
Open Tools for Software Engineering using the Theory of
Openness: A Validation Study in the Automotive Industry

Hussan Munir, Per
Runeson

Lund University, Department
of Computer Science

P.O. Box 118, SE-221 00
Lund, Sweden

hussan.munir,
per.runeson@cs.lth.se

Krzysztof Wnuk
Blekinge Institute of

Technology, Software
engineering research lab

Karlskrona, Sweden
krzysztof.wnuk@bth.se

ABSTRACT
Context: Open tools (e.g., Jenkins, Gerrit and Git) of-
fer features or performance benefits that surpass their com-
mercial counterparts. Many companies and developers from
OSS communities create open tools in a collaborative effort
in which software developers improve the code and share the
changes within the community. We developed an empirically
based theory for strategic choices on such tool development.

Aim: The aim of this study is to validate the theory of
openness for tools in software engineering.

Method: We launched surveys in focus groups in two
automotive industry companies and used the repertory grid
technique to analyze the responses from participants in com-
bination with qualitative data from discussions in the focus
groups.

Results: We validated the theory in the laggards cate-
gory (reactive, cost saving), as both companies belong to
that category. Tools provided by suppliers are customized
according to company needs to integrate into an already
complex tool-chain and thereby incurs expensive licenses.
The lack of central tool coordination leads to multiple vari-
ants of the same tools, causing additional costs to glue tools
together. Further, the lack of legal frameworks to work with
OSS tools communities hampers companies to engage devel-
opers in OSS tools.

Conclusion: Both companies need a centralized, proac-
tive strategy to help software developers use open standard-
ized tools to reduce integration issues. It may require com-
panies to foster an internal champion, which serves as an
interface between the legal department, software developers
and top management, to drive the open tools strategy.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

General Terms
Theory

Keywords
Open Innovation, theory of openness, open tools

1. INTRODUCTION
Using and co-developing open tools with other organiza-

tions for proprietary product development is becoming an
increasingly open process, thanks to the ever-growing size of
Open Source Software (OSS). Software-intensive companies
create open tools communities and develop these tools with
other companies to share the development and maintenance
cost. For example, the Gerrit code review tool, built on top
of the git version control system, was developed by Google
and made open source in relation to Android development.
Jenkins is another OSS tool co-developed by many compa-
nies (e.g., Sony Mobile, Ericsson, Intel, SAP etc) to make
their continuous integration process faster and more flexi-
ble. Open tools may help companies to reduce the licensing
costs for proprietary tools, and save development costs by of-
fering flexibility in the development environment, increased
turnaround speed, faster upgrades/releases and sharing the
maintenance cost [18]. However, open tools require invest-
ment in the communities if companies would like to be lead-
ers and gain influence on the development direction of these
OSS tools [24].

This study continues our previous research efforts where
we: 1) conducted a mapping study to identify the existing
evidence on the use of open innovation in software engineer-
ing [20], 2) performed an exploratory case study at Sony
about the use of open tools (e.g., Gerrit and Jenkins) in
proprietary product development [18] and 3) conducted a
survey in OSS tools communities (e.g., Gerrit, Jenkins, Git)
and combined with the existing evidence to develop a theory
of openness for tools in software engineering [19]. Figure 1
shows that the theory presents four categories of openness
in companies with their respective focus:

1. Laggards – Routine business

2. Leverage – Resource optimization

3. Lucrativeness – Acting as a think-tank

4. Leaders – Growth through ecosystems

Figure 1: Model of openness for tools
Re

ac
tiv

e
st

ra
te

gy

Strategy: Invest in existing communities to reduce
time-to-market, spot business opportunities
Trigger(s): Managers
Outcome(s): Product and Process innovation
Level of Openness: Open process – Closed outcome

Cost Saving

Laggards (Business as usual)

Pr
oa

ct
iv

e
st

ra
te

gy

Inspirational

Leverage (Resource optimization)

Lucrativeness (Think tank) Leaders (Growth through ecosystems)

Strategy: Reaction to paradigm shifts and cost
reduction.
Trigger(s): Managers and developers
Outcome(s): Reduced licensing and patching cost
Level of Openness: Open process – Open outcome

Strategy: Motivate developers through engaging in
OSS communities i.e., look inside/outside for
technological improvements
Trigger(s): Managers and developers
Outcome(s): Product and Process innovation
Level of Openness: Open process – Open outcome

Strategy: Create new ecosystems to support brand
proposition
Trigger(s): Managers
Outcome(s): Product innovation
Level of Openness: Open process – Closed outcome

Table 1: Propositions from the theory [19]

ID Proposition

P1 Openness of tools provides opportunities to reduce de-
velopment costs.

P2 Openness of tools provides opportunities to shorten
the development time.

P3 Openness of tools complements internal processes and
product innovation.

P4 The degree of investment in OSS communities has an
affect on the outcome.

P5 Introducing a proactive strategy, in relation to open-
ness of tools, requires conscious management involve-
ment.

Each category has the different levels of openness, based
on their strategies (proactive or reactive) in relation to goals
(cost saving or inspirational). Typically, laggards respond to
paradigm shifts and all strategies are reactive, aiming to re-
duce the development cost (i.e. integration). As for the
leverage category, organizations use the external sources of
innovation by inspiring their internal developers to partic-
ipate in various OSS tools communities, prior to internal
R&D work. It not only adds to product and process innova-
tion but also inspires developers to exchange ideas on discus-
sion forums to develop competence. Lucrativeness refers to
investing in existing OSS communities to be able to influence
and steer these communities in the same direction as the or-
ganizational interests. The purpose is to support internal
innovation and reduce costs by investing in OSS tools com-
munities. Leaders are organizations that focus on creating
new communities and ecosystems to strengthen their busi-
ness model. As a part of defining the theory of openness for
tools, we formulated five proposition shown in table 1. The
main goal of this study is to validate the theory of openness
for tools in software engineering by conducting workshops in
two automotive companies. Propositions derived from the
theory of openness are validated based on the data collected
from the workshop. The first two authors were directly in-
volved in conducting the focus groups while the other two
authors reviewed the collected data.

In this paper, we introduce related work on open source
tools, as well as the analysis methods used here, in Section 2.

Section 3 introduces the case companies, data collection pro-
cedures, validity threats, and analysis method to validate the
propositions. Section 4 presents the analysis and discussion
based on the repertory grid technique, using focus groups in
the case companies. Finally, section 5 wraps up the study
with the conclusion.

2. RELATED WORK
Open Innovation (OI) builds on internal and external know-

ledge exchange that may or may not be associated with
monetary transactions. OI can be realized as inside-out,
outside- or coupled innovation processes [9]. OI has pen-
etrated into several industries, as many companies discov-
ered that their business may benefit by collaborating with
OSS tools communities [6]. Companies apply OI in the area
of OSS tools for company’s internal product development.
For example, our previous study [18] shows that Sony Mo-
bile uses Jenkins and Gerrit ecosystems for knowledge flows
between different companies’ employees and Open Source
Software (OSS) community developers, without monetary
transactions. In contrast, companies like CloudBees mon-
etize services related to the OSS tools. The stakeholders
in the OSS tools communities not only share the innova-
tion cost [5] and rewards, but also risks [18]. Companies
may achieve that by revisiting their tool chains and look for
open tools alternatives, as a natural and low-risk starting
point in embracing openness.

The use of proprietary tools for software development
leads to several challenges, e.g. delayed implementation
of requirements, expensive licensing costs, inability of fix-
ing things in-house, lack of customizability, and difficulty in
finding solutions that meet current needs [18]. Companies
use OSS tools communities to deal with several of these chal-
lenges [18]. However, in order to utilize open source tools
communities for internal product development, companies
need to invest their internal resources to use or contribute
to OSS tools communites and have contribution strategies
around it. The contribution strategies guides companies
when to contribute and when to conceal in relation to their
business model. The proposed theory of openness helps com-
panies to choose the right level of openness while working
with OSS tools communities.

Generating and acquiring data from software engineering
activities is relatively easy. The challenge is to use that
data in a meaningful way to present something that is true
rather than spurious. Theories offer common conceptual
frameworks to summarize, condense and accumulate know-
ledge. SE research community have raised concerns on the
lack of theories in SE [2, 8, 11, 26, 25, 27, 4] and pointed
on the limited nature of the work about SE theories. We
used Sjøberg et al’s method to design the theory of open-
ness [26] and here we use the repertory grid technique to
validate the theory. Repertory grid is a technique for identi-
fying the ways that a person interprets or gives meaning to
his or her experience, being used in software engineering al-
ready. Moynihan’s exploratory study used the repertory grid
technique to identify the prevalent risks factors in software
development projects. [17, 16]. Lee and Truex [13] used
repertory grid technique to explore whether or not train-
ing in information system development methods improves
students’ cognitive structures (e.g., focused, tight thinking).
Baddoo’s exploratory study [1] collected data from 13 collab-
orating software companies to investigate how groups of staff

in three designated roles (i.e. developers, project managers
and senior managers) saw themselves and the other roles
as being involved in software process improvement. Ghazi
et al. [10] proposed a decision support method, using the
repertory grid technique, which aids practitioners to choose
the right level of exploratory testing (i.e. freestyle testing,
a high degree of exploration, medium degree of exploration,
a low degree of exploration and scripted) in their context.

3. RESEARCH METHODOLOGY
Below, we describe the case companies, that data collec-

tion and analysis methods, and our discussion and actions
taken to improve the validity of the study.

3.1 Case A
Company A is a major automotive industry manufacturer

of heavy trucks and buses. It also manufactures diesel en-
gines for heavy vehicles as well as marine and general in-
dustrial applications. The company employs approximately
42,100 people around the world. The company develops its
software services for fleet management and is considering
transport as a service perspective in their business model.
Albeit their internally developed software is not monetized
yet, the company has started seeing the software as an im-
portant strategic area for its core business. Therefore, the
company has an abstract strategy of utilizing OSS tools to
build competence in this area. The company uses Jenkins
in the development of their fleet management system. The
participants involved in the workshop were tools manager,
product owners and technical teams leads and tools engi-
neers.

3.2 Case B
Company B is one of the well-known global brands in au-

tomotive industry, heading towards an all-electric future.
The company has 34,200 employees in five continents, and
2300 dealers globally. The increased use of software in the
cars makes embedded software development a cutting-edge
area for the company’s business model. In order to facilitate
the software development, the company buys tools to facil-
itate the software development from suppliers. However, it
makes it difficult to buy a solution and fit it into the exist-
ing tool chain. Therefore, the company is shifting towards
OSS tools to achieve standardization in all teams. Tools like
Jenkins, Gerrit and Git are already utilized in the develop-
ment process. The tool specially discussed in this study is
an internally developed tool named Awesome framework by
the company. It is an automated testing framework which
enables test automation for hardware-in-the-loop, software-
in-the-loop, model-in-the-loop test environments to be able
to fit these into a continuous integration chain. It provides
an integrated development environment for developing such
tests at component and system level. The participants of
the workshop in the case company include tools manager,
product owners, business analysts, technical teams leads and
tools engineers.

3.3 Data collection and analysis methods
Focus groups [23] were conducted at the two companies

involved in this study. There were 12 and 10 participants
in the focus groups conducted at the companies A and B,
respectively. Furthermore, we used a repertory grid tech-
nique [12] to analyze and validate the theory of openness.

Kelly proposed the personal construct theory (PCT) and the
associated repertory grid technique in the 1950’s to elicit and
analyze personal constructs [12]. The idea behind the theory
is that participants have their own view of the world based
on their observation of surroundings. Therefore, each par-
ticipant builds his own conceptual framework which leads
to different opinions about the same problem. Participants
constantly observe and react to their understanding of the
surroundings. Consequently, participants reform their per-
sonal theories and assumptions [7].

Kelly’s repertory grid technique is used to elicit, evaluate
and analyze the constructs [12]. The grid is comprised of
following three basic concepts: 1) Elements elicitation, 2)
Constructs elicitation, 3) Ratings. Elements refer to indi-
vidual aspects or objects of a topic, which participants try
to understand. A construct is made of two contrasting con-
cepts that are equally weighted on a bipolar scale. There are
two essential ways to select grid elements: a) elicit elements
from participants, b) provide participants with elements.

We used repertory grid to validate the theory of openness
by providing the elements and constructs derived from the
theory of openness [19]. Each elements was rated against
each construct in the focus groups. To further support our
choice, a number of studies have taken this approach [22, 28,
21, 13] by providing elements and constructs to participants
for the ratings. The description of elements, constructs and
their ratings are as follow:

Elements derived from theory of openness: This study
uses four elements from the theory of openness mentioned
below:

1. Inspiration

2. Reactive

3. Cost saving

4. Proactive

The elements can be seen in figure 2 where we used the same
elements for companies A and B.

Constructs derived from the theory of openness: We
designed constructs from the theory of openness by creat-
ing the contrasting poles of each construct, see A1, A2 ...
in Table 2. These constructs are derived from the existing
literature in the theory of openness [19]. The constructs
asses company’s perspective on creating new communities
to facilitate internal product development by reducing the
development, development cost, new creation of roles, ap-
proval from top management for OSS tools adoption and
access to skilled workforce etc.

Ratings: In this step, elements are then rated against
each construct in the focus groups at companies A and B. We
used a three-point Likert scale to rate each element against
each construct, see Table 3.

First, the focus group participants in both companies were
given an introduction of constructs and elements to develop
a common understanding in the whole group. Second, parti-
cipants from company A picked Jenkins and participants
from company B selected an internal tool called Awesome
framework for the focus groups. Third, a survey link was
distributed among all the participants to rate each element
against the constructs, based on the selected tools from their
internal development environment. Fourth, each element
was rated against each construct using the scale in table 3.

Table 2: Constructs derived from theory of openness with their contrasting poles

ID Similarity Pole (+) Contrast Pole (-)

A1 Creating new open source communities to facilitate
internal product development

Creating new open source communities not required
to facilitate internal product development

A2 Creating new open source communities to explore
emerging technologies

Creating new open source communities not required
to explore emerging technologies

A3 Leveraging OSS to increase market share Leveraging OSS to increase market share not required

A4 Using existing open source communities to identify the
emerging technologies

Using existing open source communities to identify the
emerging technologies not required

A5 Using existing open source communities for technolog-
ical improvements

Using existing open source communities for technolog-
ical improvements not required

A6 Investing in the open source communities to steer the
community’s development towards organizational ben-
efits

Investing in the open source communities not required
to steer the community’s development towards orga-
nizational benefits

A7 Defining new work roles and teams to work with open
source communities

Defining new work roles and teams not required to
work with open source communities

A8 Adopting OSS tools need approval from top manage-
ment

Adopting OSS tools does not need approval from top
management

A9 Contributing to open source communities need ap-
proval from top management

Contributing to open source communities does not
need approval from top management

A10 Educating the organization about OSS culture and
ways of working

Educating the organization about OSS culture and
ways of working not required

A11 Using OSS tools helps to reduce development time Using OSS tools helps to reduce development time

A12 Working with open source communities gives access to
free labor

Working with open source communities gives access to
free labor

A13 Using OSS tools keeps developers updated with best
tools practices

Using OSS tools keeps developers updated with best
tools practices

A14 OSS tools reduces licensing cost in relation to propri-
etary tools

OSS tools reduces licensing cost in relation to propri-
etary tools

A15 The benefits of engaging in open source communities
outweighs the risk of losing Intellectual property rights

The benefits of engaging in open source communities
does not outweighs the risk of losing Intellectual prop-
erty rights

A16 Engaging in open source communities provides fun
ways of working for developers

Engaging in open source communities provides boring
ways of working for developers

A17 Working with open source communities gives access to
external knowledge from communities

Working with open source communities does not gives
access to external knowledge from communities

Table 3: Scale used for the ratings

Scale

Elements 1 2 3

Inspirational Inspirational Somewhat No Inspirational

Reactive Reactive Somewhat Not Reactive

Cost saving Cost saving Somewhat Not Cost saving

Proactive Proactive Somewhat Not Proactive

For example, Figure 2 shows that adopting OSS tools need
approval from top management (A8) is rated as not inspira-
tional (3), reactive (1), not cost saving (3) and not proactive
(3) by the participants in both companies. Similarly, the use
of OSS tools helps to reduce the development time (A11)
is rated as a cost saving (1) and proactive (1). Third, we
held a discussion among participants based on the ratings
to further explore their ratings. The discussion part was
recorded and transcribed to further explore the rationales
for the participant’s ratings.

Outcome: The outcome of this step (ratings) is Figure 2,
which shows ratings of focus groups from companies A and
B.

3.4 Validity threats
We discuss validity threats with respect to internal va-

lidity, external validity, construct validity, and conclusion
validity [23].

Internal validity: Internal validity threat may relate to
confounding factors that may have influenced the outcome
without researcher’s knowledge. One possible threat is that
the participants in companies A and B may have misun-
derstood the constructs and elements. Therefore, an intro-
duction presentation was given to participants before rating
each element against constructs. Constructs and elements
were exemplified during the introduction presentation ses-
sion. Furthermore, we also had a follow-up discussion based
on the ratings from the participants to clarify misunder-
standings. Another threat to internal validity was that the
participants might had a difficulty in interpreting the scale
for the ratings. To minimize the risk of scale’s misunder-
standing, the examples were given in the introduction prior

(a) Company A (b) Company B

Figure 2: Ratings of elements in relation to constructs from
focus group participants, using the three point Likert scale
presented in table 3.

to ratings of elements and constructs.
External validity: Both companies are experiencing a

paradigm shift with ever increasing adoption of software in
cars and trucks to stay on the competitive edge. Validating
the theory in an automotive industry gives more weight to
the external validity of the theory. However, automotive
industry does not represent the whole software industry and
therefore, the scope of the findings are limited. More studies
are intended to perform in the software industry to improve
the external validity of the theory.

Construct validity: Both constructs and elements in the
theory are relevant to discuss in relation to construct va-
lidity. Neither of the case companies comes from an OSS
development and community participation background and
therefore, do not have established procedures to work with
open tools communities. As a consequence, neither company
has a well-defined procedure to map all the constructs of the
theory. This threat was partially met by keeping the discus-
sion on a higher level to the company’s specific context.

Conclusion validity: First, participants in the focus
groups may have tried guessing the propositions during the
introduction presentation, which introduces a threat to the
conclusion validity. This threat was mitigated by keeping el-
ements and constructs as discrete as possible. Second, a re-
searcher’s bias while interpreting and recording focus groups
mat threaten the conclusions. To reduce this threat, multi-
ple researchers were involved in the focus groups (observer
triangulation). Furthermore, focus groups were recorded,
transcribed, and the results were validated by multiple re-
searchers.

4. RESULTS AND DISCUSSION

The outcomes from the repertory grid technique are the
grid and a PCA analysis. Figure 2 shows the formation
of the repertory grid for companies A and B, based on the
ratings from the participants in the focus group meetings.
The vertical axis shows the contrasting poles of constructs
derived from the theory of openness, mentioned in Table
2. The horizontal axis shows the elements derived from the
theory of openness. Each element was rated by the parti-
cipants in the workshop in relation to constructs using the
scale presented in Table 3. Figure 3 shows the statistical
repertory analysis based on the principal components anal-
ysis (PCA) [3]. PCA is a data reduction technique, used to
find the dimensions of maximum variability in data. Fig-
ure 3 represents the spatial distances between and among
the elements and constructs, and suggests how they might
be related to each other.

4.1 Relation between strategies
The PCA shows that proactive and inspiration in compa-

nies A and B are spatially closer to each other. However,
the cost saving and reactive strategies in company A seem
to have a higher variance in contrast to company B. It can
be explained by both companies’ current strategy of buying
OSS enterprise solutions instead of actively using or con-
tributing to OSS tools communities, because they believe
it gives them more control over the contract as the compa-
nies think in the old way of subcontracting. The ratings in
company A were not able to distinguish between OSS tools,
and tools provided by suppliers based on OSS. The reason
for this may be the lack of OSS understanding and compe-
tence at company A, since the company does not come from
an OSS development background. One of the participants
stated, “one of the major reasons for not using OSS tools is
the lack of competence and understanding. We do not know
how to protect our intellectual property rights. We tend to
go for buying solutions when there are intellectual property
rights involved”.

4.2 Validation of propositions
Further, we validate the five propositions (see table 1)

from the theory of openness [19] in the light of the PCA and
discussions in the focus groups.

For proposition (P1) about the reduction in development
cost, the PCA shows that access to free labor (A12+) and
reduced licensing cost (A14+) is closer to cost saving in
case of company B as opposed to company A (see fig 3a
and 3b). One possible explanation is that Company A does
not see faster automated build servers as a competitive edge
for its internal developed software. Furthermore, none of
its software is provided as a service to the customers yet.
However, they started seeing value in services and connec-
tions, where licensing costs might come into play. One of
the participants stated that “the percentage of money spent
on licenses is actually not that high at the moment. How-
ever, if we start producing hundreds of micro-services with
each of them need their own database, buying Oracle licenses
might become really expensive”. On the other hand, it is not
uncommon for company B to buy tools and these tools can
be expensive. One of the participants in company B stated
that “customized tools provided by big vendors like Math-
Works for the company are really expensive. Therefore, we
have a window of opportunity to update our environment
with open tools.”. In conclusion, openness of tools has the

(a) Company A (b) Company B

Figure 3: Principal components analysis (PCA) of ratings from focus groups.

potential to reduce the development cost, which validates
our proposition P1.

Regarding whether openness shortens the development
time (P2), PCA for both companies in Figures 3a and 3b
shows that the benefits of engaging in OSS tools communi-
ties outweigh the risk of losing IPRs (A15+), and reduced
development time (A11+) is spatially closer to cost saving.
This indicates that participants think that engaging in open
tool communities outweighs the risk of losing intellectual
property rights, although the lack of maintenance support
in the company is a point of concern for developers. Soft-
ware developers in company B think that using open tools
speed up their development in relation to seeking permission
to buy a tool. One participant stated that “regarding speed
as a developer, it takes a few minutes to download an open
framework rather than seeking an approval from the manager
to buy a tool, which takes forever”. However, both compa-
nies are careful in selecting and integrating these open tools
to make sure that these tools won’t die over time. There is
a risk that software developers might not get the required
funding and enough management backing to maintain these
open tools internally if the community dies. A participant
stated that “we are dependent on some really large python
projects that we know won’t die anytime soon.”. Therefore,
the proposition P2 about open tools may reduce the devel-
opment is confirmed by the data.

In relation to process and product innovation (P3), it
should be mentioned we have earlier observed that process
innovation leads to product innovation [14]. However, nei-
ther case company considers tools front leading innovation
in the development of their core products. In particular, the
tools development team of company B does not get enough
funding and management backing, although other depart-
ments in the company need tool support to facilitate product
innovation in the core products. This is a general problem

with the project focused companies, where the budget is allo-
cated for the given project only, with limited consideration
for long-term investment. The tools department does not
have an allocated budget for the development of tools and
the maintenance of these to achieve standardization. One of
the participants in company B stated “when we buy tools, it
is part of the R&D budget and there is no designated bud-
get for maintenance. For example, if we get the funding for
developing an internal tool like Awesome framework, there
is no allocation of budget for the maintenance of that tool”.
On the other hand, both companies identify the need for
process innovation by creating new roles [15] to deal with
the challenges of open tools platform. Consequently, there
have been initiatives in both companies to create new open
innovation roles. For example, a participant of company A
mentioned that “the company has actually employed a new
role of open source cloud manager to create procedures and
guidelines regarding how to be active in an open space”. Fur-
thermore, a participant in company B stated that “there is
a new initiative called Nordic foundation partly driven by
Ericsson to spread open source usage and with the already
formed legal framework among Nordic companies. It could
be a fast track for us but it needs to be championed by R&D
in order to reap benefits”. Therefore, the proposition P3 re-
lated to the openness of tools complements internal process
and product innovation is confirmed by the data.

In both companies, PCA shows that adopting (A8+) and
contributing to OSS tools (A9+) are spatially close to the
reactive strategy, meaning that participants consider taking
approval from top management in either adopting or con-
tributing to open tools communities as a reactive strategy.
One possible explanation for seeking approval is that neither
company has a legal framework to work with open tools com-
munities. One of the participants in company A stated that
“we have a top-level statement saying Open Source First but

what does that exactly mean? It does not state exactly what,
why and how should we go open and how these decisions
are supported”. Similarly, a participant in company B also
stated that “we do not have any internal procedure or le-
gal framework to create new or work with the existing open
tools communities”. Therefore, P4 about the relation be-
tween investment in OSS tools communities and its impact,
is neither confirmed nor rejected by the data, since both case
companies lack internal procedures to invest their internal
resources in open tools communities.

Finally, proposition P5, about the role of management in
Table 1, needs to be extended since not only the proactive
strategy but also the reactive strategy, requires management
involvement, as software developers need a legal framework
to work with open tools.

4.3 Cross analysis with Sony Mobile
After the focus group meeting, we conducted a cross case

analysis with our previous Sony Mobile case [18]. That study
explored Sony Mobile’s transition from closed tools to open
tools platform [18], which constitutes one of the cases for
an empirical grounding of the theory of openness for tools.
Therefore, in this cross case analysis, we have found three
similar patterns in companies A and B in relation to Sony
Mobile.

First, there was a paradigm shift when Sony Mobile moved
from Windows to Linux, which in turn required Sony to
move from proprietary tools (e.g, ElectricCommander) to
open tools platforms (e.g., Gerrit, Jenkins, Git). The com-
plex integration tool chain triggered the move towards open
tools platforms and it resulted in increased development
speed and reduced time to market. Both companies A and
B are experiencing a paradigm shift in the automotive in-
dustry, where software is becoming the key area for the de-
velopment of vehicles such an autonomous driving features
and providing transportation as a service. Both companies
are very reactive in their approach when opting for open
tools. A participant in the company said, “the change gen-
erally depends on how painful the situation is. A few years
ago, we had 10 different teams working with an internal plat-
form using different tool chains and had a great difficulty in
glowing the tool chain together. We hired an external com-
pany that glued our tools chain together with massive scripts
using an open tool solution”. Therefore, the open tools cho-
sen in a proactive way of standardizing the tool chain in all
teams, may play an important role in the development of
software-intensive vehicles.

Second, when Sony Mobile realized that they lacked legal
procedures to work with open tools communities, they cre-
ated an internal open tools department consists of legal ex-
perts, developers and managers to create a well-established
procedure for using or contributing to open tools platforms.
Companies A and B may follow the same steps by creating
an internal process to educate the developers and develop
competence to work with open tools communities. As one
of the participants in company A said, “we lack competence
and streamlined decisions on how to work with open tools
communities”. Another participant in company B said that
“we need improvements in the areas of governance, training
and policies.”

Third, Sony Mobile had an internal champion to derive the
whole open tool-chain movement with the support of soft-
ware developers and legal team. This played an important

role in convincing the top management to support and fund
open tools platforms, however, it took three years for Sony
Mobile to make it. The current case companies may need a
similar, internal champion to act as an interface between the
legal team, software developers, and the top management.

Key takeaway: Companies A and B may choose a cen-
tralized proactive strategy similar to Sony Mobile (reactive
in that case) to make internal legal policies and education
for employees to meet the ever-growing size of software in
automobiles.

4.4 Business implications
Automotive industry sees software services as a new emerg-

ing area in terms of transportation as a service that will be
software-enabled. This pattern can be related to Sony and
Android case in which natural drive for saving money and re-
ducing ownership costs was to create industry wide standard
platforms and Google capitalized on the first mover advan-
tage by offering Android for free and it got widely adopted
by vendors. Initially, Sony underestimated the value in ser-
vices and apps So everyone let Google develop Android and
occupy services such as Gmail, drive, gaming, camera etc.
Now Android is provided as an empty shell and vendors
just provide devices to use services for money. Similar risk
may apply to automotive industry, if the companies do not
own their code base by establishing OSS communities and
ecosystems. Companies may provide vehicles to run the ser-
vices and make money on the services instead of selling the
vehicles.

4.5 Implications for theory of openness
Figure 4 shows the mapping of companies A and B on the

model of openness for tools [19]. Both companies qualify
as laggards since they have no internal procedures to fa-
cilitate developers to contribute to OSS tools communities.
Both companies react when the integration of tools becomes
painful for developers, rather than standardize the ways of
working in the companies. Also for laggards, we noticed
that it is important to have the management support and
approval. In case company B, the internally developed tool
named Awesome framework is meant to be shared among
different partners of the company and it is used in core prod-
uct development teams. However, the development does not
have enough resources to support core product development
teams who have requirements and need support. This sug-
gests the importance of the development of the tools but lack
of funding and resources hampers the work of core product
development teams who are dependent on the tool.

The arrow in figure 4 shows that Sony Mobile went through
the same transition as companies A and B are going through.
Sony Mobile started as a laggard with its complex contin-
uous integration tools chain, before actively using and con-
tributing to OSS tools communities like Jenkins and Gerrit.
However, this transition required Sony Mobile to create a
tools department with the legal framework to utilize the
OSS tools communities.

In the case of two studied companies, company B is found
to be more in need of this transition due to their complex
integration tool chain compared to company A. Therefore,
both companies may have processes and legal frameworks
for developers, to encourage them to take more initiative to-
wards open tools in order to standardize the ways of work-
ing. Currently, in the company B, all teams have their in-

Figure 4: Mapping of companies on the model of openness
for tools.

Re
ac

tiv
e

st
ra

te
gy

Cost Saving

Laggards (Business as usual)

Pr
oa

ct
iv

e
st

ra
te

gy

Inspirational

Leverage (Resource optimization)

Lucrativeness (Think tank) Leaders (Growth through ecosystems)

Company A
Company B

Sony Mobile

ternally developed tools with all possible technologies (e.g.,
C#, Python, Java etc.) which leads to loss of resources on
writing more glue code to integrate the tool chain. A partici-
pant from company B stated, “I think we have to change our
way of thinking and we never share anything because there is
always some kind of minor internal change that drives our
testing and we do not want to share that. However, 80% of
the rest is the same that can be shared. At the moment, it
is all or nothing and we need to calm down a little bit and a
share the common parts atleast”.

Once the processes for contribution and using OSS tools
communities are in place, both companies may consider be-
coming new open tools ecosystems (leaders) by making the
code open, to attract other manufactures in the industry
with the same needs. One of the participants stated, “I
think it is a question of survival in the near future and we
do not have time to deal with the increase in the number of
variants. It will be nice to replace the closed source tools
with the open ones so that we can actually fix tools without
glue scripts”. It is to be noted that the data collected from
the case companies does not address or validate the lever-
age and lucrativeness category in Fig 4. The studied com-
panies only validates the laggards category, thus the theory
required more validation studies to validate the lucrativeness
and leverage category as well.

Key takeaway: Both companies may learn from Sony
Mobile’s transition from laggards to leaders by innovat-
ing their process in terms of creating a legal framework.
The framework will help companies to engage their develop-
ers in OSS tools communities together with the legal team
to eventually be able to build new communities (leaders)
to facilitate their core product development. However, lag-
gards also require management to look at tools as a long
term standardization of processes perspective rather than a
project based approach.

5. CONCLUSIONS
This study aims to validate our theory of openness for

software engineering tools. We use the repertory grid tech-
nique to discuss five propositions derived from the theory
of openness and presents a cross analysis with Sony Mobile.
We were able to validate the theory for the laggards cate-

gory, with two companies from the automotive domain.
The findings suggest that both case companies lack in-

ternal procedures to work with the open tools communities.
This leads to frustration among employees for not know-
ing why and how to work with open tools communities. It
might be because both companies come from a closed back-
ground of manufacturing cars and trucks. However, both
companies are currently experiencing a paradigm shift in
the automotive industry with more software introduced in
the vehicles. This may require the management to rethink
and revise their strategy to extract the external knowledge
by using open tools communities.

The strategy should address creating a new role which
works as an interface between legal department, software
developers and management like Sony Mobile. Furthermore,
it may entail creating processes regarding how and when
to use, contribute or create new open tools platforms for
company’s benefits. As for future work, more validation
studies need to be conducted to validate the propositions
derived from the theory of openness.

6. ACKNOWLEDGMENTS
We thank the company participants for sharing their in-

sights in the focus groups. This work was partly funded by
the EASE industrial excellence center.

7. REFERENCES
[1] N. Baddoo and T. Hall. Practitioner roles in software

process improvement: an analysis using grid
technique. Software Process: Improvement and
Practice, 7(1):17–31, 2002.

[2] V. R. Basili, F. Shull, and F. Lanubile. Building
knowledge through families of experiments. IEEE
Transactions on Software Engineering, 25(4):456–473,
1999.

[3] R. C. Bell. Analytic issues in the use of repertory grid
technique. Advances in personal construct psychology,
1:25–48, 1990.

[4] E. Bjarnason, K. Smolander, E. Engström, and
P. Runeson. A theory of distances in software
engineering. Information and Software Technology,
70:204–219, 2016.

[5] H. Chesbrough. Why companies should have open
business models. MIT Sloan management review,
48(2), 2012.

[6] H. Chesbrough, W. Vanhaverbeke, and J. West,
editors. New Frontiers in Open Innovation. Oxford
University Press, Nov. 2014.

[7] H. M. Edwards, S. McDonald, and S. M. Young. The
repertory grid technique: Its place in empirical
software engineering research. Information and
Software Technology, 51(4):785–798, 2009.

[8] A. Endres and H. D. Rombach. A handbook of software
and systems engineering: Empirical observations,
laws, and theories. Pearson Education, 2003.

[9] E. Enkel, O. Gassmann, and H. Chesbrough. Open
R&D and open innovation: exploring the
phenomenon. R&D Management, 39(4):311–316, 2009.

[10] A. N. Ghazi, K. Petersen, C. Wohlin, and
E. Bjarnason. A decision support method for
recommending degrees of exploration in exploratory
testing. arXiv preprint arXiv:1704.00994, 2017.

[11] J. D. Herbsleb and A. Mockus. Formulation and
preliminary test of an empirical theory of coordination
in software engineering. In ACM SIGSOFT Software
Engineering Notes, volume 28, pages 138–137. ACM,
2003.

[12] G. A. Kelly. The psychology of personal constructs.
Vol. 1. A theory of personality. Vol. 2. Clinical
diagnosis and psychotherapy. Norton & Co., 1955.

[13] J. Lee and D. P. Truex. Exploring the impact of
formal training in isd methods on the cognitive
structure of novice information systems developers.
Information Systems Journal, 10(4):347–367, 2000.

[14] J. Lin̊aker, H. Munir, P. Runeson, B. Regnell, and
C. Schrewelius. A Survey on the Perception of
Innovation in a Large Product-focused Software
Organization. 6th International Conference on
Software Business - ICSOB, 2015.

[15] C.-E. Mols, K. Wnuk, and J. Lin̊aker. The open
source officer role – experiences. In F. Balaguer,
R. Di Cosmo, A. Garrido, F. Kon, G. Robles, and
S. Zacchiroli, editors, Open Source Systems: Towards
Robust Practices, pages 55–59, Cham, 2017. Springer
International Publishing.

[16] T. Moynihan. An inventory of personal constructs for
information systems project risk researchers. Journal
of information technology, 11(4):359–371, 1996.

[17] T. Moynihan. How experienced project managers
assess risk. IEEE software, 14(3):35–41, 1997.

[18] H. Munir, J. Lin̊aker, K. Wnuk, P. Runeson, and
B. Regnell. Open innovation using open source tools:
a case study at Sony Mobile. Empirical Software
Engineering, pages 1–38, 2017.

[19] H. Munir, P. Runeson, and K. Wnuk. A theory of
openness for software engineering tools in software
organizations. Information and Software Technology,
97:26 – 45, 2018.

[20] H. Munir, K. Wnuk, and P. Runeson. Open innovation
in software engineering: a systematic mapping study.
Empirical Software Engineering, 21(2):684–723, Apr
2016.

[21] N. Niu and S. Easterbrook. Discovering aspects in
requirements with repertory grid. In Proceedings of the
2006 international workshop on Early aspects at ICSE,
pages 35–42. ACM, 2006.

[22] G. J. Phythian and M. King. Developing an expert
support system for tender enquiry evaluation: A case
study. European Journal of Operational Research,
56(1):15–29, 1992.

[23] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case
Study Research in Software Engineering: Guidelines
and Examples. John Wiley & Sons, Mar. 2012.

[24] P. Runeson, H. Munir, and K. Wnuk. It is more
blessed to give than to receive–open software tools
enable open innovation. Tiny Transactions on
Computer Science, 4, 2015.

[25] C. Sauer, D. R. Jeffery, L. Land, and P. Yetton. The
effectiveness of software development technical
reviews: A behaviorally motivated program of
research. IEEE Transactions on Software Engineering,
26(1):1–14, 2000.

[26] D. I. Sjøberg, T. Dyb̊a, B. C. Anda, and J. E. Hannay.
Building theories in software engineering. In Guide to

advanced empirical software engineering, pages
312–336. Springer, 2008.

[27] W. F. Tichy. Should computer scientists experiment
more? Computer, 31(5):32–40, 1998.

[28] S. M. Young, H. M. Edwards, S. McDonald, and J. B.
Thompson. Personality characteristics in an xp team:
a repertory grid study. In ACM SIGSOFT Software
Engineering Notes, volume 30, pages 1–7. ACM, 2005.

