gaining and maintaining such
influence in the right ecosystems is pivotal in order to execute successfully on con-
tribution strategies. Fourthly, we want to investigate to what degree the CAP model
supports innovation assessment for firms not working with OSS ecosystems. Our
assumption is that these firms could use the CAP model to estimate the degree of
innovativeness of the features (could be considered as an innovation benchmark)
without setting contribution strategies. Lastly, we plan to explore which technical
aspects should be considered and combined with the current strong business view
of the CAP model (e.g. technical debt and architecture impact seems to be good
candidates to be included).

CHAPTER V

OPEN TOOLS FOR
SOFTWARE ENGINEERING

USING THE THEORY OF
OPENNESS: A VALIDATION
STUDY IN THE AUTOMOTIVE

INDUSTRY.

Abstract

Context: Open tools (e.g., Jenkins, Gerrit and Git) offer features or performance
benefits that surpass their commercial counterparts. Many companies and devel-
opers from OSS communities create open tools in a collaborative effort in which
software developers improve the code and share the changes within the commu-
nity. We developed an empirically based theory for strategic choices on such tool
development.
Aim: The aim of this study is to validate the theory of openness for tools in soft-
ware engineering.
Method: We launched surveys in focus groups in two automotive industry com-
panies and used the repertory grid technique to analyze the responses from partic-
ipants in combination with qualitative data from discussions in the focus groups.
Results:We validated the theory in the laggards category (reactive, cost saving),
as both companies belong to that category. Tools provided by suppliers are cus-
tomized according to company needs to integrate into an already complex tool-
chain and thereby incurs expensive licenses. The lack of central tool coordination
leads to multiple variants of the same tools, causing additional costs to glue tools
together. Further, the lack of legal frameworks to work with OSS tools communi-

208 Open Tools for Software Engineering using the Theory of Openness: A . . .

ties hampers companies to engage developers in OSS tools.
Conclusion: Both companies need a centralized, proactive strategy to help soft-
ware developers use open standardized tools to reduce integration issues. It may
require companies to foster an internal champion, which serves as an interface be-
tween the legal department, software developers and top management, to drive the
open tools strategy.

1 Introduction

Using and co-developing open tools with other organizations for proprietary prod-
uct development is becoming an increasingly open process, thanks to the ever-
growing size of Open Source Software (OSS). Software-intensive companies cre-
ate open tools communities and develop these tools with other companies to share
the development and maintenance cost. For example, the Gerrit code review tool,
built on top of the git version control system, was developed by Google and made
open source in relation to Android development. Jenkins is another OSS tool co-
developed by many companies (e.g., Sony Mobile, Ericsson, Intel, SAP etc) to
make their continuous integration process faster and more flexible. Open tools may
help companies to reduce the licensing costs for proprietary tools, and save de-
velopment costs by offering flexibility in the development environment, increased
turnaround speed, faster upgrades/releases and sharing the maintenance cost [137].
However, open tools require investment in the communities if companies would
like to be leaders and gain influence on the development direction of these OSS
tools [160].

This study continues our previous research efforts where we: 1) conducted
a mapping study to identify the existing evidence on the use of open innovation
in software engineering [141], 2) performed an exploratory case study at Sony
about the use of open tools (e.g., Gerrit and Jenkins) in proprietary product de-
velopment [137] and 3) conducted a survey in OSS tools communities (e.g., Ger-
rit, Jenkins, Git) and combined with the existing evidence to develop a theory of
openness for tools in software engineering [140]. Figure 1 shows that the theory
presents four categories of openness in companies with their respective focus:

1. Laggards – Routine business

2. Leverage – Resource optimization

3. Lucrativeness – Acting as a think-tank

4. Leaders – Growth through ecosystems

Each category has the different levels of openness, based on their strategies
(proactive or reactive) in relation to goals (cost saving or inspirational). Typi-
cally, laggards respond to paradigm shifts and all strategies are reactive, aiming

1 Introduction 209

Figure 1: Model of openness for tools

Re
ac

tiv
e

st
ra

te
gy

Strategy: Invest in existing communities to reduce
time-to-market, spot business opportunities
Trigger(s): Managers
Outcome(s): Product and Process innovation
Level of Openness: Open process – Closed outcome

Cost Saving

Laggards (Business as usual)

Pr
oa

ct
iv

e
st

ra
te

gy

Inspirational

Leverage (Resource optimization)

Lucrativeness (Think tank) Leaders (Growth through ecosystems)

Strategy: Reaction to paradigm shifts and cost
reduction.
Trigger(s): Managers and developers
Outcome(s): Reduced licensing and patching cost
Level of Openness: Open process – Open outcome

Strategy: Motivate developers through engaging in
OSS communities i.e., look inside/outside for
technological improvements
Trigger(s): Managers and developers
Outcome(s): Product and Process innovation
Level of Openness: Open process – Open outcome

Strategy: Create new ecosystems to support brand
proposition
Trigger(s): Managers
Outcome(s): Product innovation
Level of Openness: Open process – Closed outcome

to reduce the development cost (i.e. integration). As for the leverage category,
organizations use the external sources of innovation by inspiring their internal de-
velopers to participate in various OSS tools communities, prior to internal R&D
work. It not only adds to product and process innovation but also inspires develop-
ers to exchange ideas on discussion forums to develop competence. Lucrativeness
refers to investing in existing OSS communities to be able to influence and steer
these communities in the same direction as the organizational interests. The pur-
pose is to support internal innovation and reduce costs by investing in OSS tools
communities. Leaders are organizations that focus on creating new communities
and ecosystems to strengthen their business model. As a part of defining the the-
ory of openness for tools, we formulated five proposition shown in table 1. The
main goal of this study is to validate the theory of openness for tools in software
engineering by conducting workshops in two automotive companies. Propositions
derived from the theory of openness are validated based on the data collected from
the workshop. The first two authors were directly involved in conducting the focus
groups while the other two authors reviewed the collected data.

In this paper, we introduce related work on open source tools, as well as the
analysis methods used here, in Section 2. Section 3 introduces the case companies,
data collection procedures, validity threats, and analysis method to validate the
propositions. Section 4 presents the analysis and discussion based on the repertory
grid technique, using focus groups in the case companies. Finally, section 5 wraps
up the study with the conclusion.

210 Open Tools for Software Engineering using the Theory of Openness: A . . .

Table 1: Propositions from the theory [140]
ID Proposition
P1 Openness of tools provides opportunities to reduce de-

velopment costs.

P2 Openness of tools provides opportunities to shorten the
development time.

P3 Openness of tools complements internal processes and
product innovation.

P4 The degree of investment in OSS communities has an
affect on the outcome.

P5 Introducing a proactive strategy, in relation to openness
of tools, requires conscious management involvement.

2 Related work
Open Innovation (OI) builds on internal and external knowledge exchange that
may or may not be associated with monetary transactions. OI can be realized as
inside-out, outside- or coupled innovation processes [54]. OI has penetrated into
several industries, as many companies discovered that their business may benefit
by collaborating with OSS tools communities [30]. Companies apply OI in the
area of OSS tools for company’s internal product development. For example, our
previous study [137] shows that Sony Mobile uses Jenkins and Gerrit ecosystems
for knowledge flows between different companies’ employees and Open Source
Software (OSS) community developers, without monetary transactions. In con-
trast, companies like CloudBees monetize services related to the OSS tools. The
stakeholders in the OSS tools communities not only share the innovation cost [27]
and rewards, but also risks [137]. Companies may achieve that by revisiting their
tool chains and look for open tools alternatives, as a natural and low-risk starting
point in embracing openness.

The use of proprietary tools for software development leads to several chal-
lenges, e.g. delayed implementation of requirements, expensive licensing costs,
inability of fixing things in-house, lack of customizability, and difficulty in finding
solutions that meet current needs [137]. Companies use OSS tools communities
to deal with several of these challenges [137]. However, in order to utilize open
source tools communities for internal product development, companies need to
invest their internal resources to use or contribute to OSS tools communites and
have contribution strategies around it. The contribution strategies guides compa-
nies when to contribute and when to conceal in relation to their business model.
The proposed theory of openness helps companies to choose the right level of
openness while working with OSS tools communities.

Generating and acquiring data from software engineering activities is relatively

3 Research methodology 211

easy. The challenge is to use that data in a meaningful way to present something
that is true rather than spurious. Theories offer common conceptual frameworks to
summarize, condense and accumulate knowledge. SE research community have
raised concerns on the lack of theories in SE [14, 20, 53, 80, 162, 169, 177] and
pointed on the limited nature of the work about SE theories. We used Sjøberg et
al’s method to design the theory of openness [169] and here we use the repertory
grid technique to validate the theory. Repertory grid is a technique for identifying
the ways that a person interprets or gives meaning to his or her experience, be-
ing used in software engineering already. Moynihan’s exploratory study used the
repertory grid technique to identify the prevalent risks factors in software devel-
opment projects. [134, 135]. Lee and Truex [111] used repertory grid technique
to explore whether or not training in information system development methods
improves students’ cognitive structures (e.g., focused, tight thinking). Baddoo’s
exploratory study [12] collected data from 13 collaborating software companies to
investigate how groups of staff in three designated roles (i.e. developers, project
managers and senior managers) saw themselves and the other roles as being in-
volved in software process improvement. Ghazi et al. [69] proposed a decision
support method, using the repertory grid technique, which aids practitioners to
choose the right level of exploratory testing (i.e. freestyle testing, a high degree
of exploration, medium degree of exploration, a low degree of exploration and
scripted) in their context.

3 Research methodology

Below, we describe the case companies, that data collection and analysis methods,
and our discussion and actions taken to improve the validity of the study.

3.1 Case A

Company A is a major automotive industry manufacturer of heavy trucks and
buses. It also manufactures diesel engines for heavy vehicles as well as marine
and general industrial applications. The company employs approximately 42,100
people around the world. The company develops its software services for fleet
management and is considering transport as a service perspective in their busi-
ness model. Albeit their internally developed software is not monetized yet, the
company has started seeing the software as an important strategic area for its core
business. Therefore, the company has an abstract strategy of utilizing OSS tools
to build competence in this area. The company uses Jenkins in the development
of their fleet management system. The participants involved in the workshop were
tools manager, product owners and technical teams leads and tools engineers.

212 Open Tools for Software Engineering using the Theory of Openness: A . . .

3.2 Case B
Company B is one of the well-known global brands in automotive industry, head-
ing towards an all-electric future. The company has 34,200 employees in five con-
tinents, and 2300 dealers globally. The increased use of software in the cars makes
embedded software development a cutting-edge area for the company’s business
model. In order to facilitate the software development, the company buys tools to
facilitate the software development from suppliers. However, it makes it difficult
to buy a solution and fit it into the existing tool chain. Therefore, the company
is shifting towards OSS tools to achieve standardization in all teams. Tools like
Jenkins, Gerrit and Git are already utilized in the development process. The tool
specially discussed in this study is an internally developed tool named Awesome
framework by the company. It is an automated testing framework which enables
test automation for hardware-in-the-loop, software-in-the-loop, model-in-the-loop
test environments to be able to fit these into a continuous integration chain. It
provides an integrated development environment for developing such tests at com-
ponent and system level. The participants of the workshop in the case company
include tools manager, product owners, business analysts, technical teams leads
and tools engineers.

3.3 Data collection and analysis methods
Focus groups [159] were conducted at the two companies involved in this study.
There were 12 and 10 participants in the focus groups conducted at the companies
A and B, respectively. Furthermore, we used a repertory grid technique [95] to an-
alyze and validate the theory of openness. Kelly proposed the personal construct
theory (PCT) and the associated repertory grid technique in the 1950’s to elicit
and analyze personal constructs [95]. The idea behind the theory is that partici-
pants have their own view of the world based on their observation of surroundings.
Therefore, each participant builds his own conceptual framework which leads to
different opinions about the same problem. Participants constantly observe and re-
act to their understanding of the surroundings. Consequently, participants reform
their personal theories and assumptions [51].

Kelly’s repertory grid technique is used to elicit, evaluate and analyze the con-
structs [95]. The grid is comprised of following three basic concepts: 1) Elements
elicitation, 2) Constructs elicitation, 3) Ratings. Elements refer to individual as-
pects or objects of a topic, which participants try to understand. A construct is
made of two contrasting concepts that are equally weighted on a bipolar scale.
There are two essential ways to select grid elements: a) elicit elements from par-
ticipants, b) provide participants with elements.

We used repertory grid to validate the theory of openness by providing the
elements and constructs derived from the theory of openness [140]. Each elements
was rated against each construct in the focus groups. To further support our choice,
a number of studies have taken this approach [111, 143, 148, 199] by providing

3 Research methodology 213

elements and constructs to participants for the ratings. The description of elements,
constructs and their ratings are as follow:

Elements derived from theory of openness: This study uses four elements
from the theory of openness mentioned below:

1. Inspiration

2. Reactive

3. Cost saving

4. Proactive

The elements can be seen in figure 2 where we used the same elements for com-
panies A and B.

Constructs derived from the theory of openness: We designed constructs from
the theory of openness by creating the contrasting poles of each construct, see A1,
A2 ... in Table 2. These constructs are derived from the existing literature in the
theory of openness [140]. The constructs asses company’s perspective on creating
new communities to facilitate internal product development by reducing the devel-
opment, development cost, new creation of roles, approval from top management
for OSS tools adoption and access to skilled workforce etc.

Table 2: Constructs derived from theory of openness with their contrasting poles

ID Similarity Pole (+) Contrast Pole (-)
A1 Creating new open source commu-

nities to facilitate internal product
development

Creating new open source commu-
nities not required to facilitate inter-
nal product development

A2 Creating new open source commu-
nities to explore emerging technolo-
gies

Creating new open source com-
munities not required to explore
emerging technologies

A3 Leveraging OSS to increase market
share

Leveraging OSS to increase market
share not required

A4 Using existing open source commu-
nities to identify the emerging tech-
nologies

Using existing open source commu-
nities to identify the emerging tech-
nologies not required

A5 Using existing open source com-
munities for technological improve-
ments

Using existing open source com-
munities for technological improve-
ments not required

A6 Investing in the open source com-
munities to steer the commu-
nity’s development towards organi-
zational benefits

Investing in the open source com-
munities not required to steer the
community’s development towards
organizational benefits

214 Open Tools for Software Engineering using the Theory of Openness: A . . .

A7 Defining new work roles and teams
to work with open source commu-
nities

Defining new work roles and teams
not required to work with open
source communities

A8 Adopting OSS tools need approval
from top management

Adopting OSS tools does not need
approval from top management

A9 Contributing to open source com-
munities need approval from top
management

Contributing to open source com-
munities does not need approval
from top management

A10 Educating the organization about
OSS culture and ways of working

Educating the organization about
OSS culture and ways of working
not required

A11 Using OSS tools helps to reduce de-
velopment time

Using OSS tools helps to reduce de-
velopment time

A12 Working with open source commu-
nities gives access to free labor

Working with open source commu-
nities gives access to free labor

A13 Using OSS tools keeps developers
updated with best tools practices

Using OSS tools keeps developers
updated with best tools practices

A14 OSS tools reduces licensing cost in
relation to proprietary tools

OSS tools reduces licensing cost in
relation to proprietary tools

A15 The benefits of engaging in open
source communities outweighs the
risk of losing Intellectual property
rights

The benefits of engaging in open
source communities does not out-
weighs the risk of losing Intellec-
tual property rights

A16 Engaging in open source communi-
ties provides fun ways of working
for developers

Engaging in open source communi-
ties provides boring ways of work-
ing for developers

A17 Working with open source com-
munities gives access to external
knowledge from communities

Working with open source commu-
nities does not gives access to exter-
nal knowledge from communities

Ratings: In this step, elements are then rated against each construct in the
focus groups at companies A and B. We used a three-point Likert scale to rate
each element against each construct, see Table 3.

First, the focus group participants in both companies were given an introduc-
tion of constructs and elements to develop a common understanding in the whole
group. Second, participants from company A picked Jenkins and participants from
company B selected an internal tool called Awesome framework for the focus

3 Research methodology 215

Table 3: Scale used for the ratings
Scale

Elements 1 2 3

Inspirational Inspirational Somewhat No Inspirational

Reactive Reactive Somewhat Not Reactive

Cost saving Cost saving Somewhat Not Cost saving

Proactive Proactive Somewhat Not Proactive

groups. Third, a survey link was distributed among all the participants to rate
each element against the constructs, based on the selected tools from their internal
development environment. Fourth, each element was rated against each construct
using the scale in table 3.

For example, Figure 2 shows that adopting OSS tools need approval from top
management (A8) is rated as not inspirational (3), reactive (1), not cost saving (3)
and not proactive (3) by the participants in both companies. Similarly, the use of
OSS tools helps to reduce the development time (A11) is rated as a cost saving
(1) and proactive (1). Third, we held a discussion among participants based on
the ratings to further explore their ratings. The discussion part was recorded and
transcribed to further explore the rationales for the participant’s ratings.

Outcome: The outcome of this step (ratings) is Figure 2, which shows ratings
of focus groups from companies A and B.

3.4 Validity threats
We discuss validity threats with respect to internal validity, external validity, con-
struct validity, and conclusion validity [159].

Internal validity: Internal validity threat may relate to confounding factors that
may have influenced the outcome without researcher’s knowledge. One possible
threat is that the participants in companies A and B may have misunderstood the
constructs and elements. Therefore, an introduction presentation was given to par-
ticipants before rating each element against constructs. Constructs and elements
were exemplified during the introduction presentation session. Furthermore, we
also had a follow-up discussion based on the ratings from the participants to clar-
ify misunderstandings. Another threat to internal validity was that the participants
might had a difficulty in interpreting the scale for the ratings. To minimize the risk
of scale’s misunderstanding, the examples were given in the introduction prior to
ratings of elements and constructs.

External validity: Both companies are experiencing a paradigm shift with ever
increasing adoption of software in cars and trucks to stay on the competitive edge.
Validating the theory in an automotive industry gives more weight to the external

216 Open Tools for Software Engineering using the Theory of Openness: A . . .

(a) Company A (b) Company B

Figure 2: Ratings of elements in relation to constructs from focus group partici-
pants, using the three point Likert scale presented in table 3.

3 Research methodology 217

(a) Company A

(b) Company B

Figure 3: Principal components analysis (PCA) of ratings from focus groups.

218 Open Tools for Software Engineering using the Theory of Openness: A . . .

validity of the theory. However, automotive industry does not represent the whole
software industry and therefore, the scope of the findings are limited. More studies
are intended to perform in the software industry to improve the external validity of
the theory.

Construct validity: Both constructs and elements in the theory are relevant to
discuss in relation to construct validity. Neither of the case companies comes from
an OSS development and community participation background and therefore, do
not have established procedures to work with open tools communities. As a con-
sequence, neither company has a well-defined procedure to map all the constructs
of the theory. This threat was partially met by keeping the discussion on a higher
level to the company’s specific context.

Conclusion validity: First, participants in the focus groups may have tried
guessing the propositions during the introduction presentation, which introduces
a threat to the conclusion validity. This threat was mitigated by keeping elements
and constructs as discrete as possible. Second, a researcher’s bias while inter-
preting and recording focus groups mat threaten the conclusions. To reduce this
threat, multiple researchers were involved in the focus groups (observer triangula-
tion). Furthermore, focus groups were recorded, transcribed, and the results were
validated by multiple researchers.

4 Results and discussion

The outcomes from the repertory grid technique are the grid and a PCA analysis.
Figure 2 shows the formation of the repertory grid for companies A and B, based
on the ratings from the participants in the focus group meetings. The vertical axis
shows the contrasting poles of constructs derived from the theory of openness,
mentioned in Table 2. The horizontal axis shows the elements derived from the
theory of openness. Each element was rated by the participants in the workshop in
relation to constructs using the scale presented in Table 3. Figure 3 shows the sta-
tistical repertory analysis based on the principal components analysis (PCA) [17].
PCA is a data reduction technique, used to find the dimensions of maximum vari-
ability in data. Figure 3 represents the spatial distances between and among the
elements and constructs, and suggests how they might be related to each other.

4.1 Relation between strategies

The PCA shows that proactive and inspiration in companies A and B are spatially
closer to each other. However, the cost saving and reactive strategies in company
A seem to have a higher variance in contrast to company B. It can be explained
by both companies’ current strategy of buying OSS enterprise solutions instead
of actively using or contributing to OSS tools communities, because they believe
it gives them more control over the contract as the companies think in the old

4 Results and discussion 219

way of subcontracting. The ratings in company A were not able to distinguish
between OSS tools, and tools provided by suppliers based on OSS. The reason for
this may be the lack of OSS understanding and competence at company A, since
the company does not come from an OSS development background. One of the
participants stated, “one of the major reasons for not using OSS tools is the lack
of competence and understanding. We do not know how to protect our intellectual
property rights. We tend to go for buying solutions when there are intellectual
property rights involved”.

4.2 Validation of propositions

Further, we validate the five propositions (see table 1) from the theory of open-
ness [140] in the light of the PCA and discussions in the focus groups.

For proposition (P1) about the reduction in development cost, the PCA shows
that access to free labor (A12+) and reduced licensing cost (A14+) is closer to cost
saving in case of company B as opposed to company A (see fig 3a and 3b). One
possible explanation is that Company A does not see faster automated build servers
as a competitive edge for its internal developed software. Furthermore, none of its
software is provided as a service to the customers yet. However, they started see-
ing value in services and connections, where licensing costs might come into play.
One of the participants stated that “the percentage of money spent on licenses is
actually not that high at the moment. However, if we start producing hundreds of
micro-services with each of them need their own database, buying Oracle licenses
might become really expensive”. On the other hand, it is not uncommon for com-
pany B to buy tools and these tools can be expensive. One of the participants in
company B stated that “customized tools provided by big vendors like MathWorks
for the company are really expensive. Therefore, we have a window of opportunity
to update our environment with open tools.”. In conclusion, openness of tools has
the potential to reduce the development cost, which validates our proposition P1.

Regarding whether openness shortens the development time (P2), PCA for
both companies in Figures 3a and 3b shows that the benefits of engaging in OSS
tools communities outweigh the risk of losing IPRs (A15+), and reduced develop-
ment time (A11+) is spatially closer to cost saving. This indicates that participants
think that engaging in open tool communities outweighs the risk of losing intellec-
tual property rights, although the lack of maintenance support in the company is a
point of concern for developers. Software developers in company B think that us-
ing open tools speed up their development in relation to seeking permission to buy
a tool. One participant stated that “regarding speed as a developer, it takes a few
minutes to download an open framework rather than seeking an approval from the
manager to buy a tool, which takes forever”. However, both companies are careful
in selecting and integrating these open tools to make sure that these tools won’t
die over time. There is a risk that software developers might not get the required
funding and enough management backing to maintain these open tools internally

220 Open Tools for Software Engineering using the Theory of Openness: A . . .

if the community dies. A participant stated that “we are dependent on some re-
ally large python projects that we know won’t die anytime soon.”. Therefore, the
proposition P2 about open tools may reduce the development is confirmed by the
data.

In relation to process and product innovation (P3), it should be mentioned we
have earlier observed that process innovation leads to product innovation [117].
However, neither case company considers tools front leading innovation in the de-
velopment of their core products. In particular, the tools development team of
company B does not get enough funding and management backing, although other
departments in the company need tool support to facilitate product innovation in
the core products. This is a general problem with the project focused companies,
where the budget is allocated for the given project only, with limited considera-
tion for long-term investment. The tools department does not have an allocated
budget for the development of tools and the maintenance of these to achieve stan-
dardization. One of the participants in company B stated “when we buy tools, it is
part of the R&D budget and there is no designated budget for maintenance. For
example, if we get the funding for developing an internal tool like Awesome frame-
work, there is no allocation of budget for the maintenance of that tool”. On the
other hand, both companies identify the need for process innovation by creating
new roles [129] to deal with the challenges of open tools platform. Consequently,
there have been initiatives in both companies to create new open innovation roles.
For example, a participant of company A mentioned that “the company has ac-
tually employed a new role of open source cloud manager to create procedures
and guidelines regarding how to be active in an open space”. Furthermore, a
participant in company B stated that “there is a new initiative called Nordic foun-
dation partly driven by Ericsson to spread open source usage and with the already
formed legal framework among Nordic companies. It could be a fast track for us
but it needs to be championed by R&D in order to reap benefits”. Therefore, the
proposition P3 related to the openness of tools complements internal process and
product innovation is confirmed by the data.

In both companies, PCA shows that adopting (A8+) and contributing to OSS
tools (A9+) are spatially close to the reactive strategy, meaning that participants
consider taking approval from top management in either adopting or contributing
to open tools communities as a reactive strategy. One possible explanation for
seeking approval is that neither company has a legal framework to work with open
tools communities. One of the participants in company A stated that “we have a
top-level statement saying Open Source First but what does that exactly mean? It
does not state exactly what, why and how should we go open and how these deci-
sions are supported”. Similarly, a participant in company B also stated that “we
do not have any internal procedure or legal framework to create new or work with
the existing open tools communities”. Therefore, P4 about the relation between
investment in OSS tools communities and its impact, is neither confirmed nor re-
jected by the data, since both case companies lack internal procedures to invest

4 Results and discussion 221

their internal resources in open tools communities.
Finally, proposition P5, about the role of management in Table 1, needs to

be extended since not only the proactive strategy but also the reactive strategy,
requires management involvement, as software developers need a legal framework
to work with open tools.

4.3 Cross analysis with Sony Mobile

After the focus group meeting, we conducted a cross case analysis with our previ-
ous Sony Mobile case [137]. That study explored Sony Mobile’s transition from
closed tools to open tools platform [137], which constitutes one of the cases for
an empirical grounding of the theory of openness for tools. Therefore, in this
cross case analysis, we have found three similar patterns in companies A and B in
relation to Sony Mobile.

First, there was a paradigm shift when Sony Mobile moved from Windows
to Linux, which in turn required Sony to move from proprietary tools (e.g, Elec-
tricCommander) to open tools platforms (e.g., Gerrit, Jenkins, Git). The complex
integration tool chain triggered the move towards open tools platforms and it re-
sulted in increased development speed and reduced time to market. Both compa-
nies A and B are experiencing a paradigm shift in the automotive industry, where
software is becoming the key area for the development of vehicles such an au-
tonomous driving features and providing transportation as a service. Both compa-
nies are very reactive in their approach when opting for open tools. A participant
in the company said, “the change generally depends on how painful the situation
is. A few years ago, we had 10 different teams working with an internal platform
using different tool chains and had a great difficulty in glowing the tool chain to-
gether. We hired an external company that glued our tools chain together with
massive scripts using an open tool solution”. Therefore, the open tools chosen in
a proactive way of standardizing the tool chain in all teams, may play an important
role in the development of software-intensive vehicles.

Second, when Sony Mobile realized that they lacked legal procedures to work
with open tools communities, they created an internal open tools department con-
sists of legal experts, developers and managers to create a well-established proce-
dure for using or contributing to open tools platforms. Companies A and B may
follow the same steps by creating an internal process to educate the developers and
develop competence to work with open tools communities. As one of the partici-
pants in company A said, “we lack competence and streamlined decisions on how
to work with open tools communities”. Another participant in company B said that
“we need improvements in the areas of governance, training and policies.”

Third, Sony Mobile had an internal champion to derive the whole open tool-
chain movement with the support of software developers and legal team. This
played an important role in convincing the top management to support and fund
open tools platforms, however, it took three years for Sony Mobile to make it. The

222 Open Tools for Software Engineering using the Theory of Openness: A . . .

current case companies may need a similar, internal champion to act as an interface
between the legal team, software developers, and the top management.

Key takeaway: Companies A and B may choose a centralized proactive strat-
egy similar to Sony Mobile (reactive in that case) to make internal legal policies
and education for employees to meet the ever-growing size of software in automo-
biles.

4.4 Business implications

Automotive industry sees software services as a new emerging area in terms of
transportation as a service that will be software-enabled. This pattern can be re-
lated to Sony and Android case in which natural drive for saving money and re-
ducing ownership costs was to create industry wide standard platforms and Google
capitalized on the first mover advantage by offering Android for free and it got
widely adopted by vendors. Initially, Sony underestimated the value in services
and apps. So everyone let Google develop Android and occupy services such as
Gmail, drive, gaming, camera etc. Now Android is provided as an empty shell and
vendors just provide devices to use services for money. Similar risk may apply to
automotive industry, if the companies do not own their code base by establishing
OSS communities and ecosystems. Companies may provide vehicles to run the
services and make money on the services instead of selling the vehicles.

4.5 Implications for theory of openness

Figure 4 shows the mapping of companies A and B on the model of openness for
tools [140]. Both companies qualify as laggards since they have no internal proce-
dures to facilitate developers to contribute to OSS tools communities. Both com-
panies react when the integration of tools becomes painful for developers, rather
than standardize the ways of working in the companies. Also for laggards, we
noticed that it is important to have the management support and approval. In case
company B, the internally developed tool named Awesome framework is meant to
be shared among different partners of the company and it is used in core product
development teams. However, the development does not have enough resources
to support core product development teams who have requirements and need sup-
port. This suggests the importance of the development of the tools but lack of
funding and resources hampers the work of core product development teams who
are dependent on the tool.

The arrow in figure 4 shows that Sony Mobile went through the same transi-
tion as companies A and B are going through. Sony Mobile started as a laggard
with its complex continuous integration tools chain, before actively using and con-
tributing to OSS tools communities like Jenkins and Gerrit. However, this transi-
tion required Sony Mobile to create a tools department with the legal framework
to utilize the OSS tools communities.

4 Results and discussion 223

Figure 4: Mapping of companies on the model of openness for tools.

Re
ac

tiv
e

st
ra

te
gy

Cost Saving

Laggards (Business as usual)

Pr
oa

ct
iv

e
st

ra
te

gy

Inspirational

Leverage (Resource optimization)

Lucrativeness (Think tank) Leaders (Growth through ecosystems)

Company A
Company B

Sony Mobile

In the case of two studied companies, company B is found to be more in need
of this transition due to their complex integration tool chain compared to company
A. Therefore, both companies may have processes and legal frameworks for de-
velopers, to encourage them to take more initiative towards open tools in order
to standardize the ways of working. Currently, in the company B, all teams have
their internally developed tools with all possible technologies (e.g., C#, Python,
Java etc.) which leads to loss of resources on writing more glue code to integrate
the tool chain. A participant from company B stated, “I think we have to change
our way of thinking and we never share anything because there is always some
kind of minor internal change that drives our testing and we do not want to share
that. However, 80% of the rest is the same that can be shared. At the moment, it is
all or nothing and we need to calm down a little bit and a share the common parts
atleast”.

Once the processes for contribution and using OSS tools communities are in
place, both companies may consider becoming new open tools ecosystems (lead-
ers) by making the code open, to attract other manufactures in the industry with
the same needs. One of the participants stated, “I think it is a question of survival
in the near future and we do not have time to deal with the increase in the num-
ber of variants. It will be nice to replace the closed source tools with the open
ones so that we can actually fix tools without glue scripts”. It is to be noted that
the data collected from the case companies does not address or validate the lever-

224 Open Tools for Software Engineering using the Theory of Openness: A . . .

age and lucrativeness category in Fig 4. The studied companies only validates the
laggards category, thus the theory required more validation studies to validate the
lucrativeness and leverage category as well.

Key takeaway: Both companies may learn from Sony Mobile’s transition from
laggards to leaders by innovating their process in terms of creating a legal frame-
work. The framework will help companies to engage their developers in OSS
tools communities together with the legal team to eventually be able to build new
communities (leaders) to facilitate their core product development. However, lag-
gards also require management to look at tools as a long term standardization of
processes perspective rather than a project based approach.

5 Conclusions
This study aims to validate our theory of openness for software engineering tools.
We use the repertory grid technique to discuss five propositions derived from the
theory of openness and presents a cross analysis with Sony Mobile. We were
able to validate the theory for the laggards category, with two companies from the
automotive domain.

The findings suggest that both case companies lack internal procedures to work
with the open tools communities. This leads to frustration among employees for
not knowing why and how to work with open tools communities. It might be
because both companies come from a closed background of manufacturing cars
and trucks. However, both companies are currently experiencing a paradigm shift
in the automotive industry with more software introduced in the vehicles. This may
require the management to rethink and revise their strategy to extract the external
knowledge by using open tools communities.

The strategy should address creating a new role which works as an interface
between legal department, software developers and management like Sony Mobile.
Furthermore, it may entail creating processes regarding how and when to use,
contribute or create new open tools platforms for company’s benefits. As for future
work, more validation studies need to be conducted to validate the propositions
derived from the theory of openness.

BIBLIOGRAPHY

[1] CVSAnalY by MetricsGrimoire. Accessed: 2014-07-17.

[2] The jenkins gerrit trigger plugin open source project on ohloh. Accessed:
2014-07-08.

[3] Source - gerrit - link to the source browser. - gerrit code review - google
project hosting. Accessed: 2014-06-24.

[4] Oslo Manual – Guidelines for collecting and interpreting innovation data.
OECD and Eurostat, 3rd edition, 2005.

[5] Pär J Ågerfalk and Brian Fitzgerald. Outsourcing to an unknown workforce:
Exploring opensurcing as a global sourcing strategy. MIS quarterly, pages
385–409, 2008.

[6] Robert C. Allen. Collective invention. Journal of Economic Behaviour and
Organization, 4(1):1 – 24, 1983.

[7] Thomas A Alspaugh and Walt Scacchi. Ongoing software development
without classical requirements. In Requirements Engineering Conference
(RE), 2013 21st IEEE International, pages 165–174. IEEE, 2013.

[8] Marnix Assink. Inhibitors of disruptive innovation capability: a conceptual
model. European Journal of Innovation Management, 9(2):215–233, 2006.

[9] Aybüke Aurum and Claes Wohlin. A value-based approach in requirements
engineering: Explaining some of the fundamental concepts. pages 109–115,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[10] Alfred Baars and Slinger Jansen. A framework for software ecosystem gov-
ernance. In International Conference of Software Business, pages 168–180.
Springer, 2012.

[11] Deepika Badampudi, Claes Wohlin, and Kai Petersen. Software component
decision-making: In-house, oss, cots or outsourcing - a systematic literature
review. Journal of Systems and Software, 121:105 – 124, 2016.

226 BIBLIOGRAPHY

[12] Nathan Baddoo and Tracy Hall. Practitioner roles in software process im-
provement: an analysis using grid technique. Software Process: Improve-
ment and Practice, 7(1):17–31, 2002.

[13] K. Balka, C. Raasch, and C. Herstatt. How open is open source? - software
and beyond. Creativity and Innovation Management, 19(3):248–56, 2010.

[14] Victor R Basili, Forrest Shull, and Filippo Lanubile. Building knowledge
through families of experiments. IEEE Transactions on Software Engineer-
ing, 25(4):456–473, 1999.

[15] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Jeffries, et al. The agile manifesto, 2001.

[16] Willem Bekkers, Inge van de Weerd, Marco Spruit, and Sjaak Brinkkemper.
A framework for process improvement in software product management.
In European Conference on Software Process Improvement, pages 1–12.
Springer, 2010.

[17] Richard C Bell. Analytic issues in the use of repertory grid technique. Ad-
vances in personal construct psychology, 1:25–48, 1990.

[18] Fiona Beyer and Kath Wright. Comprehensive searching for systematic
reviews: a comparison of database performance. Centre for Reviews and
Dissemination, University of York, 2011.

[19] Christian Bird and Nachiappan Nagappan. Who? where? what?: Examin-
ing distributed development in two large open source projects. In Proceed-
ings of the 9th IEEE Working Conference on Mining Software Repositories,
MSR ’12, pages 237–246, USA, 2012. IEEE Press.

[20] Elizabeth Bjarnason, Kari Smolander, Emelie Engström, and Per Runeson.
A theory of distances in software engineering. Information and Software
Technology, 70:204–219, 2016.

[21] Elizabeth Bjarnason, Michael Unterkalmsteiner, Emelie Engström, and
Markus Borg. An industrial case study on test cases as requirements. Inter-
national Conference on Agile Software Development, pages 27–39, 2015.

[22] Jan Bosch. Achieving simplicity with the three-layer product model. Com-
puter, 46(11):34–39, Nov 2013.

[23] Jan Bosch. Speed, data, and ecosystems: The future of software engineer-
ing. IEEE Software, 33(1):82–88, 2016.

BIBLIOGRAPHY 227

[24] Stelian Brad, Mircea Fulea, Bogdan Mocan, Adina Duca, and Emilia Brad.
Software platform for supporting open innovation. In Automation, Quality
and Testing, Robotics, 2008. AQTR 2008. IEEE International Conference
on, volume 3, pages 224–229. IEEE, 2008.

[25] Marjolein Caniëls and Cees Gelderman. Purchasing strategies in the kraljic
matrix a power and dependence perspective. Journal of Purchasing and
Supply Management, 11(2 - 3):141 – 155, 2005.

[26] Jenny M Carroll and Paul A Swatman. Structured-case: a methodological
framework for building theory in information systems research. European
Journal of Information Systems, 9(4):235–242, 2000.

[27] H Chesbrough. Why companies should have open business models. MIT
Sloan management review, 48(2), 2012.

[28] Henry Chesbrough and Sabine Brunswicker. A fad or a phenomenon?: The
adoption of open innovation practices in large firms. Research-Technology
Management, 57(2):16–25, 2014.

[29] Henry Chesbrough, Wim Vanhaverbeke, and Joel West. Open innovation:
Researching a new paradigm. Oxford university press, 2006.

[30] Henry Chesbrough, Wim Vanhaverbeke, and Joel West, editors. New Fron-
tiers in Open Innovation. Oxford University Press, November 2014.

[31] Henry William Chesbrough. Open innovation: The new imperative for
creating and profiting from technology. Harvard Business School Press,
Boston, Mass., 2003.

[32] Henry William Chesbrough and Melissa M. Appleyard. Open innovation
and strategy. California Management Review, 50(1):57–76, 2007.

[33] Sunita Chulani, Clay Williams, and Avi Yaeli. Software development gov-
ernance and its concerns. In Proceedings of the 1st International Workshop
on Software Development Governance, SDG 08, pages 3–6, New York, NY,
USA, 2008. ACM.

[34] Massimo G. Colombo, Evila Piva, and Cristina Rossi-Lamastra. Open inno-
vation and within-industry diversification in small and medium enterprises:
The case of open source software firms. Research Policy, 2013.

[35] K. Conboy and L. Morgan. Beyond the customer: Opening the ag-
ile systems development process. Information and Software Technology,
53(5):535–42, May 2011.

228 BIBLIOGRAPHY

[36] Kieran Conboy and Lorraine Morgan. Beyond the customer: Opening the
agile systems development process. Information and Software Technology,
53(5):535 – 542, 2011.

[37] Daniela S. Cruzes and Tore Dybå. Research synthesis in software engineer-
ing: A tertiary study. Information and Software Technology, 53(5):440 –
455, 2011.

[38] Daniela S Cruzes, Tore Dybå, Per Runeson, and Martin Höst. Case studies
synthesis: A thematic, cross-case, and narrative synthesis worked example.
Empirical Software Engineering, 2014.

[39] Linus Dahlander and David M. Gann. How open is innovation? Research
Policy, 39(6):699 – 709, 2010.

[40] Linus Dahlander and Mats Magnusson. How do firms make use of open
source communities? Long Range Planning, 41(6):629 – 649, 2008.

[41] Linus Dahlander and Mats G. Magnusson. Relationships between open
source software companies and communities: Observations from nordic
firms. Research Policy, 34(4):481 – 493, 2005.

[42] Linus Dahlander and Martin W. Wallin. A man on the inside: Unlocking
communities as complementary assets. Research Policy, 35(8):1243 – 1259,
2006.

[43] Daniela Damian. Stakeholders in global requirements engineering: Lessons
learned from practice. Software, IEEE, 24(2):21–27, 2007.

[44] Sherae Daniel, Likoebe Maruping, Marcelo Cataldo, and James Herbsleb.
When cultures clash: Participation in open source communities and its im-
plications for organizational commitment. Proceedings of the International
Conference on Information Systems, Shanghai, China, 2011.

[45] Jorge Calmon de Almeida Biolchini, Paula Gomes Mian, Ana Candida Cruz
Natali, Tayana Uchôa Conte, and Guilherme Horta Travassos. Scientific re-
search ontology to support systematic review in software engineering. Ad-
vanced Engineering Informatics, 21(2):133 – 151, 2007.

[46] Paul M. Di Gangi and Molly Wasko. Steal my idea organizational adoption
of user innovations from a user innovation community: A case study of dell
ideastorm. Decision support systems, 48:303–312, 2009.

[47] Koen Dittrich and Geert Duysters. Networking as a means to strategy
change: The case of open innovation in mobile telephony. Journal of Prod-
uct Innovation Management, 24(6):510 – 521, 2007.

BIBLIOGRAPHY 229

[48] Jingshu Du, Bart Leten, Wim Vanhaverbeke, and Henry Lopez-Vega.
When research meets development: antecedents and implications of trans-
fer speed. Journal of Product Innovation Management, 31(6):1181–1198,
2014.

[49] Winfried Ebner, Jan Marco Leimeister, and Helmut Krcmar. Community
engineering for innovations: the ideas competition as a method to nurture
a virtual community for innovations. R&D Management, 39(4):342–356,
2009.

[50] Henry Edison, Nauman Bin Ali, and Richard Torkar. Towards innovation
measurement in the software industry. Journal of Systems and Software,
86(5):1390 – 1407, 2013.

[51] Helen M Edwards, Sharon McDonald, and S Michelle Young. The reper-
tory grid technique: Its place in empirical software engineering research.
Information and Software Technology, 51(4):785–798, 2009.

[52] K El-Emam, DC Hoaglin, PW Jones, BA Kitchenham, SL Pfleeger,
LM Pickard, and J Rosenberg. Preliminary guidelines for emprical research
in software engineering. National Research Council of Canada, 2001.

[53] Albert Endres and H Dieter Rombach. A handbook of software and systems
engineering: Empirical observations, laws, and theories. Pearson Educa-
tion, 2003.

[54] Ellen Enkel, Oliver Gassmann, and Henry Chesbrough. Open R&D
and open innovation: exploring the phenomenon. R&D Management,
39(4):311–316, 2009.

[55] Ellen Enkel, Oliver Gassmann, and Henry Chesbrough. Open r&d and open
innovation: exploring the phenomenon. R&D Management, 39(4):311–316,
2009.

[56] Frederick D. Erickson. Qualitative methods in research on teaching. In
Merlin C. Wittrock, editor, Handbook of research on teaching, pages 119–
161. MacMillan, New York, NY, 3rd edition, 1986.

[57] Neil A Ernst and Gail C Murphy. Case studies in just-in-time requirements
analysis. In Empirical Requirements Engineering (EmpiRE), 2012 IEEE
Second International Workshop on, pages 25–32. IEEE, 2012.

[58] Daniel Méndez Fernández, Birgit Penzenstadler, Marco Kuhrmann, and
Manfred Broy. A meta model for artefact-orientation: Fundamentals and
lessons learned in requirements engineering. pages 183–197. Springer
Berlin Heidelberg, 2010.

230 BIBLIOGRAPHY

[59] Arlene Fink. The Survey Handbook. Sage, 2nd edition, 2003.

[60] Bent Flyvbjerg. Five Misunderstandings about Case-Study Research.
SAGE, concise paperback edition, 2007.

[61] Samuel Fricker. Requirements value chains: Stakeholder management and
requirements engineering in software ecosystems. In Requirements Engi-
neering: Foundation for Software Quality, pages 60–66. Springer, 2010.

[62] Samuel Fricker. Software product management. In Software for People,
pages 53–81. Springer, 2012.

[63] G.R. Gangadharan, Lorna Uden, and Paul Luttighuis. Sourcing Require-
ments and Designs for Software as a Service. International Journal of Sys-
tems and Service-Oriented Engineering, 6(1):1–16, jan 2016.

[64] Francisco José García-Peñalvo and Alicia García-Holgado. Open Source
Solutions for Knowledge Management and Technological Ecosystems. IGI
Global, 2017.

[65] Oliver Gassmann. Opening up the innovation process: towards an agenda.
R&D Management, 36(3):223–228, 2006.

[66] Oliver Gassmann and Ellen Enkel. Towards a theory of open innovation:
three core process archetypes. In Proceedings of the R&D Management
Conference, pages 1–18, Portugal, 2004.

[67] Oliver Gassmann, Ellen Enkel, and Henry Chesbrough. The future of open
innovation. R&D Management, 40(3):213–221, 2010.

[68] Cees Gelderman and Arjan Weele. Handling measurement issues and strate-
gic directions in kraljic’s purchasing portfolio model. Journal of Purchasing
and Supply Management, 9(5 - 6):207 – 216, 2003.

[69] Ahmad Nauman Ghazi, Kai Petersen, Claes Wohlin, and Elizabeth Bjarna-
son. A decision support method for recommending degrees of exploration
in exploratory testing. arXiv preprint arXiv:1704.00994, 2017.

[70] Jesus M Gonzalez-Barahona, Daniel Izquierdo-Cortazar, Stefano Maffulli,
and Gregorio Robles. Understanding how companies interact with free soft-
ware communities. IEEE software, 30(5):38–45, 2013.

[71] Tony Gorschek, Per Garre, Stig Larsson, and Claes Wohlin. A model for
technology transfer in practice. IEEE software, 23(6):88–95, 2006.

[72] Trisha Greenhalgh and Richard Peacock. Effectiveness and efficiency of
search methods in systematic reviews of complex evidence: audit of pri-
mary sources. Bmj, 331(7524):1064–1065, 2005.

BIBLIOGRAPHY 231

[73] Endre Grøtnes. Standardization as open innovation: two cases from the
mobile industry. Information Technology & People, 22(4):367–381, 2009.

[74] Elad Harison and Heli Koski. Applying open innovation in business strate-
gies: Evidence from finnish software firms. Research Policy, 39(3):351 –
359, 2010.

[75] Lile Hattori and Michele Lanza. On the nature of commits. In 23rd
IEEE/ACM International Conference on Automated Software Engineering
- Workshops, 2008. ASE Workshops 2008, pages 63–71, 2008.

[76] Joachim Henkel. Selective revealing in open innovation processes: The case
of embedded linux. Research Policy, 35(7):953–969, 2006.

[77] Joachim Henkel. Champions of revealing-the role of open source develop-
ers in commercial firms. Industrial and Corporate Change, 18(3):435–471,
December 2008.

[78] Joachim Henkel, Simone Schöberl, and Oliver Alexy. The emergence of
openness: How and why firms adopt selective revealing in open innovation.
Research Policy, September 2013.

[79] Joachim Henkel, Simone Schöberl, and Oliver Alexy. The emergence of
openness: How and why firms adopt selective revealing in open innovation.
Research Policy, 43(5):879–890, 2014.

[80] James D Herbsleb and Audris Mockus. Formulation and preliminary test
of an empirical theory of coordination in software engineering. In ACM
SIGSOFT Software Engineering Notes, volume 28, pages 138–137. ACM,
2003.

[81] Alan Hevner, Salvatore March, Jinsoo Park, and Sudha Ram. Design sci-
ence in information systems research. MIS Q., 28(1):75–105, March 2004.

[82] Martin Höst, Klaas-Jan Stol, and Alma Oručević-Alagić. Inner source
project management. Springer, 2014.

[83] Eelko K.R.E. Huizingh. Open innovation: State of the art and future per-
spectives. Technovation, 31(1):2 – 9, 2011.

[84] S. Husig and S. Kohn. Open CAI 2.0 - computer aided innovation in the era
of open innovation and Web 2.0. Computers in Industry, 62(4):407 – 13,
2011.

[85] Martin Ivarsson and Tony Gorschek. A method for evaluating rigor and
industrial relevance of technology evaluations. Empirical Software Engi-
neering, 16(3):365–95, 2011.

232 BIBLIOGRAPHY

[86] Samireh Jalali and Claes Wohlin. Systematic literature studies: database
searches vs. backward snowballing. In 2012 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement,(ESEM
2012), pages 29–38, 2012.

[87] Slinger Jansen, Sjaak Brinkkemper, and Anthony Finkelstein. Business net-
work management as a survival strategy: A tale of two software ecosys-
tems. Proccedings of the 1st International Workshop on Software Ecosys-
tems, pages 34–48, 2009.

[88] Slinger Jansen, Sjaak Brinkkemper, Jurriaan Souer, and Lutzen Luinen-
burg. Shades of gray: Opening up a software producing organization with
the open software enterprise model. Journal of Systems and Software,
85(7):1495 – 1510, 2012.

[89] Slinger Jansen, Sjaak Brinkkemper, Jurriaan Souer, and Lutzen Luinen-
burg. Shades of gray: Opening up a software producing organization with
the open software enterprise model. Journal of Systems and Software,
85(7):1495–1510, July 2012.

[90] Slinger Jansen, Anthony Finkelstein, and Sjaak Brinkkemper. A sense of
community: A research agenda for software ecosystems. In 31st Interna-
tional Conference on Software Engineering, pages 187–190. IEEE, 2009.

[91] Chris Jensen and Walt Scacchi. Role migration and advancement processes
in ossd projects: A comparative case study. In 29th International Confer-
ence on Software Engineering (ICSE’07), pages 364–374, May 2007.

[92] Chris Jensen and Walt Scacchi. Governance in open source software devel-
opment projects: A comparative multi-level analysis. In IFIP International
Conference on Open Source Systems, pages 130–142. Springer, 2010.

[93] Anders Jonsson and Gunilla Svingby. The use of scoring rubrics: Reliabil-
ity, validity and educational consequences. Educational Research Review,
2(2):130–144, 2007.

[94] Lena Karlsson, G. Dahlstedt, Björn Regnell, Johan Natt och Dag, and Anne
Persson. Requirements engineering challenges in market-driven software
development - an interview study with practitioners. Information and Soft-
ware Technology, 49(6):588 – 604, 2007.

[95] George A Kelly. The psychology of personal constructs. I. A theory of per-
sonality. II. Clinical diagnosis and psychotherapy. Norton & Co., 1955.

[96] Richard Kemp. Open source software (oss) governance in the organisation.
Computer Law & Security Review, 26(3):309–316, 2010.

BIBLIOGRAPHY 233

[97] Mahvish Khurum, Tony Gorschek, and Magnus Wilson. The software
value map: an exhaustive collection of value aspects for the development
of software intensive products. Journal of Software: Evolution and Pro-
cess, 25(7):711–741, 2013.

[98] Barbara Kitchenham, O Pearl Brereton, David Budgen, Mark Turner, John
Bailey, and Stephen Linkman. Systematic literature reviews in software
engineering–a systematic literature review. Information and software tech-
nology, 51(1):7–15, 2009.

[99] Barbara Kitchenham, Pearl Brereton, and David Budgen. Mapping study
completeness and reliability - a case study. In Proceedings of the 16th Inter-
national Conference on Evaluation & Assessment in Software Engineering
(EASE 2012), pages 126–135, 2012.

[100] Barbara A. Kitchenham, David Budgen, and O. Pearl Brereton. Using map-
ping studies as the basis for further research - a participant-observer case
study. Information and Software Technology, 53(6):638–651, June 2011.

[101] H.B. Kittlaus and P.N. Clough. Software Product Management and Pricing:
Key Success Factors for Software Organizations. Springer Berlin Heidel-
berg, 2008.

[102] Eric Knauss, Daniela Damian, Alessia Knauss, and Arber Borici. Open-
ness and requirements: Opportunities and tradeoffs in software ecosystems.
In Requirements Engineering Conference (RE), 2014 IEEE 22nd Interna-
tional, pages 213–222. IEEE, 2014.

[103] Marko Komssi, Marjo Kauppinen, Harri Töhönen, Laura Lehtola, and Alan
Davis. Roadmapping problems in practice: value creation from the perspec-
tive of the customers. Requirements Engineering, 20(1):45–69, 2015.

[104] Peter Kraljic. Purchasing must become supply management. Harvard busi-
ness review, 61(5):109–117, 1983.

[105] H.L. Kundel and M. Polansky. Measurement of observer agreement. Radi-
ology, 228(2):303, 2003.

[106] Mikko O.J. Laine. Using knowledge from end-users online for innovations:
Effects of software firm types. volume 114 LNBIP, pages 70 – 78, Cam-
bridge, MA, United states, 2012.

[107] Karim Lakhani and Jill A. Panetta. The principles of distributed innova-
tion. SSRN Scholarly Paper ID 1021034, Social Science Research Network,
Rochester, NY, October 2007.

[108] Karim R Lakhani and Eric von Hippel. How open source software works:
free user-to-user assistance. Research Policy, 32(6):923 – 943, 2003.

234 BIBLIOGRAPHY

[109] Keld Laursen and Ammon Salter. Open for innovation: the role of open-
ness in explaining innovation performance among uk manufacturing firms.
Strategic management journal, 27(2):131–150, 2006.

[110] Gwendolyn K. Lee and Robert E. Cole. From a firm-based to a community-
based model of knowledge creation: The case of the linux kernel develop-
ment. Organization Science, 14(6):633–649, 2003.

[111] Jungwoo Lee and Duane P Truex. Exploring the impact of formal training
in isd methods on the cognitive structure of novice information systems
developers. Information Systems Journal, 10(4):347–367, 2000.

[112] Sang-Yong Tom Lee, Hee-Woong Kim, and Sumeet Gupta. Measuring open
source software success. Omega, 37(2):426 – 438, 2009.

[113] Josh Lerner and Jean Tirole. Some simple economics of open source. The
journal of industrial economics, 50(2):197–234, 2002.

[114] Ulrich Lichtenthaler and Holger Ernst. Opening up the innovation pro-
cess: the role of technology aggressiveness. R&d Management, 39(1):38–
54, 2009.

[115] Marvin B Lieberman and David Bruce Montgomery. First-mover (dis) ad-
vantages: Retrospective and link with the resource-based view. Graduate
School of Business, Stanford University, 1998.

[116] Johan Linåker, Maria Krantz, and Martin Höst. On infrastructure for fa-
cilitation of inner source in small development teams. In Product-Focused
Software Process Improvement, pages 149–163. Springer, 2014.

[117] Johan Linåker, Hussan Munir, Per Runeson, Björn Regnell, and Claes
Schrewelius. A Survey on the Perception of Innovation in a Large Product-
focused Software Organization. 6th International Conference on Software
Business - ICSOB, 2015.

[118] Johan Linåker, Hussan Munir, Krzysztof Wnuk, and Carl-Eric Mols. Moti-
vating the contributions: An open innovation perspective on what to share
as open source software. Journal of Systems and Software, 135(Supplement
C):17 – 36, 2018.

[119] Johan Linåker, Patrick Rempel, Björn Regnell, and Patrick Mäder. How
firms adapt and interact in open source ecosystems: Analyzing stakeholder
influence and collaboration patterns. In Requirements Engineering: Foun-
dation for Software Quality, pages 63–81. Springer, 2016.

[120] Frank van der Linden, Björn" Lundell, and Pentti Marttiin. Commodi-
fication of industrial software: A case for open source. IEEE Software,
26(4):77–83, 2009.

BIBLIOGRAPHY 235

[121] Juho Lindman, Matti Rossi, and Pentti Marttiin. Applying open source
development practices inside a company. In Open Source Development,
Communities and Quality, pages 381–387. Springer, 2008.

[122] Andrey Maglyas and Samuel Fricker. The preliminary results from the soft-
ware product management state-of-practice survey. In Casper Lassenius and
Kari Smolander, editors, International Conference on Software Business,
pages 295–300, Paphos, Cyprus, 2014.

[123] Konstantinos Manikas and Klaus Hansen. Software ecosystems–a system-
atic literature review. Journal of Systems and Software, 86(5):1294–1306,
2013.

[124] Daniel Méndez Fernández, Stefan Wagner, Klaus Lochmann, Andrea Bau-
mann, and Holger de Carne. Field study on requirements engineering: In-
vestigation of artifacts, project parameters, and execution strategies. Infor-
mation and Software Technology, 54(2):162–178, 2012.

[125] Sharan Merriam. What can you tell from an N of 1?: Issues of validity
and reliability in qualitative research. PAACE Journal of Lifelong Learning,
4:50–60, 1995.

[126] Robert King Merton. Social theory and social structure. Simon and Schus-
ter, 1968.

[127] Audris Mockus and James D. Herbsleb. Why not improve coordination in
distributed software development by stealing good ideas from open source.
In Meeting Challenges and Surviving Success: The 2nd Workshop on Open
Source Software Engineering, pages 19–25, 2002.

[128] Charlotte Möller and Madeleine Wahlqvist. Critical Success Factors for
Innovative Performance of Individuals-A. Management, 39(5):1155–1161.

[129] Carl-Eric Mols, Krzysztof Wnuk, and Johan Linåker. The open source of-
ficer role – experiences. In Federico Balaguer, Roberto Di Cosmo, Ale-
jandra Garrido, Fabio Kon, Gregorio Robles, and Stefano Zacchiroli, edi-
tors, Open Source Systems: Towards Robust Practices, pages 55–59, Cham,
2017. Springer International Publishing.

[130] Lorraine Morgan, Joseph Feller, and Patrick Finnegan. Exploring inner
source as a form of intra-organisational open innovation. AISEL, 2011.

[131] Lorraine Morgan and Patrick Finnegan. Open innovation in secondary soft-
ware firms: An exploration of managers perceptions of open source soft-
ware. Database for advances in information systems, 41(1):76–95, 2010.

236 BIBLIOGRAPHY

[132] Barbara Moskal, Keith Miller, and LA King. Grading essays in computer
ethics: rubrics considered helpful. ACM SIGCSE Bulletin, 34(1):101–105,
2002.

[133] David C. Mowery. Plus ca change: Industrial R&D in the third industrial
revolution. Industrial and Corporate Change, 18(1):1–50, 2009.

[134] Tony Moynihan. An inventory of personal constructs for information
systems project risk researchers. Journal of information technology,
11(4):359–371, 1996.

[135] Tony Moynihan. How experienced project managers assess risk. IEEE
software, 14(3):35–41, 1997.

[136] Neeshal Munga, Thomas Fogwill, and Quentin Williams. The adoption of
open source software in business models: A Red Hat and IBM case study.
pages 112 – 121, Vanderbijlpark, Emfuleni, South Africa, 2009.

[137] Hussan Munir, Johan Linåker, Krzysztof Wnuk, Per Runeson, and title=
Regnell, Björn.

[138] Hussan Munir, Misagh Moayyed, and Kai Petersen. Considering rigor and
relevance when evaluating test driven development: A systematic review.
Information and Software Technology, 56(4):375 – 394, 2014.

[139] Hussan Munir and Per Runeson. Software testing in open innovation: An
exploratory case study of the acceptance test harness for Jenkins. pages
187–191, New York, NY, USA, 2015. ACM.

[140] Hussan Munir, Per Runeson, and Krzysztof Wnuk. A theory of openness
for software engineering tools in software organizations. Information and
Software Technology, 97:26 – 45, 2018.

[141] Hussan Munir, Krzysztof Wnuk, and Per Runeson. Open innovation in
software engineering: a systematic mapping study. Empirical Software En-
gineering, 21(2):684–723, Apr 2016.

[142] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi
Kishida, and Yunwen Ye. Evolution patterns of open-source software sys-
tems and communities. ACM, 2002.

[143] Nan Niu and Steve Easterbrook. Discovering aspects in requirements with
repertory grid. In Proceedings of the 2006 international workshop on Early
aspects at ICSE, pages 35–42. ACM, 2006.

[144] Lucas D Panjer, Daniela Damian, and Margaret-Anne Storey. Cooperation
and coordination concerns in a distributed software development project. In
Proceedings of the 2008 international workshop on Cooperative and human
aspects of software engineering, pages 77–80. ACM, 2008.

BIBLIOGRAPHY 237

[145] Vinit Parida, Mats Westerberg, and Johan Frishammar. Effect of open in-
novation practices on SMEs innovative performance: An empirical study.
page 1. International Council for Small business (ICSB), 2011.

[146] Kai Petersen and Nauman Bin Ali. Identifying strategies for study selection
in systematic reviews and maps. In Proceedings of the 5th International
Symposium on Empirical Software Engineering and Measurement, pages
351–354, 2011.

[147] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Sys-
tematic mapping studies in software engineering. In 12th International
Conference on Evaluation and Assessment in Software Engineering, vol-
ume 17, page 1, 2008.

[148] Gary John Phythian and Malcolm King. Developing an expert support sys-
tem for tender enquiry evaluation: A case study. European Journal of Op-
erational Research, 56(1):15–29, 1992.

[149] Klaus Pohl, Günter Böckle, and Frank Linden. Software Product Line En-
gineering: Foundations, Principles and Techniques. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2005.

[150] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Techniques. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[151] Miikka Poikselkä, Harri Holma, Jukka Hongisto, Juha Kallio, and Antti
Toskala. Voice over LTE (VoLTE). John Wiley & Sons, 2012.

[152] Jennie Popay, Helen Roberts, Amanda Sowden, Mark Petticrew, Lisa Arai,
Mark Rodgers, Nicky Britten, Katrina Roen, and Steven Duffy. Guidance
on the conduct of narrative synthesis in systematic reviews. A product from
the ESRC methods programme Version, 1:b92, 2006.

[153] Thierry Rayna and Ludmila Striukova. Large-scale open innovation: open
source vs. patent pools. International Journal of Technology Management,
52(3-4):477 – 96, 2010.

[154] Björn Regnell and Sjaak Brinkkemper. Market-driven requirements engi-
neering for software products. In Engineering and managing software re-
quirements, pages 287–308. Springer, 2005.

[155] Colin Robson and Kieran McCartan. Real World Research. John Wiley &
Sons, January 2016.

[156] R. Rohrbeck, K. Holzle, and H.G. Gemunden. Opening up for competitive
advantage - how Deutsche Telekom creates an open innovation ecosystem.
R & D Management, 39(4):420 – 30, 2009.

238 BIBLIOGRAPHY

[157] Bertil Rolandsson, Magnus Bergquist, and Jan Ljungberg. Open source
in the firm: Opening up professional practices of software development.
Research Policy, 40(4):576 – 587, 2011.

[158] Per Runeson and Martin Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical software engineering,
14(2):131–164, 2009.

[159] Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. Case Study
Research in Software Engineering: Guidelines and Examples. John Wiley
& Sons, March 2012.

[160] Per Runeson, Hussan Munir, and Krzysztof Wnuk. It is more blessed to give
than to receive–open software tools enable open innovation. Tiny Transac-
tions on Computer Science, 4, 2015.

[161] Per Runeson and Mats Skoglund. Reference-based search strategies in sys-
tematic reviews. In Proceedings 13th International Conference on Empir-
ical Assessment & Evaluation in Software Engineering (EASE), Durham
University, UK, 2009. British Computer Society.

[162] Chris Sauer, D Ross Jeffery, Lesley Land, and Philip Yetton. The effective-
ness of software development technical reviews: A behaviorally motivated
program of research. IEEE Transactions on Software Engineering, 26(1):1–
14, 2000.

[163] Walt Scacchi. Understanding the requirements for developing open source
software systems. In Software, IEE Proceedings-, volume 149, pages 24–
39. IET, 2002.

[164] Walt Scacchi. Collaboration practices and affordances in free/open source
software development. In Collaborative software engineering, pages 307–
327. Springer, 2010.

[165] William R.. Shadish, Thomas D Cook, and Donald Thomas Campbell. Ex-
perimental and quasi-experimental designs for generalized causal infer-
ence. Wadsworth Cengage learning, 2002.

[166] Bashar Shaya. Process handling: A study for optimizing the processes for
sourcing it and managing software licenses. Master Thesis Industrial Eco-
nomics and Management (Dept.), KTH, Sweden, 2012.

[167] Janice Singer and Norman G. Vinson. Ethical issues in empirical stud-
ies of software engineering. IEEE Transactions on Software Engineering,
28(12):1171–1180, 2002.

BIBLIOGRAPHY 239

[168] Leif Singer, Norbert Seyff, and Samuel A. Fricker. Online social networks
as a catalyst for software and IT innovation. In 4th International Workshop
on Social Software Engineering, SSE’11 - Proceedings of the 4th Interna-
tional Workshop on Social Software Engineering, pages 1–5, 2011.

[169] Dag Sjøberg, Tore Dybå, Bente CD Anda, and Jo E Hannay. Building
theories in software engineering. In Guide to advanced empirical software
engineering, pages 312–336. Springer, 2008.

[170] Dag Sjøberg, Tore Dybå, and Magne Jørgensen. The future of empirical
methods in software engineering research. In Workshop on the Future of
Software Engineering (FOSE 2007), pages 358–378, 2007.

[171] Dag Sjøberg, Jo Erskine Hannay, Ove Hansen, Vigdis By Kampenes, Amela
Karahasanovic, Nils-Kristian Liborg, and Anette Rekdal. A survey of con-
trolled experiments in software engineering. IEEE Transactions of Software
Engineering, 31(9):733–753, 2005.

[172] Daniel Ståhl and Jan Bosch. Modeling continuous integration practice dif-
ferences in industry software development. Journal of Systems and Soft-
ware, 87:48–59, 2014.

[173] Wouter Stam. When does community participation enhance the perfor-
mance of open source software companies? Research Policy, 38(8):1288 –
1299, 2009.

[174] Klaas-Jan Stol, Paris Avgeriou, Muhammad Ali Babar, Yan Lucas, and
Brian Fitzgerald. Key factors for adopting inner source. ACM Transactions
on Software Engineering and Methodology (TOSEM), 23(2):18, 2014.

[175] Klaas-Jan Stol, Michael Goedicke, and Ivar Jacobson. Introduction to
the special section - general theories of software engineering: New ad-
vances and implications for research. Information and Software Technology,
70:176 – 180, 2016.

[176] Matthias Stuermer, Sebastian Spaeth, and Georg Von Krogh. Extending
private-collective innovation: a case study. R&D Management, 39(2):170–
191, 2009.

[177] Walter F Tichy. Should computer scientists experiment more? Computer,
31(5):32–40, 1998.

[178] Pauliina Ulkuniemi, Luis Araujo, and Jaana Tähtinen. Purchasing as
market-shaping: The case of component-based software engineering. In-
dustrial Marketing Management, 44:54 – 62, 2015.

240 BIBLIOGRAPHY

[179] Han van der Meer. Open innovation ? the dutch treat: Challenges in think-
ing in business models. Creativity and Innovation Management, 16(2):192–
202, 2007.

[180] Kris Ven and Herwig Mannaert. Challenges and strategies in the use of
open source software by independent software vendors. Information and
Software Technology, 50(9):991–1002, 2008.

[181] Georg Von Krogh and Sebastian Spaeth. The open source software phe-
nomenon: characteristics that promote research. Journal of Strategic Infor-
mation Systems, 16(3):236 – 53, 2007.

[182] Georg Von Krogh, Sebastian Spaeth, and Karim R. Lakhani. Commu-
nity, joining, and specialization in open source software innovation: A case
study. Research Policy, 32(7):1217 – 1241, 2003.

[183] Yonggui Wang, Ruqiong Tong, and Shanji Yao. An empirical study on ex-
ternal influencing factors of user innovation performance. In Management
and Service Science, 2009. MASS ’09. International Conference on, pages
1–4, 2009.

[184] Jacco Wesselius. The bazaar inside the cathedral: business models for in-
ternal markets. Software, IEEE, 25(3):60–66, 2008.

[185] Joel West. How open is open enough?: Melding proprietary and open source
platform strategies. Research Policy, 32(7):1259 – 1285, 2003.

[186] Joel West and Marcel Bogers. Leveraging external sources of innovation:
A review of research on open innovation. Journal of Product Innovation
Management (2013), 2013.

[187] Joel West and Scott Gallagher. Challenges of open innovation: the paradox
of firm investment in open-source software. R & D Management, 36(3):319
– 31, 2006.

[188] Joel West and Scott Gallagher. Challenges of open innovation: the paradox
of firm investment in open-source software. R&d Management, 36(3):319–
331, 2006.

[189] Joel West and Scott Gallagher. Patterns of open innovation in open source
software. Open Innovation: researching a new paradigm, 235(11), 2006.

[190] Joel West and David Wood. Creating and evolving an open innovation
ecosystem: Lessons from symbian ltd. Available at SSRN 1532926, 2008.

[191] Joel West and David Wood. Evolving an open ecosystem: The rise and fall
of the symbian platform. Advances in Strategic Management, 30:27–67,
2013.

BIBLIOGRAPHY 241

[192] Jim Whitehurst. The Open Organization. Harvard Business Review Press,
2015.

[193] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. Require-
ments engineering paper classification and evaluation criteria: a proposal
and a discussion. Requirements Engineering, 11(1):102–107, 2006.

[194] Krzysztof Wnuk, Dietmar Pfahl, David Callele, and Even Karlsson. How
can open source software development help requirements management gain
the potential of open innovation: an exploratory study. In Proceedings of
the ACM-IEEE international symposium on Empirical software engineering
and measurement, pages 271–280. ACM, 2012.

[195] Krzysztof Wnuk, Björn Regnell, and Brian Berenbach. Scaling up require-
ments engineering – exploring the challenges of increasing size and com-
plexity in market-driven software development. pages 54–59, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg.

[196] Krzysztof Wnuk and Per Runeson. Engineering open innovation–towards a
framework for fostering open innovation. pages 48–59. Springer, 2013.

[197] Claes Wohlin and Rafael Prikladnicki. Systematic literature reviews in
software engineering. Information & Software Technology, 55(6):919–920,
2013.

[198] Robert K Yin. Case study research: design and methods, applied social re-
search methods series. Thousand Oaks, CA: Sage Publications, Inc. Afacan,
Y., & Erbug, C.(2009). An interdisciplinary heuristic evaluation method
for universal building design. Journal of Applied Ergonomics, 40:731–744,
2003.

[199] S Michelle Young, Helen M Edwards, Sharon McDonald, and J Barrie
Thompson. Personality characteristics in an xp team: a repertory grid
study. In ACM SIGSOFT Software Engineering Notes, volume 30, pages
1–7. ACM, 2005.

[200] Marvin V Zelkowitz, Dolores R Wallace, and D Binkley. Culture conflicts
in software engineering technology transfer. In NASA Goddard Software
Engineering Workshop, page 52, 1998.

