
Towards scalable information modeling of requirements
architectures

Krzysztof Wnuk1, Markus Borg1, Saïd Assar1, 2,

1Department of Computer Science, Lund University, Lund Sweden,

2 Telecom Ecole de Management, France
{Krzysztof.Wnuk, Markus.Borg}@cs.lth.se, said.assar@it-

sudparis.eu

Abstract. The amount of data in large-scale software engineering contexts con-
tinues to grow and challenges efficiency of software engineering efforts. At the
same time, information related to requirements plays a vital role in the success
of software products and projects. To face the current challenges in software
engineering information management, software companies need to reconsider
the current models of information. In this paper, we present a modeling frame-
work for requirements artifacts dedicated to a large-scale market-driven re-
quirements engineering context. The underlying meta-model is grounded in a
clear industrial need for improved flexible models for storing requirements en-
gineering information. The presented framework is created in collaboration
with industry and initially evaluated by industry practitioners from three large
companies. Participants of the evaluation positively evaluated the presented
modeling framework as well as pointed out directions for further research and
improvements.

Keywords: Large-scale requirements engineering, requirements architectures,
empirical study, requirements modeling.

1 Introduction

Requirements engineering is an important part of the software development lifecycle
as it helps to identify what should be implemented in software products to make them
successful. As a knowledge intense part of the software development process, re-
quirements engineering contributes to the generation of large amounts of information
that need to be managed.
 The size and complexity of software engineering artifacts continues to grow as a
result of increasing complexity of software intensive systems. As a result, software
development companies that operate globally often have to face the challenges of
storing over 10 000 requirements in the requirements database [2,4]. The amount of
information to manage increases even more if we consider additional software devel-
opment information such as product strategies, design documents, test case descrip-
tions and defect reports.

mailto:Markus.Borg%7D@cs.lth.se

 In a recent study, we introduced a classification of requirements engineering con-
texts based on the number of requirements and the number of interdependencies be-
tween requirements as a proxy for complexity [2]. We defined Very-Large Scale Re-
quirements Engineering (VLSRE) as a context where the number of requirements and
interdependencies exceeds 10 000 and manually managing a complete set of interde-
pendencies among small bundles of requirements is unfeasible in practice. While
empirically exploring challenges in VLSRE, we discovered that one of the challenges
in VLSRE is to define and properly manage structures of requirements information,
also called requirements architectures [10]. Defining a model for requirements related
information could help in this and other related challenges of VLSRE. The challenge
lies not only in dealing with the heterogeneity of artifacts structure that need to be
managed all along the software project, but also in dealing with the frequent evolution
of these structures during the lifetime of the software project.
 In this paper we present a general modeling framework for requirements infor-
mation in VLSRE projects created in close collaboration with industry. The underly-
ing meta-model can describe not only requirements, but also any other pieces of rele-
vant software development information, as suggested by our industry partners. The
novelty of the approach lies in its capacity to explicitly involve external sources of
information and in handling the temporal aspect related to the evolution of artifacts’
structures. We conducted an initial validation of our approach with 5 practitioners
from 3 companies to collect feedback, opinions and improvement proposals regarding
the framework. All five respondents positively evaluated the general usefulness of the
approach and provided insights and suggestions for further development and im-
provement of the modeling framework.
 This paper is structured as follows: section 2 presents background, related work,
outlines an example industrial context based of one of our industrial partners and
explains the need for creating the modeling framework. Section 3 presents the re-
search design of the study. Section 4 presents the modeling framework while section
5 presents the results of the initial evaluation of the model with industry practitioners.
Section 6 discusses the limitations of the model, outlines future work and concludes
the paper.

2 Large-scale requirements engineering and information
landscape on an empirical example

Most work in an enterprise is accompanied by some form of knowledge representa-
tion in documents [11]. Documentation is fundamental in requirements engineering,
as the lack of complete specifications is a major cause of project failures [12]. How-
ever, storing too much documentation risks burdening employers by an ever-
increasing amount of information. Information overload occurs when an individual’s
information processing capabilities are exceeded by the information processing re-
quirements, i.e. the individual does not have enough time or capability to process all
presented information [14]. Several studies have found that the support for decision-

making is positively correlated to the amount of presented information up to a certain
point, and then it declines [13, 15, 16].

In software engineering projects, large amounts of formal and informal information
is continuously produced and modified [5, 6]. Thus, an important characteristic of
artifacts’ information in software engineering projects is its findability, defined as
“the degree to which a system or environment supports navigation and retrieval” [7].
Information seeking is an increasingly costly activity among knowledge workers in
general [8]. Software engineering projects are no exceptions, as identified by previous
case studies in this context [5, 9].

We present an example of a VLSRE context based on a longitudinal study we have
been conducting at a large company since fall 2007. Focusing on feature tracking, we
observed the structure of information related to product features and the associated
detailed requirements, and the evolution of this structure over time and over projects.
Together with observing the evolution of the information structure, we have in fall
2007 conducted 7 in-depth interviews to understand the role of information structures
and their impact on the VLSRE context. Partial results from this study were published
in [3, 10]. During these 7 interviews, we have conceptualized the following picture of
the information landscape while managing requirements and features in a VLSRE
context, see Fig.1.

In an example of a VLSRE context, we have key customers submitting their re-
quirements specifications to the requirements repository, and suppliers receiving
specifications based on interpretations of these key customers’ wishes and market
trends. Special teams of experts (STEs) together with product planning, assisted by
requirements analysts and business analysts, create natural language descriptions of
candidate future software features. The features are later refined by STEs to a set of
more detailed system requirements and merged into the current requirements architec-
ture. As it is indicated in Fig. 1, every new specification deliverable contains partial
requirements structures that should fit within requirements architecture and be merged
with the requirements repository.
 The current number of features in the repository exceeds 8000 and the number of
attributes associated with the features exceeds 50. Thus, the amount of information to
manage is substantial. Moreover, the efficiency of requirements engineering and
software development efforts depend on the accuracy, understandability and cohesion,
robustness, extensibility and flexibility of the information structure [3].

3 Research design

 To evaluate a modeling method or technique, a large set of approaches are possi-
ble such as feature comparison, conceptual investigation or empirical evaluation [17].
This study adopts an empirical perspective and has been conducted in an action re-
search mode. In action research studies, researchers make an attempt to solve a real-
word problem. At the same time, researchers investigate the experiences and prob-
lems encountered while trying to solve the problem [18]. In our case, a need for de-
veloping a model for requirements information was stated by our industry partners

during the interviews in 2007. Following that authentic need, we have conducted
several unstructured brainstorming sessions and discussion meetings with our industry
partners where we further discussed the need for the model and the high-level content
of it. Moreover, we have studied the current information models used at the case
company and identified their strong and weak points that were also discussed during
the brainstorming sessions. Based on the result of these empirical investigations, we
propose a framework for requirements information modeling presented in section 4.
This framework exploits a traceability meta-models developed previously [20].

 We conducted 5 interviews at 3 companies to perform the initial validation of the
model. The interviews were semi-structured which means that there was a possibility
to discuss aspects not covered by the interview instrument [1]. Each interview took up
to 60 minutes and was attended by one researcher; who moderated the discussion and
took extensive notes; and one interviewee. At the beginning of each interview, the
research goals and objectives were outlined to the interviewees. Next, we discussed
the information model. Further, specific questions regarding the general usefulness of
the modeling framework followed by specific questions regarding the elements of the

Legend:

 Requirements

 structures

 External

 Stakeholder

Internal

 Organizational unit

 Requirements flow

STEs

Requirements
Analysts

Product
Management

Key customers
Suppliers

Product
Implementation

Requirements repository

Fig. 1. An example of requirements engineering information flow in a VLSRE context.

underlying meta-model were asked. Finally, we collected the interviewees’ opinions
regarding the limitations of the model and suggestions for improvements of the mod-
eling framework.

4 The iMORE framework

The core of the iMORE (information Modeling in Requirements Engineering) frame-
work is the distinction between the external information structures and internal infor-
mation structures, outlined in Fig. 2 by a dashed line. The importance of including
external information structures was stressed several times by our industrial practition-
ers during the development of the modeling framework. This need for external infor-
mation structures is caused by several sources of requirements and other information
types that directly interact with the company, including competitors, suppliers, open
source components and other partners. For all abstraction levels of the model, there is
a need to be able to access external information while managing companies’ internal
information. For example, while looking at the source code, developers could check
similar or associated open source solutions.
 The structures of information are divided into three main blocks: the upstream, the
requirements and the downstream blocks. In the ‘upstream block’ all ‘high-level’
information is stored, including the goals, strategies and business needs. In the ‘re-
quirements block’ all requirements associated information is stored, including func-
tional requirements, quality requirements, constraints, legal requirements and regula-
tions. In the ‘downstream’ block the information related to the source code, is placed,
including bug reports, code documentation, and the source code itself.
 The last main element in the iMORE framework is handling temporal aspect of the
information structure, depicted in the vertical arrow in Fig 2. The temporal aspects
include capturing the evolution of the data models in terms of the evolution of the
artifacts and their associated structures. To deal with this issue, the underlying meta-
model defines 'Evolution' type of links between two artifacts. Using this category of
links, users can handle the evolution over time of artifacts and their structure.
 The information structure in each of the blocks is defined according to a simple
traceability meta-model derived from related works [19] and previous research [20].
In this meta-model (Fig. 3), the structure of an element to be stored in the repository
and to be traced in the software project is constructed using two generic concepts:
artifact and attribute. An attribute can be an atomic element of information (e.g. own-
er, release date, version number, URL) or any complex structure (e.g. list of modifica-
tion dates). The set of attributes is not only limited to a particular block of information
but may also cover several blocks or even the entire information structure creating a
set of ‘global’ attributes.

According to the user needs, any artifact in the repository can be linked to other ar-
tifacts. Five categories of links are predefined in the iMORE meta-model; they are
briefly explained using the following examples:

Fig. 2. The iMORE modeling framework.

Fig. 3. The iMORE meta-model

Upstream

Upstream

Upstream:
- Goals
- Strategies
- Business needs

Requirements
- Functional

 - Quality
- Constraints

Upstream
Downstream
- Source code
- Bug reports
- Code documentation

A
ttributes

&
 dependencies

UeaFeatures

UFeTest cases

Structures of external
information that contribute
and interact with the
company

External structures An internal structure

WHY

HOW

A company context

T
im

e evolution

- A requirement document A contributes to the specification of a design feature B
- A design feature A satisfies an external law based constraint B
- A design feature A depends on another design feature B
- A design specification A is the result of the evolution of a design specification B
- An external law based constraint A is the rationale for a requirement document B

These links are exploited in order to find linked elements and to navigate in the repos-
itory. If systematically provided by the users, such links can contribute to a full trace-
ability system. Such pre-traceability is often difficult to implement [21], and recent
works in requirements traceability advocate combining it with post-traceability based
on information retrieval techniques [22]. However, full pre- and post-traceability is
not the main goal of this proposal.

5 Discussion of the iMORE modeling framework with
practitioners

We present the discussion of the iMORE approach based on five interviews conduct-
ed at three companies. During the interviews, we discussed not only the iMORE ap-
proach but also the relationships between the suggested meta-model and the challeng-
es our practitioners face in their daily work. The results are outlined according to the
interview instrument that can be accessed online [1].

The need for requirements information modeling. All five respondents confirmed
the need for modeling requirements information in a more findable and understanda-
ble way. One respondent stressed that the need depends on the size of the company
indicating that it is much more important for larger projects and companies to have
effective requirements architectures in place. Another respondent indicated that the
current rather high-level model has limited application and is more suited for high-
level roles. Further, the same respondent stressed that the model may help to perform
cross-analysis between the projects. Finally, one respondent stressed that the main
goal for developing the model is to get better understanding of the knowledge of the
market needs and other ‘upstream’ information.

The distinction between the internal and external information in the iMORE
approach. Five respondents agreed to the distinction and stressed that external infor-
mation currently dominated their daily work. Among the types of external infor-
mation that our respondents need to browse are: standards and regulations, open
source code and documentation, marketing resources available on the Internet etc.
One respondent indicated that integrating regulations and laws to the model will be
counterproductive and it will make the model hard to manage as regulations and laws
can change frequently. Two other respondents mentioned that they access open source
project information very often since their software product is mostly based on that
solution. Those respondents also indicated that full integration of external open source
project information is practically unfeasible as these projects change frequently. Fur-
ther, one respondent indicated that external information is very important when “de-

veloping global services for large customers” which confirms our pre-understanding
of the importance of external sources of information for projects in VLSRE. Finally,
one respondent valued market and business related external information as the most
valuable among the external sources. All respondent confirmed that in a large-scale
MDRE context improved integration with external sources of information is im-
portant and desired.

Representation of attributes and dependencies in the iMORE approach. Two
respondents agreed to the idea of separating attributes and dependencies from the
requirements information. On the other hand, one respondent disagreed with this idea.
Two respondents suggested that dependencies between requirements information
elements are also a type of an attribute. Also, one respondent suggested that a “period
of validity” attribute should be added. This attribute will improve managing the tem-
poral aspect of the model by giving the engineers triggers and reminders about infor-
mation becoming outdated that requires their attention. Another respondent indicated
that the only important dependencies are one-way relations from visions to require-
ments and to code. Finally, one respondent suggested reusing patterns from data mod-
eling to investigate which attributes are shared and which are unique to an instance.

Managing the temporal aspect of the information structure. Surprisingly, one
respondent indicated that managing the temporal aspect of the information structure
isn’t so important. Another respondent suggested managing the temporal aspects of
the information structure by creating an attribute for every entity called “period of
validity”. After the period of validity expires the information would need to be up-
dated or deleted. Two respondents suggested implementing a similar system for man-
aging changes based on triggers generated by changes to selected important attributes
and entities in the information structure. Finally, one respondent suggested a method
based on combining baselines and trigger-based updates. When it is important, a
snapshot of external information should be taken and kept until it is no longer rele-
vant. There should be a mechanism of finding the differences between the snapshot
and the state of the information structure at the time when the snapshot became out of
date. Changes to selected important entities of information should trigger actions, for
example notification of substantial changes to the code base as oppose to bug fixes.

6 Conclusions and further work

Concise and quick access to information is critical in large organizations. Information
overload impedes knowledge workers both in decision making and information seek-
ing. In large-scale software development, challenging amounts of information are
produced and modified throughout the entire development lifecycle. Successful man-
agement of requirements is one central activity that demands a robust information
model. Increased dependence on external sources of information further stresses the
situation. Thus, providing an efficient modeling framework could limit the conse-
quences of information overload in software development projects.

 In this paper, we present a modeling framework for requirements-related infor-
mation for very-large market-driven requirements engineering contexts. The main
novelty of our model lies in involving external sources of information and stressing
the temporal aspect of the model. We evaluated our proposed with five industry prac-
titioners from three companies. All respondents agreed with the main ideas behind the
model. Moreover, they acknowledged that keeping and updating information struc-
tures in large scale software development projects is difficult. This finding is in line
with previous research in knowledge intensive organizations in general [8] and the
software development context in particular [5,9]. Also, our respondents confirmed
that including external sources of information and the temporal aspect are strengths of
our modeling framework.
 Regarding the place of the attributes in the model our respondents gave incon-
sistent answers. However, attributes were considered as a way of handling the chang-
es of the information structure over time. When queried about ways of managing the
time evolution of the model, our respondents suggested creating an attribute for every
entity called ‘period of validity’. In order to handle such needs, our approach is based
on meta-modeling so that information structures can be defined, modified and man-
aged all along the software project timeline. Our approach is in line with similar
works that recognize the important role of abstraction meta-levels in dealing with
information interoperability and traceability in software projects [23,24]. From an
implementation perspective, it was suggested managing changes in the repository
using triggers or by combining baselines and triggers together.
 Future works is projected in two directions. First, the iMORE framework pre-
sented here can be seen as a set of high level requirement for information architecture
and management in VLSRE context. As such, it can form the basis of an evaluation
framework for studying and assessing existing information management tools for
software engineering (e.g. Rational RequisitePro). A second direction is to further
explore stakeholders' requirements concerning information management and integra-
tion in very large software projects. This would include enhancing and validating the
information meta-model that is sketched in this paper.

References

1. Wnuk, K. The interview instrument can be accessed at
http://serg.cs.lth.se/fileadmin/serg/II.pdf (2012)

2. Regnell, B., Berntsson Svensson, R., and Wnuk, K.: Can We Beat the Complexity of Very
Large-Scale Requirements Engineering?. In: Paech, B., Rolland, C., (eds.) REFSQ 2008.
LNCS, vol. 5025, pp. 123-128. Springer-Verlag, Berlin, Heidelberg, (2008)

3. Wnuk, K., Regnell, B., and Berenbach, B.: Scaling Up Requirements Engineering – Ex-
ploring the Challenges of Increasing Size and Complexity in Market-Driven Software De-
velopment. In: Berry, D., Franch, X., (eds.) REFSQ 2011, LNCS 6606, pp. 54-59. Spring-
er-Verlag, Berlin, Heidelberg, (2011)

4. Berenbach, B., Paulish, D., J., Kazmeier, J., Rudorfer A.: Software & Systems Require-
ments Engineering: In Practice, McGraw-Hill, New York (2009)

5. Olsson, T.: Software Information Management in Requirements and Test Documentation.
Licentiate Thesis. Lund University, Sweden (2002)

http://serg.cs.lth.se/fileadmin/serg/II.pdf

6. Cleland-Huang, J., Chang, C. K, Christensen, M.: Event-based traceability for managing
evolutionary change. Trans. Soft. Eng. 29, 796-810 (2003)

7. Morville. P.: Ambient Findability: What We Find Changes Who We Become. O’Reilly
Media, (2005)

8. Karr-Wisniewski, P., Lu, Y.: When more is too much: Operationalizing technology over-
load and exploring its impact on knowledge worker productivity. Computers in Human
Behavior, 26, 1061-1072 (2010)

9. Sabaliauskaite, G., Loconsole, A., Engström, E., Unterkalmsteiner, M., Regnell, B., Rune-
son, P., Gorschek, T., Feldt, R.: Challenges in aligning requirements engineering and veri-
fication in a Large-Scale industrial context. In: Wieringa R., Persson, A, (eds.) REFSQ
2010. LNCS 6182, pp. 128-142. Springer-Verlag, Berlin, Heidelberg, (2010)

10. Wnuk, K., Regnell, B., Schrewelius, C.: Architecting and Coordinating Thousands of Re-
quirements – An Industrial Case Study. In: Glinz, M., Heymans, P. (eds.) REFSQ 2009,
LNCS 5512, pp. 118-123. Springer-Verlag Berlin Heidelberg (2009)

11. Zantout, H., Document management systems from current capabilities towards intelligent
information retrieval: an overview. Int. J. Inf. Management. 19, 471-484 (1999)

12. Gorschek, T., Svahnberg M., and Tejle K.: Introduction and Application of a Lightweight
Requirements Engineering Process Evaluation Method, Proc. of the 9th Int. Workshop on
Requirements Eng.: Foundation for Software Quality (REFSQ 2003), 101-112 (2003)

13. Swain, M. R., and Haka, S. F.: Effects of information load on capital budgeting decisions.
Behavioral Research in Accounting 12, 171–199 (2000)

14. Eppler, M., Mengis, J.: The Concept of Information Overload - A Review of Literature
from Organization Science, Accounting, Marketing, MIS, and Related Disciplines. The In-
formation Society. 20. 325-344 (2004)

15. Chewning, E. C., Jr., Harrell, A. M.: The effect of information load on decision makers’
cue utilization levels and decision quality in a financial distress decision task. Accounting,
Organizations and Society. 15, 527–542 (1990)

16. Cook, G. J. An empirical investigation of information search strategies with implications
for decision support system design. Decision Sciences 24, 683–699 (1993)

17. Siau, K., Rossi, M.: Evaluation techniques for systems analysis and design modeling
methods – a review and comparative analysis. Inf. Systems Journal. 21(3), 249-268 (2011)

18. Easterbrook, S., Singer, J., Storey, M-A., Damian, D.: Selecting Empirical Methods for
Software Engineering Research. In: F. Shull et al. (eds.) Guide to Advanced Empirical
Software Engineering, Springer, 285-311 (2008)

19. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. IEEE
Transactions on Software Engineering. 27(1), 58–93 (2001).

20. El Ghazi, H., Assar, S.: A multi view based traceability management method. In 2nd Int.
Conf. on Research Challenges in Inf. Science, 393-400. IEEE Computer Society, (2008)

21. Cleland-Huang, J., Settimi, R., Romanova, E., Berenbach, B., Clark, S.: Best Practices for
Automated Traceability. Computer. 40(6), 27–35 (2007)

22. Borg, M., Pfahl, D.: Do better IR tools improve the accuracy of engineers’ traceability re-
covery? Int. Workshop on Machine Learning Technologies in Soft. Eng., 27–34, (2011)

23. Terzi, S., Cassina, J., Panetto, H.: Development of a Metamodel to Foster Interoperability
along the Product Lifecycle Traceability. In: Konstantas, D., Bourrières, J.-P., Léonard,
M., et Boudjlida, N. (Eds.) Interoperability of Enterprise Software and Applications. 1-11.
Springer, London, UK (2006)

24. Cavalcanti, Y.C., do Carmo Machado, I., da Mota, P.A., Neto, S., Lobato, L.L., de Al-
meida, E.S., de Lemos Meira, S.R.: Towards metamodel support for variability and tracea-
bility in software product lines. Proc. of the 5th VaMoS Workshop ACM, NY, (2011)

	1 Introduction
	2 Large-scale requirements engineering and information landscape on an empirical example
	3 Research design
	4 The iMORE framework
	5 Discussion of the iMORE modeling framework with practitioners
	6 Conclusions and further work

