
The Effect of Stakeholder Inertia on Product Management

Krzysztof Wnuk, Richard Berntsson-Svensson
Department of Computer Science,

Lund University, Sweden
{wnuk, rbsv} @cs.lth.se

David Callele
TRLabs

Saskatoon, Saskatchewan, Canada
dcallele@trlabs.ca

Abstract — One of the goals of requirements engineering is to
capture and document innovation in the form of new product
requirements. These product requirements need to express
new system functions or new qualities that are most desired by
customers while maintaining customer familiarity with existing
products. This paper explores the contradiction between the
customer desire for revolutionary advancement and their
desire to maintain familiarity with existing systems. This
customer inertia creates a bias toward incremental
(evolutionary) advancement, potentially multiplying the risks
associated with revolutionary innovations. We present a review
of scenarios illustrating this stakeholder bias and propose a
research agenda for further work in the area.

Keywords: Stakeholder bias, inertia, evolution, revolution,
innovation.

I. INTRODUCTION

Requirements Engineering (RE) is a key component of a
successful software engineering process [1] and meeting
customer requirements is critical to the process of creating
value in software products [2]. The creation of software
product value is inevitably associated with innovation
identification and capitalization, typically in the form of
executable software features or components. As a result, RE
activities are primarily focused on elicitation, specification
and verification of new functionality.

Software Product Lines and the concept of mass
customization help software companies to capitalize on the
potential of their products [3]. Product Managers and
business managers often work with products that are in the
market and generating revenue for years. For many of these
products, customers receive new functionalities on an
incremental basis – adding new capabilities in small
increments that slowly evolve the user experience.
Customers learn to use each increment, adapting as
necessary. In contrast, large-scale changes to the user
experience are not only costly to develop, they can meet with
significant user resistance as customers may not readily
accept revolutionary changes to systems with which they are
already familiar.

This user behavior pattern indicates that there is a tension
between the need to introduce revolutionary innovations [4]
and customer resistance to change. Customer familiarity with
the current version of a product or service creates significant
inertia that strongly influences future purchasing decisions.
Products that are evolutionary are less “frightening” than
products that are revolutionary and may experience greater

market success. In this paper we explore this tension between
revolutionary innovations and customer resistance to change
from the requirements engineering, innovation and decision
making perspectives – focusing on the role of quality
perception and quality requirements in the customer
satisfaction [12] and excitement creation process.

This paper is structured as follows: Section II presents
examples of customer inertia affecting market success in
both the software and systems domain. Section III reviews
related work in innovation quality requirements and
requirements engineering release planning and decision
making while Section IV analyses and comments on the
current state of the research. Section V outlines research
challenges and Section VI presents conclusions and a
research agenda for improving our understanding of
customer inertia in requirements engineering.

II. CUSTOMER INERTIA AND MARKET ACCEPTANCE

Customer inertia can be highly individual and identifying
an optimal blend of evolutionary and revolutionary
innovation is necessary for maximizing customer satisfaction
as expressed by product requirements. We present here a
simple example of customer inertia affecting market
acceptance.

We analyze the instrument clusters for two car
manufactures, BMW and Citroen. In the Citroen case, the
designers decided to radically change the appearance of the
dials when introducing a new Citroen C4 MK1 model in
2004 [5] (Figure 1a). Despite winning the 2005 European
Car of the Year award [6], this radical change was not
appreciated by many customers. Citroen has now returned to
more ‘classic’ dials as shown, for example, in this image of
the 2011 Citroen C4 instrument cluster (Figure 1b).

In comparison, BMW maintains a consistent instrument
cluster design, apparently very careful when introducing
changes to what information is displayed on the dashboard
and where it is placed. The instrument cluster of the 2004
BMW model (Figure 2a) and the 2011 BMW model (Figure

Figure 1a. Citroen C4

instrument cluster, 2004.

Figure 1b. Citroen C4
instrument cluster, 2011.

2b) are very similar – any design changes are evolutionary
and not revolutionary.

Customer opinions of products have more facets than
customer inertia. Requirements for individual (sub)systems
may be accurate but the interactions of these (sub)systems
when integrated into systems of systems may produce an
unexpected customer opinion.

In the automotive example of this section, the shape of
the car, the design of the front grill and the quality of the
brand are other factors that help form the customer’s opinion.
For example, a car may be deemed “exciting” as a result of
substantially improved acceleration or even a ‘cool’ user
experience innovation such as changing the color of the
instrument cluster backlighting depending on operating
mode.

III. RELATED WORK

Requirements engineering and software engineering tend to
focus on techniques for defining and providing product
functionality [1][13]. To create a successful system and
ensure its quality, it is not enough to fulfill the functional
requirements. In relative terms, Quality Requirements (QR)
receive less attention, perhaps because they are difficult to
manage [1] or, for example, the quality requirements are
relatively unknown at the requirements phase.

Customer satisfaction is strongly influenced by QR and
end-users are often dissatisfied with software quality [17].
Perceptions of software quality play a central role in
customer satisfaction and sound QR management practices
can be seen as a key competitive advantage, playing a critical
role in software product development [12].

There are several methods and techniques in the literature
that address the handling and managing of quality
requirements. Elicitation methods tend to rely upon
brainstorming or the use of checklists. A method for
eliciting, analyzing, and tracing QR using a language
extended lexicon is proposed in [12]. An elicitation method
where functional use-cases are created, and then associated
QRs are identified by the use of a checklist is proposed by
Doerr et al. in [14]. A similar approach is proposed by Kaiya
et al. [15] but they use the goal-question-metric (GQM)
model to explore quality requirements and their
interdependencies.

In addition to elicitation methods, several QR modeling
and analysis techniques are proposed in the literature. Goal-
oriented methods [16][1] focus on the actual software
development process where the software product's goals are
the focus. The NFR Framework [13][17][1] is one of the
most comprehensive methods for QR. The method defines

quality goals, potential implementation solutions, and
interdependencies between QR. The important quality goals
are decomposed by the use of the soft-goal interdependency
graph (SIG) using AND / OR refinement.

Research in innovation management recognizes that
companies need to encourage innovation [8] to remain
competitive. In the development of new systems, companies
are facing the dichotomy of long-term vs. short-term
strategies. Long-term strategies are often associated with
revolutionary innovation [9]. Adaptability to market
pressures may require risk-taking and seeking cutting-edge
innovation to ensure the company’s long-term viability and
sustaining their competitive advantage.

A company also needs to generate short-term revenue to
ensure a sound financial base; incremental innovations [10]
may provide this short-term success. Gorschek et al. [11]
recognize that the key for software companies’ survival is
selecting new product ideas from a range of potential
innovation candidates; candidates that support the business
strategy and have the highest financial impact.

Companies must also ensure that they focus on more than
enabling innovation. The example of Section II illustrates
customer reluctance to change and how this inertia may lead
to market failure. Too much innovation may even cause the
loss of customers due to a perception of quality impairment.
Known as reverse quality in Kano’s model [19], reverse
quality occurs when a developer delivers large quantities of
innovation. The number of innovations are deemed excessive
by at least a portion of the customer base and this behavior
may cause the developer to lose those customers.

To the best of our knowledge, existing QR techniques do
not attempt to address the issues of customer inertia.
Companies need incremental innovation to maintain or,
perhaps, expand their market share. But, how much
innovation is needed to maintain market share? How much
innovation is needed to expand market share? And, how
much innovation is too much innovation?

IV. ANALYSIS AND COMMENTARY

Let us now look more closely at the examples of Section II.
If we look at the paths taken by the automobile
manufacturers we can see that Citroen chose to take a
revolutionary approach between product generations. The
transition from an analog instrument cluster to a digital
instrument cluster was not received by the target market as
Citroen expected. In contrast, BMW took an evolutionary
approach, maintaining the same general look and feel while
modifying only the number and relative size of the
instruments. This relatively gentle evolutionary approach
was well received by the marketplace. We postulate that
evolutionary changes modify only a small number of the
visual variables identified by Bertin [18] (horizontal position,
vertical position, shape, size, color, brightness, orientation,
texture) per iteration whereas revolutionary changes
introduce complete, or near-complete replacement. However,
if customers perceive a product to be exciting (in the sense of
Kano's model [19]) then they are more willing to accept a
revolutionary product and take the burden of learning how to
use it than if a new product just offers “more of the same.”

Figure 2a. BMW instrument
cluster, 2004.

Figure 2b. BMW
instrument cluster, 2011.

In the realm of COTS software we see a similar response:
when Microsoft added ribbons to the user interface of their
office applications product suite approximately 80% of the
surveyed users had a negative reaction to this revolutionary
change. Moreover, some survey respondents said that the
new ribbon interface actually reduced their productivity by
about 20% [7].

Alternatively, we can compare the reaction of users when
they are asked to change between rival operating system user
interfaces. The transition from Microsoft Windows to the
Apple desktop or to any of the variants of the Linux desktops
can be traumatic, the learning curve can be very steep, and
productivity (at least in the short term) can suffer
significantly.

We can also look to the arts and the common practice of
sequels for books and movies. It appears that audiences
(customers) have a strong desire for new experiences set in
familiar environments populated by familiar characters,
further evidence of customer inertia promoting evolutionary
innovation.

We note that, in all cases that we have cited here, there is
an element of product line positioning. In each case it is the
user experience that is either evolutionary or revolutionary
and in each case the revolutionary change in the user
experience had a negative market response. This implies that
evolutionary advancement may have a significantly higher
probability of market success, when considered across all
products and services, compared to revolutionary
advancements.

The classic counter-example of revolutionary success is
the introduction of the Apple iPhone. A revolutionary change
with significant market success, the iPhone’s success appears
to be based on a deep knowledge of the consumer,
knowledge that is expensive to acquire and which is more
likely to be obtained by large companies than small
companies [10].

The practice of requirements engineers tends to focus
upon the functional requirements for a given project. Once
functional requirements have been captured the attention
tends to turn toward the nonfunctional requirements – to
identify them and to identify their constraints upon the
functional requirements. A number of ontologies for
nonfunctional requirements have been proposed [16].
However, these ontologies do not explicitly identify that
customer inertia could be represented as a set of quality
attributes or other non-functional requirements. Further, if
we assume that non-functional requirements are elements
that act as market differentiators, catering to customer inertia
could be identified and positioned as a competitive
advantage (e.g. preserve your training investments!).

Kano [19] proposed a customer satisfaction model for
product development that classifies customer preferences
into five categories: those that excite the customer, those that
are conspicuous by their absence, those that must be present,
those that need to be present but for which no credit is given,
and those that are actually considered to engender a negative
response. We shall focus our attentions upon those features
that excite the customer and those features that repel the

customer, particularly in the context of product line
development.

There is a tendency in the market to believe that "more
features are better". However, there is a significant risk that
the user will perceive the addition of too many features in a
single release as a revolutionary change rather than as an
evolutionary change. Domain experts have a tendency to
embrace a multitude of new features whenever they are
released. However, the typical (or even novice) user can find
the addition of all of these features at once an overwhelming
proposition [20], lacking the ability to accept this many
changes at once. They must also now invest significant time
and effort in learning these new features. Or, if they do not
believe that they need to these new features (or that these
new features will help them in any way) then they may
resent their addition to the product line. This resentment may
be proportional to the investment necessary to adapt to the
revolutionary changes or the cost to develop workarounds to
maintain the status quo.

Further complicating customer acceptance is the decision
complexity faced by the customer as the number of features
increases in a given release. Figure 3 illustrates the
complexity faced by the user when attempting to find and
utilize a subset N features that they want to have out of a
total of M new features in a release (e.g. NCM, for N=2,3,4
and M=2..10).

Figure 3 Complexity of Finding Feature Subsets

This visualization is a reminder that there is a

significantly greater probability of customer satisfaction if
the number of features offered by the release is close to the
number of features that the customer can absorb for that
release. A customer presented with an excess of features may
not be even able to find the features of value to them,
especially if the features are designed to work together. Of
course, the challenge now becomes identifying those features
that excite the customer and including them in the release
rather than choosing features that repel the customer. It does,
however, appear reasonable to conclude that an excessive
number of features will repel the customer for the reasons
discussed earlier.

We believe that for some scenarios it would be better to
reduce the number of new capabilities added to iterations of
the product. If the requirements process focused first upon
identifying the range of possible features and then upon

prioritization the end result might be greater customer
satisfaction. The delivery of exactly those features that are
desired by the customer, in a timely manner, and at a cost
that the customer is willing to pay appears to be a pattern for
success. One could argue that the various Apple iProducts all
follow this basic model. Apple products are often not as
feature-rich as their competitors but the features that they do
have are generally considered to be reliable and well crafted:
for example, the first iPhone lacked MMS functionality.

V. RESEARCH AGENDA

We do not yet have sufficient information on current
industrial practice related to customer inertia but our
industrial case experiences and the gaps in related work
suggested in Section I provide indications for the following
research directions:

 Integrate the customer inertia concept with the
software product management, innovation and
software product lines literature.

 Add a type of quality requirements that captures an
assessment of customer inertia and investigates its
relation with already defined quality attributes, e.g.
usability.

 Discover methods for identification and specification
of the customer inertia quality attribute as a part of
the requirements engineering and software product
management lifecycle, particularly prioritization.

 Research possible methods to identify which of the
already known quality requirement types may be
impacted by the customer inertia aspect of software
solutions.

 Develop a method to assess and analyze the learning
curve impact for customer inertia.

VI. CONCLUSIONS

Customer resistance to change, referred to herein as
customer inertia, is a proposed new type of quality
requirement identified in this work. This topic has received
relatively little attention in the RE literature despite its
demonstrable effect upon customer satisfaction.
 Assessments of customer inertia could be used as part of
a requirements prioritization process: inertia, coupled with
the intensity of innovation (evolutionary through to
revolutionary) could be used to assess the risk of bundling
certain groups of features together for a product release. Too
much innovation could be met with customer inertia
resistance while too little innovation may lead to loss of
market status in the eye of the consumer.
 An initial research agenda has been proposed and we
intend to proceed toward integration of customer inertia
with traditional requirements engineering beginning with a
more thorough integration with the existing literature.
Future work could also move toward those areas often the
domain of the business analyst, incorporating greater
knowledge of business goals and market intelligence in the
requirements process.

REFERENCES
[1] G. Kotonya and I. Sommerville, Requirements Engineering -

Processes and Technique, John Wiley & Sons, 1998.

[2] A. Aurum and C. Wohlin, “A value-based approach in requirements
engineering: explaining some of the fundamental concepts.” In Proc.
of the 13th International working conference on Requirements
Engineering: Foundation for Software Quality (REFSQ'07),
Trondheim, Norway 11-12 June 2007, P. Sawyer, B. Paech, and P.
Heymans (Eds.). Springer-Verlag, Heidelberg, pp. 109-115.

[3] C. Pohl, G. Böckle, and F. J. van der Linden, Software
Product Line Engineering: Foundations, Principles and
Techniques, Springer-Verlag, New York USA, 2005.

[4] C. Andriopoulos and M.W. Lewis, “Managing Innovation Paradoxes:
Ambidexterity Lessons from Leading Product Design Companies”,
Long Range Planning, vol 43, 2010, pp 104-122.

[5] The description of the Citroen C4 MK1 model can be found at
http://en.wikipedia.org/wiki/Citroën_C4

[6] The European Car of The Year competition website
http://en.wikipedia.org/wiki/European_Car_of_the_Year

[7] The discussion of the results of the survey about the Microsoft’s ribon
introduction can be accessed at
http://www.exceluser.com/explore/surveys/ribbon/ribbon-survey-
results.htm

[8] F. Patterson, M. Kerrin, G. Gatto-Roissard, and P. Coan, “Everyday
innovation: How to enhance innovative working in employees and
organisations”, NESTA research reports, pp. 1-54, 2009.

[9] C. Andriopoulos and M.W. Lewis, “Managing Innovation Paradoxes:
Ambidexterity Lessons from Leading Product Design Companies”,
Long Range Planning, 43, 2010, pp 104-122.

[10] R. D. Deward and J.E. Dutton, "The Adoption of Radical and
Incremental Innovations: An Empirical Analysis," Management
Science, vol. 32, Nov. 1986, pp. 1422-1433.

[11] T. Gorschek, S. Fricker, K. Palm, and S.A. Kunsamn, “A Lightweight
Innovation Process for Software-Intensive Product Development”,
IEEE Software, Jan. 2010, pp. 37-45, doi: 10.1109/MS.2009.164.

[12] L.M. Cysneiros and J.C.S.P. Leite, “Nonfunctional Requirements:
From Elicitation to Conceptual Models”, IEEE Transactions on
Software Engineering, vol. 30, May 2004, pp. 328-349, doi:
10.1109/TSE.2004.10.

[13] L. Chung and J.C.S do Prado Leite, “On Non-Functional
Requirements in Software Engineering”, Lecture Notes in Computer
Science, vol. 5600, Mar. 2009, pp. 363-379, doi: 10.1007/978-3-642-
02463-4_19. .

[14] J. Doerr and D. Kerkow and T. Koenig and T. Olsson and T. Suzuki,
“Non-functional requirements in industry - three case studies
adopting an experience-based NFR method”, Proc. of the 13th IEEE
International Conference on Requirements Engineering 2005, pp.
373-382, doi: 10.1109/RE.2005.47.

[15] H. Kaiya and A. Osada and K. Kaijiri, “Identifying stakeholders and
their preferences about NFR by comparing use case diagrams of
several existing systems”, Proc. of the 12th IEEE International
Conference on Requirements Engineering, April 2004, pp. 112-121,
doi: 10.1093/ietisy/e91-d.4.897.

[16] L. Chung and B.A. Nixon and E. Yu and J. Mylopoulos, NFR in
Software Engineering, Kluwer Academic Publishers, 2000.

[17] H-W. Jung, S-G. Kim and C-S. Chung, “Measuring software product
quality: A survey of ISO/IEC 9126,” IEEE Software, vol. 21, Sep.
2004, pp. 88-92, doi: 10.1109/MS.2004.1331309.

[18] Bertin, J., Semiology of Graphics: Diagrams, Networks, Maps. 1983,
Madison, Wisconsin, USA: University of Wisconsin Press

[19] The description of the Kano model can be accessed at
http://en.wikipedia.org/wiki/Kano_model

[20] http://www.networkworld.com/community/blog/offering-too-many-
products-or-features-bad-th

