
Engineering Open Innovation – towards a
Framework for Fostering Open Innovation

Krzysztof Wnuk and Per Runeson

Department of Computer Science, Lund University, Sweden
{Krzysztof.Wnuk,Per.Runeson}@cs.lth.se,

http://serg.cs.lth.se

Abstract. Open innovation is an emerging innovation paradigm that
can greatly accelerate technical knowledge innovation in software com-
panies. The increasing importance and density of software in today’s
products and services puts extensive pressure on excelling the discovery,
description and execution of innovation. Despite that, software engineer-
ing literature lacks methods, tools and frameworks for full exploitation
of technological advantages that open innovation can bring. This paper
proposes a software engineering framework, designed to foster open inno-
vation by designing and tailoring appropriate software engineering meth-
ods and tools. Furthermore, this paper discusses the methodological and
process dimensions and outlines challenge areas that should be reviewed
when transitioning to software engineering driven open innovation.

Key words: open innovation, software engineering framework, litera-
ture study, methodological and process study

1 Introduction

The development of software products is mainly driven by innovation [1]; i.e. the
novel utilization of technical knowledge to develop new products and services.
For example, Volvo, the truck company, estimates that 90 % of new innovations
are in the field of electronics, and 80 % thereof is software1. Similarly, most of the
innovation and resulting market success at Siemens originates from software [2].

A majority of the innovation within software intensive products is imple-
mented in software and increasingly dependent on a new paradigm called Open
Innovation(oi), which typically, but not necessarily is implemented using Open
Source Software (oss). In recent years, the influence of oi has become significant
in the development and evolution of software products and services, e.g. in the
Android ecosystem. Oi implies that no single firm or other actor is sufficient for
developing new products and services; instead several loosely connected organi-
zational actors interplay. The Oi context is characterized by: (1) collaborative
efforts over single company/person work, (2) loose connections over contractual
agreements, (3) demonstrated results over predictions and (4) bottom-up specifi-

1 http://www.swedsoft.se/Swedsoft SRA 2010.pdf



2 Krzysztof Wnuk et al.

cation approaches. These differences in characteristics make software engineering
practices significantly challenging.

Software, with its flexibility in multiple aspects, is an excellent enabler for
innovation. On the other hand, this flexibility must be managed, not to lose
control over the software. Hence, software engineering (se) in an oi context is a
major research challenge since engineering practices for in-house, contract-based
development may not be feasible. Therefore, we set out to define a framework
to support software engineering for open innovation.

This paper presents result from an exploratory literature study that consti-
tutes the first step of our efforts towards building a framework that aims to
synthesize a scientifically founded software engineering framework for open in-
novation. We review existing literature and map existing research as a basis for
new research [3]. Our goal is to develop new or adapt existing practices into a
framework that meet challenges in the multi-organizational, heterogeneous open
innovation context.

This paper is structured as follows: Section 2 outlines definitions and back-
ground, Section 3 presents the literature review results. Section 4 outlines the
engineering open innovation framework while Section 5 outlines future research
directions and concludes the paper.

2 Background and definitions

Open innovation was introduced by Chesbrough [4] as “a paradigm that assumes
that firms can and should use external ideas as well as internal ideas, and internal
and external paths to market, as the firms look to advance their technology” [4].
A more recent definition of open innovation by Lichtenthaler [5] focuses on “sys-
tematically relying on a firm’s dynamic capabilities of internally and externally
carrying out the major technology exploitation and acquisition tasks along the
innovation process”. This increased external stream of knowledge may result
in more disruptive innovations (i.e. taking large steps towards something new)
coexisting with sustaining innovations (i.e. continuously improving solutions to
create more value [6, 7]). This, in turn, increases the pressure for software en-
gineering methods that can cope with increased interoperability, flexibility and
significantly enhanced engineering characteristics.

The Oecd defines four main types of innovation in the Oslo manual [8],
product, process, marketing and organizational. The inherent characteristics of
software enable novel approaches to all four types of innovation. Product innova-
tion (the software itself) may bring new value to customers at negligible produc-
tion and distribution costs. Process innovation involves new means of develop-
ing software, e.g. OSS communities. Marketing innovations include new business
models, e.g. offering services at the price of being exposed to ads or sharing in-
formation. Organizational innovation includes new ways to work across different
actors, where open innovation is an example. All four types are interconnected
and therefore have to be researched in context.



Engineering Open Innovation 3

Android 
hardware + 

software 
platform

Android 
smartphone

Map 
service 
provider

Restaurant 
finder app User

Android 
software 
platform

Google ST-Ericsson Sony OpenMaps Startup X

Fig. 1. The Android eco-system as an example of a (partly) open innovation value
chain.

An example of a (partly) open innovation value chain is illustrated through
the Android eco-system in Figure 1. Google provides the (semi-)open Android
software platform to device suppliers, which in turn adapt the platform to their
and their customers’ specific needs. The Android platform contains million lines
of code adapted for hundreds of products, various hardware products, wireless
network standards and database systems. Service providers may offer map ser-
vices tailored to the Android phones (e.g. OpenMaps), which other app providers
may utilize to derive specialized map services, e.g. a restaurant finder by a local
startup company. This innovation chain is driven by several actors in collabo-
ration and dependencies on one another, with different individual goals, time
scales, size of organization, techniques etc. As one actor in the chain evolves its
parts, others must follow, but no single actor is in full control.

OSS is a mechanism that may embody the principles of open innovation. Oss
is not a new phenomenon on its own, however the novelty in recent years is the
widespread adoption in industry, where closed innovation used to be the domi-
nating paradigm, which requires new approaches to software development [9]. A
recent literature survey about oss identified a research gap in the area of oss
and open innovation [10]. Software ecosystems could also be one of the types of
open innovation where a network of collaborators constituting an ecosystem is
open [11]. Finally, there is a need for processes supporting large-scale develop-
ment with open innovation; companies typically apply the same processes as used
in closed innovation [9], while there certainly are opportunities for more tailored
processes to improve the efficiency and effectiveness of the development [12].

3 Literature review

We conducted a literature review using a hybrid approach by combining database
search (Compendex and Inspect), and snowball sampling. We selected a map-
ping study approach because our main goal was to explore the area rather than
synthesize the current state of the art [3]. We used the following search queries
(searched in titles, abstracts or subjects):

– open innovation AND requirements engineering
– open innovation AND software design
– open innovation AND software development
– open innovation AND software testing
– open innovation AND software
– software engineering AND innovation
– methodology OR method AND open innovation AND software



4 Krzysztof Wnuk et al.

Table 1. Classification of papers; research type according to Wieringa et al. [14].

Research type Techniques Tech & Proc Processes Methods

Validation [15] [16]
Evaluation1 [17] [18] [19]
Solution [20] [21] [22] [23] [24] [25] [26] [27]

[28] [29] [30] [31] [11]
Conceptual2 [32] [33]
Opinion [34] [35] [36] [37] [38] [39]
Experience [40] [41] [42] [43] [44] [45]
1 The original classification [14] only covers engineering research, while we here classify
also observational empirical studies as ‘Evaluation’, as they evaluate current practice.
2 Called ‘Philosophical’ originally.

– open innovation AND software as a service OR saas
– open innovation AND software AND eco system
– innovation AND software AND eco system

The above queries returned 1480 records that we checked by reading titles
and, if in scope, also abstracts. 32 papers were selected for full reading. We
categorized these papers into two dimensions; the first dimension categorized
the articles according to the topic of techniques, processes and research methods
while the second dimension of research type was created based on systematic
mapping guidelines [13, 14]. The classification is summarized in Table 1.

3.1 Software engineering techniques for open innovation

Five papers discussed or suggested a specific software engineering method or
technique for an open innovation context. El-Sharjawy and Schmid proposed
and experimentally evaluated an approach for deriving creative triggers from a
knowledge map of requirements [15], in a paper of validation type. We iden-
tified two opinion papers: Petrenko and Petrenko discussed the challenges of
using formal methods to analyze requirements and work with legacy code that
can foster what they called Innovation Economy [34] while Grube and Schmid
suggested which creativity techniques are appropriate for requirements engineer-
ing [35]. A conceptual paper by Kauppinen et al. argued that practitioners do
not see requirements engineering as a creative process and suggested focusing on
“unarticulated needs” to unlock more innovation from requirements engineer-
ing processes and techniques [32]. A solution using social networks to document
ideas and thus foster open innovation was proposed by Singer et al. [20].

The remaining 9 papers in the Techniques category were also touching upon
the Processes category (see Section 3.2). We found two opinion papers: one fo-
cusing on how to avoid innovation lock-in from a pre-planned variability model
of a software product line [36] and one focusing on sharing the source code and
opening bug-tracking tools with the clients [37]. Next, an experience paper by
Copeland suggested new ways of communicating the information about test-
ing [40]. Theodore et al. studied how outsourcing can inject tangible forms of

keczi
Highlight



Engineering Open Innovation 5

innovation [41] presenting an example of innovative testing methods (unfortu-
nately without detail about the methods) that originated from such a collabo-
ration and improved time-to-test by 90% and reduced cost by 70%.

Five papers, that we categorized in both the Techniques and Processes cat-
egories, focused on software development. One experience paper focused on in-
vestigating how software startups can use opportunistic and pragmatic reuse
to develop innovative products [42]. One evaluation paper focused on how ag-
ile development processes can become more open by utilizing outside-in and
inside-out process [17] models. Two solution papers proposed giving develop-
ers more authority on when and how to use innovative software development
techniques [21] and utilizing prototyping, agile methods, developers using prod-
ucts they develop and sharing knowledge to foster innovation [22]. Finally, one
validation paper experimentally concluded that leaving the developers free to de-
fine their own development processes is beneficial from the innovation diffusion
perspective [16].

3.2 Software engineering processes that foster open innovation

We categorized 14 articles as only concerning the software engineering processes
category. Ten papers presented various solutions, among which three supported
innovation selection processes by an audition-inspired process for screening, refin-
ing and selecting the most promising innovations [23], a knowledge management
scheme that supports transition of software innovations (also legacy systems)
to enterprise systems [24] and a method based on neuro-fuzzy decision trees for
innovation projects selection [25]. The prototyping approach to open innovation
was explored in two publications: Eklund and Bosch suggested turning the entire
R&D process into an innovation experiment system with direct customer involve-
ment in design decisions [26] while Bullinger et al. proposed an open prototyping
solution [27]. Misra et al. advocated using a GQM-based method to derive a mea-
surement framework for software innovation process [28] while Felfernig et al.
proposed utilizing artificial intelligence for open innovation in e-government con-
texts [29]. Jansen [11] focused on measuring the degree of openness of a software
organization. Two publications proposed solutions to explore open innovation
communities by visualizing people-innovation-networks [30] or modeling service
systems in terms of communities of co-innovation [31].

Among experience papers in this category, Hanssen [43] reported lessons
learned from opening up a software product line, observing that it improved the
ability to catch tacit requirements (related to unarticulated needs mentioned by
Kauppinen et al. [32]. Yilmaz discovered, based on a simulation, that decen-
tralized coordination schemes as well as moderate degrees of assertiveness result
in a higher incidence of innovation for open source software communities [44].
Carrero [45] discussed how service delivery platforms enable service providers to
achieve open innovation.

In a conceptual paper, Lyytinen and Damsgaard observed that the six con-
jectures of diffusion of innovation need to be revisited for complex and networked



6 Krzysztof Wnuk et al.

Technical 
dimension

Methodology 
dimension

Empirical data

Evaluation

Engineering
methods 
& tools

Research
methods
Theory

Fig. 2. Overview of framework dimensions and their relations

IT systems and additional issues should be considered [33]. In an evaluation pa-
per, Lane et al. concluded that finding a good balance between art and science,
allowing failures as a part of learning process, and trying different approaches
are important success factors for software innovative process [18]. To summarize,
although ten papers presented solutions ([11] [23] [24] [25] [26] [27] [28] [29] [30]
[31] ) only one evaluation paper was identified [18].

3.3 Software engineering research methodologies

An opinion paper by Bayer and Melone discussed challenges in applying diffusion
theory for software engineering technological innovations, outlining seven limita-
tions [38]. Prechelt and Oezbek outlined a research method solution for studying
open source software process innovation, suggesting that grounded theory is fea-
sible for deriving mini-theories about process innovation, but not focusing strictly
on open innovation [39]. In an evaluation paper, Rossi et al. proposed a quan-
titative instrument (based on stochastic models) for measuring the assimilation
gaps in IT innovation [19]. No solution paper was identified in this category.

4 Engineering the OI–SE Framework

The literature review in Section 3 brings supporting evidence for our re-
search efforts. We identified only three evaluation papers, see Table 1, none
strictly focusing on open innovation and mostly reporting exploratory evalua-
tions [17, 18, 19]. Both identified validation papers focused on internally derived
innovations [15, 16]. Among 12 identified solution papers, only four are devised
for open innovation [29, 30, 31, 11].

We address the open innovation issues from a product and process innovation
point of view, in the intersection with marketing and organizational innovation
perspectives [8]. Based on the literature review, we propose a framework having
two main dimensions, one technical and one methodological. The dimensions are
mutually dependent, as the technical dimension is the empirical basis for the
methodological part, and the methodological part is needed for the technical
part. Figure 2 gives an overview of the project and its dimensions, which is
inspired by Hevner’s design science model [46] and Wieringa et al [47].

4.1 Technical dimension

The technical dimension has two interrelated parts, see Figure 2: 1) software
engineering techniques, such as requirements engineering, software design, soft-
ware development and software testing techniques, and 2) software engineering



Engineering Open Innovation 7

processes as an integrating part of the above mentioned techniques. We be-
lieve (providing empirical evidence for our hypotheses is one of the goals of the
framework) that using appropriate techniques and analyzing the outcomes of
these techniques can foster open innovation.

Requirements: requirements engineering research has evolved from concen-
trating on the specification problem in the 1990’s to pursuing wide and open-
ended investigations of the conception and strategic evolution of software in re-
lation to decision-making on enterprise, product/service and project levels. The
integrated strategic and tactical decision-making needed in large-scale engineer-
ing projects is a key challenge for software engineering for open innovation [48].
However, papers identified during the literature review focus mainly on support-
ing the discovery of innovation [15, 20, 32, 34].

We build on previous research and focus on release-planning [48, 49], stake-
holder analysis, trade-off between effort (cost) and value and the degree of in-
novation in candidate features needed in evolving systems, to take significant
future market shares in open innovation software development [48, 50].

Design: efficient software architectures for open innovation should enable
open and seamless integration of externally acquired modules. Among idenfitied
papers, Böckle [36] postulated that software product lines are generally hindering
innovation and that variability locks in innovation as it focuses on reusing the
same code and thus minimizing creative adaptations. Moreover, software product
lines are designed with a premise that the same code will be used for a long time,
which directly hinders disruptive innovation. Similarly, a software design with
high coupling may be hindering open innovation as new modules and sub-systems
could not be easily integrated. Thus, there seems to be a need for evolution from
traditional SPLs toward software ecosystems [36] which introduced necessary
flexibility in an organizational matter.

Development: is pair programming going to result in more innovation that
other programming techniques? This is just an example question that should
be investigated in the framework. Green suggested [21] that giving developers
more authority on when to use the development technique innovations helps to
actually use them rather than drop them. Sharing the source code and bug-
tracking system [37] or open prototyping [28] also seem to be fostering inno-
vation. However, identified studies focus on development processes rather than
techniques [16, 17, 21, 28, 22, 37, 26]. Among identified studies, Jansen [11] pre-
sented a model for establishing the degree of openness of a software organization.
Further empirical investigations are needed to yield concrete examples of which
development techniques foster open innovation.

Testing: Software testing in open innovation has a dual role: 1) to verify
functions and characteristics of open components and services, supplied by oth-
ers, and 2) to verify functions and characteristics of services delivered to stake-
holders higher up in the value chain; ultimately end users. Since specifications
and contracts are sparse in the open innovation context, they have to be defined
otherwise.



8 Krzysztof Wnuk et al.

Test driven development is a method which has proven feasible in a dynamic
practice [51]. Its combination of specification and test [52] can be tailored for
use in open innovation. Software engineering in open innovation tends to be
very iterative, and thus regression testing is a key issue. We build on previous
findings [53, 54] and adapt test selection and prioritization approaches to open
innovation, as well as using it to detect changes in the environment [55].

Efficient processes: The move towards agile processes have substantially
changed software engineering practices during the last decade. The efficiency
of some practices have been empirically demonstrated [56], and the positive
attitudes of engineers “being in control” are witnessed [21, 22, 55]. Still, the
efficiency of agile (or other) practices in open innovation is not targeted; our
review identified only one evaluation paper [17] and one validation paper [16] in
this area. Further, most studies either focus on the small or the large context,
e.g. [23, 24, 26, 43], but in OI we have small contexts within the larger context.

We plan to investigate the issue of stakeholders and stakeholder repre-
sentatives in an open innovation context [55]. Further, mechanisms for syn-
chronizing different actors in the open innovation value chain are planned to
be researched [48], based on observations of different actors in open source
projects [57]. We also plan to explore how open source practices can support
openness across groups and other organizational borders within closed organi-
zations. Findings should be embodied in practice models for small actors in a
large context, enabling growth, as previously done on testing practices for small
companies [58].

4.2 Methodological dimension

Studying software engineering for open innovation must be an empirical endeavor
since we are addressing complex phenomena in the real world. The question is
which type of empirical study is to be conducted.

Prechelt and Oezbek conducted four studies on oss process innovation, and
concluded that using mailing list archives was the most efficient research method,
compared to direct participation and polling developers for data [39]. The easy
access to electronically searchable information is probably one of the key rea-
sons for the popularity on conducting research in oss archives, independently of
whether purpose of the research is open or proprietary software [59].

The scope of the open innovation framework is wider than oss projects only.
This, combined with general advice on using research method triangulation, lead
us to propose combining archival studies with participant-observer studies [60],
to enable insights into the dynamics of the open innovation.

Building synthesized knowledge from the empirical observation needs repli-
cation of studies [61], synthesis of findings from several empirical studies [62],
as well as work in theory building [63]. However, these needs are general for
software engineering, and not specific to the open innovation aspects.



Engineering Open Innovation 9

5 Conclusions

Our review of the related literature remains incomplete (the results presented in
Section 3 are preliminary). However, we can identify three research areas where
both researchers and practitioners can benefit: (1) providing practical guidelines
for selecting the most appropriate requirements engineering, software design,
software development and software testing techniques for open innovation, (2)
researching software engineering processes that support open innovation and (3)
finding new research methodologies for conducting software engineering research
in open innovation contexts.

In the intersection between different types of innovation (product, process,
marketing and organizational [8]), there is a significant potential for software
innovations. Especially the intersection between software engineering and open
innovation lacks empirical research, as shown in our literature review, which we
hope and aim that our research framework will foster.

Future work should focus on investigating if the presented framework could
support the intrinsic creativity and unpredictability of innovation. Furthermore,
we plan to explore and possible identify activities that can not be clearly cat-
egorized into the four traditional software development process steps. As we
only searched Compendex and Inspect, more databases should be searched and
the literature review should be replicated in a systematic way. Finally, we plan
to investigate the possible relationships between the business models and open
innovation.

Acknowledgements: The authors would like to thank David Callele for excellent
reviews of this paper. This work is founded by the SYNERGIES project, Swedish
National Science Foundation, grant 621-2012-5354.

References

1. Quinn, J.B., Baruch, J.J., Zien, K.A.: Software-based innovation. Sloan Manage-
ment Review 37(4) (1996) 11–24

2. Achatz, R.: Product line engineering at siemens – challenges and success factors: A
report on industrial experiences in product line engineering. In: Software Product
Line Conference (SPLC), 2011 15th International. (aug. 2011) 10–11

3. Kitchenham, B.A., Budgen, D., Brereton, O.P.: Using mapping studies as the basis
for further research - a participant-observer case study. Information & Software
Technology 53(6) (2011) 638–651

4. Chesbrough, H.: Open Innovation: The new imperative for creating and profiting
from technology. Boston: Harvard Business School Press (2003)

5. Lichtenthaler, U.: Open innovation in practice: An analysis of strategic approaches
to technology transactions. IEEE Trans. on Eng. Mgmt 55(1) (2008) 148–157

6. Khurum, M., Gorschek, T., Wilson, M.: The software value map an exhaustive col-
lection of value aspects for the development of software intensive products. Journal
of Software: Evolution and Process (2012) n/a–n/a



10 Krzysztof Wnuk et al.

7. Khurum, M., Aslam, K., Gorschek, T.: A method for early requirements triage and
selection utilizing product strategies. In: Proc. of the 4th Asia-Pacific Software
Engineering Conf. APSEC ’07, IEEE Computer Society (2007) 97–104

8. : Oslo Manual – Guidelines for collecting and interpreting innovation data. 3rd
edn. OECD and Eurostat (2005)

9. Höst, M., Orucevic-Alagic, A., Runeson, P.: Usage of open source in commercial
software product development - findings from a focus group meeting. In: 12th Int.
PROFES Conference. Volume 6759 of LNBIP., Springer (2011) 143–155

10. Höst, M., Orucevic-Alagic, A.: A systematic review of research on open source
software in commercial software product development. Information and Software
Technology 53(6) (2011) 616–624

11. Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L.: Shades of gray: Opening
up a software producing organization with the open software enterprise model.
Journal of Systems and Software 85(7) (2012) 1495–1510

12. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source soft-
ware development: Apache and mozilla. ACM Trans. Softw. Eng. Methodol. 11(3)
(2002) 309–346

13. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in
software engineering. In: Proc. 12th Int. Conf. Evaluation and Assessment in Soft.
Eng. EASE’08, UK, British Computer Society (2008) 68–77

14. Wieringa, R., Maiden, N., Mead, N., Rolland, C.: Requirements engineering paper
classification and evaluation criteria: a proposal and a discussion. Requirement
Engineering 11 (2006) 102–107

15. El-Sharkawy, S., Schmid, K.: A heuristic approach for supporting product inno-
vation in requirements engineering: a controlled experiment. In: Proc. of the 17th
REFSQ Conference, Heidelberg, Springer-Verlag (2011) 78–93

16. Tortorella, M., Visaggio, G.: Empirical investigation of innovation diffusion in a
software process. International Journal of Software Engineering and Knowledge
Engineering 09(05) (1999) 595–621

17. Conboy, K., Morgan, L.: Beyond the customer: Opening the agile systems devel-
opment process. Inf. and Soft. Techn. 53(5) (2011) 535–542

18. Lane, J.A., Boehm, B., Bolas, M., Madni, A., Turner, R.: Critical success factors
for rapid, innovative solutions. In: Proc. of the Int. Conf. on New modeling concepts
for today’s software processes. ICSP’10, Heidelberg, Springer-Verlag (2010) 52–61

19. Rossi, B., Russo, B., Succi, G.: Path dependent stochastic models to detect planned
and actual technology use: A case study of openoffice. Inf. and Soft. Techn. 53(11)
(2011) 1209–1226

20. Singer, L., Seyff, N., Fricker, S.A.: Online social networks as a catalyst for software
and it innovation. In: Proc. of the 4th Int. workshop on Social soft. eng. SSE ’11,
New York, USA, ACM (2011) 1–5

21. Green, G., Hevner, A.: The successful diffusion of innovations: guidance for soft-
ware development organizations. IEEE Soft. 17(6) (nov-dec 2000) 96–103

22. Moe, N., Barney, S., Aurum, A., Khurum, M., Wohlin, C., Barney, H., Gorschek,
T., Winata, M.: Fostering and sustaining innovation in a fast growing agile com-
pany. In: Product-Focused Software Process Improvement. Volume 7343 of LNCS.
Springer Berlin Heidelberg (2012) 160–174

23. Gorschek, T., Fricker, S., Palm, K.: A lightweight innovation process for software-
intensive product development. IEEE Soft. 27(1) (jan-feb 2010) 37–45

24. Corbin, R.D., Dunbar, C.B., Zhu, Q.: A three-tier knowledge management scheme
for software engineering support and innovation. Journal of Systems and Software
80(9) (2007) 1494–1505



Engineering Open Innovation 11

25. Hongxia, J., Jianna, Z., Xiaoxuan, C.: The application of neuro-fuzzy decision
tree in optimal selection of technological innovation projects. In: Eighth ACIS
International SNPD Conference. Volume 3. (aug 2007) 438 –443

26. Eklund, U., Bosch, J.: Architecture for large-scale innovation experiment systems.
In: Working IEEE Conf. on Soft. Architecture. (2012) 244–248

27. Bullinger, A.C., Hoffmann, H., Leimeister, J.M.: The next step - open prototyping,
Helsinki, Finland (2011)

28. Misra, S.C., Kumar, V., Kumar, U.: Goal-driven measurement framework for
software innovation processes. In Arabnia, H.R., Reza, H., eds.: Proc. of the Int.
Conf. on Soft. Eng. Research and Practice, CSREA Press (2005) 710–716

29. Felfernig, A., Russ, C., Wundara, M.: Toolkits supporting open innovation in e-
government. In: Proc. of the Sixth Int. Conf. on Enterprise Information Systems,
Porto, Portugal (2004) 296–302

30. Friess, M., Groh, G., Reinhardt, M.: Supporting open innovation communities by
an interactive network visualization. In: Proceedings of the IADIS International
Conferences, New York, NY, USA (2010) 23–8

31. Janner, T., Schroth, C., Schmid, B.: Modelling service systems for collaborative
innovation in the enterprise software industry - the st. gallen media reference model
applied. In: IEEE Int. Conf. on Services Computing. Volume 2. (2008) 145–152

32. Kauppinen, M., Savolainen, J., Mannisto, T.: Requirements engineering as a driver
for innovations. In: 15th IEEE Int. Req. Eng. Conference. (2007) 15–20

33. Lyytinen, K., Damsgaard, J.: What’s wrong with the diffusion of innovation theory.
In: Fourth Working Conf. on Diffusing Software Products and Process Innovations,
The Netherlands, Kluwer, B.V. (2001) 173–190

34. Petrenko, A.K., Petrenko, O.L.: Formal methods and innovation economy: Facing
new challenges. In: Proc. of the 6th IEEE Int. Conf. on Software Engineering and
Formal Methods. SEFM ’08, Washington, DC, USA, IEEE CS (2008) 367–371

35. Grube, P., Schmid, K.: Selecting creativity techniques for innovative requirements
engineering. In: 3rd Int. Workshop on Multimedia and Enjoyable Requirements
Engineering. (sept. 2008) 32–36

36. Bockle, G.: Innovation management for product line engineering organizations. In
Obbink, H., Pohl, K., eds.: Software Product Lines. Volume 3714 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2005) 124–134

37. Riepula, M.: Sharing source code with clients: A hybrid business and development
model. Software, IEEE 28(4) (july-aug. 2011) 36 –41

38. Bayer, J., Melone, N.: A critique of diffusion theory as a managerial framework for
understanding adoption of software engineering innovations. Journal of Systems
and Software 9(2) (1989) 161–166

39. Prechelt, L., Oezbek, C.: The search for a research method for studying oss process
innovation. Empirical Softw. Engg. 16(4) (August 2011) 514–537

40. Copeland, P.: Google’s innovation factory: Testing, culture, and infrastructure. In:
Third Int. Conf. on Soft. Testing, Verification and Validation. (april 2010) 11–14

41. Forbath, T., Brooks, P., Dass, A.: Beyond cost reduction: Using collaboration to
increase innovation in global software development projects. In: IEEE Int. Conf.
on Global Soft. Eng (ICGSE). (aug. 2008) 205–209

42. Jansen, S., Brinkkemper, S., Hunink, I., Demir, C.: Pragmatic and opportunistic
reuse in innovative start-up companies. IEEE Soft. 25(6) (nov.-dec. 2008) 42–49

43. Hanssen, G.K.: Opening up software product line engineering. In: Proceedings of
the 2010 ICSE Workshop on Product Line Approaches in Software Engineering.
PLEASE ’10, New York, NY, USA, ACM (2010) 1–7



12 Krzysztof Wnuk et al.

44. Yilmaz, L.: An agent simulation study on conflict, community climate and inno-
vation in open source communities. IJOSSP 1(4) (2009) 1–25

45. Carrero, M.: Innovation for the web 2.0 era. Computer 42(11) (2009) 96–8
46. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems

research. MIS Quarterly 28(1) (2004) 75–105
47. Wieringa, R., Daneva, M., Condori-Fernández, N.: The structure of design theories,

and an analysis of their use in software engineering experiments. In: Proc. 5th Int.
Symp. on Empirical Software Engineering and Measurement, IEEE (2011) 295–304

48. Wnuk, K., Pfahl, D., Callele, D., Karlsson, E.A.: How can open source software
development help requirements management gain the potential of open innovation:
an exploratory study. In: Proc. of the ESEM 2012 Symposium, New York, USA,
ACM (2012) 271–280

49. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., och Dag, J.N.: An industrial
survey of requirements interdependencies in software product release plannin. In:
5th IEEE Int. Symposium on Req. Eng., Toronto, Canada (2001) 84–93

50. Wnuk, K., Callele, D., Regnell, B.: Guiding requirements scoping using roi: To-
wards agility, openness and waste reduction. In: 18th IEEE International Require-
ments Engineering Conference, Sydney, Australia (2010) 409–410

51. Williams, L., Maximilien, E., Vouk, M.: Test-driven development as a defect-
reduction practice. In: 14th Int. Symp. on Soft. Reliability Eng. (2003) 34–45

52. Regnell, B., Runeson, P.: Combining scenario-based requirements with static ver-
ification and dynamic testing. In: 4th Int. Working Conference Requirements En-
gineering: Foundation for Software Quality. (1998) 195–206

53. Engström, E., Runeson, P.: A qualitative survey of regression testing practices.
In: 11th PROFES Conference. Volume 6156 of LNCS., Springer (2010) 3–16

54. Engström, E., Runeson, P., Skoglund, M.: A systematic review on regression test
selection techniques. Information and Software Technology 52(1) (2010) 14–30

55. Karlström, D., Runeson, P.: Integrating agile software development into stage-gate
managed product development. Emp. Soft. Eng. 11(2) (2006) 203–225

56. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-
tematic review. Information and Software Technology 50(9-10) (2008) 833–859

57. Orucevic-Alagic, A., Höst, M.: A case study on the transformation from proprietary
to open source software. In: IFIP Advances in Information and Communication
Technology. Volume 319., Springer (2010) 367–372

58. Karlström, D., Runeson, P., Nordén, S.: A minimal test practice framework for
emerging software organizations. Soft. Testing, Verification and Reliability 15(3)
(2005) 145–166

59. Robinson, B., Francis, P.: Improving industrial adoption of software engineering
research: a comparison of open and closed source software. In: Proceedings of the
ESEM Conference, 2010, Bolzano, Italy, ACM (2010)

60. Runeson, P., Höst, M., Rainer, A.W., Regnell, B.: Case Study Research in Software
Engineering. Guidelines and Examples. Wiley (2012)

61. Schmidt, S.: Shall we really do it again? the powerful concept of replication is
neglected in the social sciences. Review of General Psych. 13(2) (2009) 90–100

62. Cruzes, D.S., Dyb̊a, T., Runeson, P., Höst, M.: Case studies synthesis: Brief experi-
ence and challenges for the future. In: Proceedings of the 2011 ESEM symposium,
Banff, Canada (2011)

63. Sjøberg, D.I.K., Dyb̊a, T., Anda, B., Hannay, J.E.: Building theories in software
engineering. In: Guide to Advanced Empirical Soft. Eng. Springer-Verlag (2008)


