
An Industrial Case Study on Large-Scale Variability Management for
Product Configuration in the Mobile Handset Domain

Krzysztof Wnuk, Björn Regnell, Jonas Andersson and Samuel Nygren
Dept. of Computer Science, Lund University, Sweden

{krzysztof.wnuk, bjorn.regnell}@cs.lth.se

Abstract

Efficient variability management is a key issue in
large-scale product line engineering, where products
with different propositions are built on a common
platform. Variability management implies challenges
both on requirements engineering and configuration
management. This paper presents findings from an
improvement effort in an industrial case study
including the following contributions: problem
statements based on an interview study of current
practice, an improvement proposal that addresses the
challenges found, and an initial validation of the
proposal based on interviews with experts from the
case company.

1. Introduction

Software Product Lines have already proven to be a
successful approach in providing a strategic reuse of
assets within an organization [9]. In this context,
variability management is considered as one of the key
for successful product lines and concerns in all phases
of the software product line lifecycle [8]. We
experience considerable growth of the amount of
variability that has to be managed and supported in
software assets. Inspired by the previous fact, we have
conducted an industrial case study focusing on the
process of variability management at one of our
industrial partners in the mobile phone domain. The
topic of our investigation was an established product
line engineering process [9] in a company that sells
over 50 products every year worldwide in millions of
exemplars. Our goal for this study is to increase the
knowledge of how the products are configured by
studying current issues and if possible proposing and
evaluating improvements. To address the goal we have
formulated three research questions:

Q1: How are variability requirements and
variability points managed in software product lines
in practice?
Q2: What are the problems with managing
variability requirements and product derivation?
Q3: What improvements can be made in managing
variability?
The first two questions were addressed by an

interview study, were we have investigated the process
of product derivation [7] and the concept of managed
variability [9]. By using managed variability we refer
to defining and exploiting variability throughout the
different life cycle stages of a software product line [9].
In total 29 persons working with requirements
engineering, implementation and testing were
interviewed in order to understand how the variability
is represented, implemented, specified and bound
during the product configuration. As a result, a set of
challenges is defined and presented in this paper.
 To address Q3, we have proposed and evaluated
improvements to the current way of working. Our main
proposal includes a new structure of variability
information that aims at enable linking product
configuration to the initial requirements. It includes
splitting the configuration into two levels of
granularity. Additionally, we propose to use a main
product specification with entities that can be
consistently applied throughout the whole organization
and will address current documentation issues.
 Finally, we have empirically evaluated our
improvement proposals by applying them to the
existing configuration structure in a pilot study.
Additionally, we have conducted a survey by sending
questionnaires about the potential benefits and
drawbacks of our proposal. 28 out of 34 persons have
answered our questionnaire. Most of the respondents
expressed positive opinions about the proposal and did
not express any major obstacles that may apply to it.
 The reminder of this paper is organized as follows.
In section 2, we describe the industrial context of the

case study. In section 3, we provide a description of
research methodology. In section 4, we discuss
identified problems and issues. In section 5, we
describe improvement proposals, which we evaluate in
section 6. Section 7 presents related work and the paper
is concluded in Section 8.

2. Industrial Context

 The case study was performed at the company that
has more than 5 000 employees and develops
embedded systems for a global market. The company is
using a product line approach [9]. Each product line
covers different technologies and markets. The
software product lines in our case are organized in
clusters in two dimensions. The first dimension
represents product segments or product technologies,
and the second represents the code base that evolves
over time. In each of the clusters there is one lead
product built from the platform representing most of
the platform functionality. The lead product is scaled
down to create sub-products and new variants for other
markets and customers. Some of the sub-products
originating from the main product contain new features
[9]. The platform development process is separated
from the product development process as described by
Deelstra et. al in [7].

Organization. There are three groups of specialists
working with the requirements part of the platform
project: Requirements Engineers, Requirements
Coordinators and Product Requirements
Coordinators. Each technical area in the products
domain has a requirements engineers group responsible
for covering the progress in the focused field. Their
involvement in the projects is mainly focused on the
platform project where they supply high level
requirements derived from roadmaps, product concepts
and customer requirements. They are also main
responsible for the scoping process of the platform.
Requirements coordinators work between requirements
engineers and developers. Their main role is to
communicate requirements to the developers and assist
with creating detailed design documents and
requirements. Product requirements coordinators are
responsible for the communication of the requirements
between the product planner and requirements
engineers on the specific product level.
 The Development Teams are responsible for
implementing the software in the platform. They review
the requirements and estimate the effort needed for
implementation. Each new functionality is assigned to a
primary development team which is responsible for its

implementation in the software modules. Newly
implemented functionality is later tested before final
delivery to the platform. The different modules need to
be integrated and compiled to a full system. This stage
is done by the Product Configuration Managers
(PCMs) team which manages the different variants and
versions of the products created from the platform. The
compiled system is tested by a product focused testing
organization, Product Software Verification.

Requirements Management Process. The company is
using two types of containers to bundle requirements
for different purposes: Features and Configuration
Packages (CPs). As a feature we consider in this case a
bundle of requirements that we can estimate market
value and implementation effort and use those values
later in the project scoping and prioritization.
Configuration packages are used to differentiate the
products by selecting different packages for different
products. The company is using the similar approach to
CPs as described in [10], where a configuration
package is a set of requirements grouped to form a
logical unit of functionality. Every requirement has to
be associated with one or more CPs. The requirements
engineers list the changes and CPs in their area of
expertise in the Configuration Package Module. These
modules have dependencies between each other and
some of them are mutually exclusive [10]. CPs that are
common for all products in a cluster are marked with
an attribute stating that these packages cannot be
removed from a product configuration. Hardware
dependencies, which make individual requirements
valid or invalid for different products, are also
specified by the use of Configuration Dependencies on
the requirements level. The model is similar to the
Orthogonal Variability Model proposed by Pohl et al
[9].

Product Planning. Product Planners are responsible
for defining products from the platform available in a
cluster. They belong to the marketing division in the
company so their task is to create an attractive product
offer [3] rather than to perform the actual configuration
of it. The product planers establish a concept of a new
product which induces commercial overview, price
range, competitor analysis and gives an overview of the
high level requirements. This document serves as a
basis for the Product Configuration Specification,
which specifies the product based on capabilities
offered by the platform. The product configuration
specification specifies the configuration of a product
concerning both software and hardware using the
configuration packages defined in the configuration

package modules including configuration
dependencies. This model is also similar to the
Orthogonal Variability Model proposed by Pohl et al
[9]. The product configuration specification
corresponds to the application variability model of the
Orthogonal Variability Model.

Product Configuration Management. Product
Configuration Management teams are responsible for
integrating, building and managing variants in the
cluster. When configuring a new product in the cluster,
the product configuration manager uses hardware
constraints derived from a hardware specification for
each product in a cluster to set and configure the
software. At this stage, the traceability from the
configuration parameters to the requirements is crucial.
This part of the context is the subject for the
improvement proposal in section 5.

3. Research Methodology

In order to get a comprehensive picture of how

variability management is performed at our case
company, we decided to conduct a set of interviews
with various employees in various positions within the
company. The requirements management tool
architecture was also explored to understand how
variability is defined at the requirement level. During
this phase the persons involved in process improvement
for the requirements process were interviewed and
consulted with during the exploration of the
requirements management process.

The next step was to select key personnel to

interview in order to get as many different perspectives
how variability is managed and how products are
configured as possible. By analyzing the case
company’s product configuration interface, the amount
of variation for different development groups was

established. One group with a large amount of product
variations and one group with a small amount were
selected for further investigation. To cover the whole
process of variability, we have involved Product
Planners, Requirements Engineers, Requirements
Coordinators, Developers and System Testers in our
study.

The interviewed persons were selected based on
their position in the company. Some persons were
recommended by already interviewed. In some cases
the person that was asked to participate in our study
suggested a colleague as a replacement with the
motivation that he was more familiar with the area. In
total, 27 persons were interviewed. The interviews
were semi-structured in order to allow the interview to
change direction depending on the interviewee’s
answer, and adapted for the different roles and the
progress of the interview study. This approach balances
between early interviews that were more focused on the
general aspects with later more specific interviews. The
interviews took approximately one hour. During this
time interviewers took notes continuously which were
later summarized. During summarization, discrepancies
between interviewers interpretation were discussed
and, if needed, formulated as questions that were later
sent to the interviewee. Apart from the summary, the
interviewee also received a model of how he or she
perceived the process of variability management. After
interviewee approval, which sometimes was done after
some minor changes, the data was ready to be
analyzed. After interviewing 27 persons, it was decided
that the received overview of the current process was
satisfactory to proceed with analysis and propose
improvements. Sample questions used at the interviews
and distribution of interviewed personnel can be
accessed at [15].

4. Results

 In this section we present the results from our
interview study. We describe the different perspectives
on the configuration process, configuration activity
measurements, and finally the problems that were
identified.

4.1 Perspectives on the Configuration Process

 Most of the stakeholders have a common view of
how products are created. The product projects create a
product concept, which is then used by requirements
engineers in defining platform requirements. Later in
the process the product planners are involved in
creation and configuration of new products by creating

Literature
study

Interview
study, current
situation

Development of
improvement
proposal

Evaluation of
improvement
proposal

Figure 1. Research methodology.

change requests issues regarding both new and existing
functionality. When previously created formal change
request is accepted, it is send to the assigned
developers team which performs implementation or
configuration changes. The differentiation achieved in
this manner is not explicitly documented in product
specification but only in the minutes from the change
board meetings. In the next section, the deviation from
this common view is described, as well as the
differences from the documented process model.
 Product requirements coordinators, requirements
coordinators and requirements engineers have limited
knowledge about how variability is achieved due to
their focus on the platform. They also state that
developers do receive most of the configuration
instructions through bug report issues from product
planners, customer responsible and testers. We
discovered that some variability is stated in the
requirements’ text in an implicit way creating problems
with recognition and interpretation at the development
phase. Product planners’ knowledge about
configuration packages is limited and they have not
experienced the need for a better product
documentation than what is delivered in the concept
definition.
 The developers express the opinion that information
regarding variability is not communicated in a formal
way. Instead, they get information about variability
through their team leaders in a form of change requests
at the late stages of development. These change
requests are often used to configure products. The
creation of new variation points is done in the platform
project, and is therefore often based on assumptions
made by the developers out of the previous experiences
and informal communication with people involved in
the process. The main opinion is that the information
about what value that should be assigned to a variation
point is possessed by individuals. The information is
also not documented sufficiently in formal documents.
Requests for new variation points or values are
forwarded to the product configuration managers.
Product Configuration Management Perspective.
We discovered that the product derivation process is
iterative and similar to the one described by Deelsta et
al [7]. When a main product from a cluster is created
from the platform, it is based on the existing
configuration of the previous similar product. This
configuration is adjusted to the new hardware
specification for the platform. Since the amount of
configuration parameters in the configuration file has
increased significantly, and they are not sufficiently
documented product configuration managers are unable
to keep track of all changes.

 When a new product has been set up, it is built and
sent to the product testers. Their task is to test the
product and to try to discover software errors and
functionality that might be missing. At this stage it is
often difficult for the testers to determine whether
errors depend on faulty configuration or software
errors. Therefore they create a bug report towards the
developers to initiate investigation of the reason of the
failure. The errors are corrected by developers and new
source code is later sent back to the product
configuration manager, which is merging the delivered
code from all development groups.
 When the sub-product is created, the most similar
product configuration is copied from the previous
products. Next, the configuration manager responsible
for the sub-products is trying to configure the product
by checking product structure documentation and other
relevant information. The required information is
gained from multiple sources, which leads to the
double maintenance problem described by Babich [11],
where uncertainties about the values of variation points
are concluded by comparing with other projects. As a
result a time consuming investigations have to be
perform and very often influences the speed and
correctness of the product configuration.

Figure 2. Accumulated changes to the
configuration over milestones.

4.2. Configuration Activity Measurements

 In order to understand how the configuration is
changed over time, change related measurements were
defined. The configuration file was chosen for each
label of the code base in the cluster. Labels are used to
tag revisions of files produced by developers that are to
be used by product configuration manager. The
differences between each configuration file were

calculated in order to get measurements describing how
many parameters that were added, deleted or changed.
The results are visualized in figures 2 and 3. Note that
over 60% of the configuration changes are done after
the software has been shipped to the testers (MS Alfa).
 The results support our previous observations
derived from interviews, where developers admit that
they configure the products based on bug reports and
change requests. At the time this study was performed,
the configuration had over one thousand different
parameters available at the product level, spread across
a configuration file of thousands of lines. These
parameters were controlling over 30 000 variation
points in the source code with different levels of
granularity. Further analysis showed, that one
configuration parameter controls an average of 28
variations points, which suggests that most of the

Figure 3. Changes to the configuration over
milestones.

variability is quite fragmented. The source code
consists of millions of lines of code in more than 10
000 files, giving an average 250 lines of code per
variation point.

4.3. Problems Identified

 According to Van Der Linden et al [3], the
configuration manager should be responsible for
maintaining the configuration of all variants and
ensuring that the functionality for all products is
covered. In our case it remains unclear who is
responsible for binding the variation points of the
platform to create a specific products. As a result, we
experience creation of variation point that have no
specific owner. Furthermore, since most of the
development and architectural activities are platform
focused and a role such as Application Architect or
Product Architect responsible for binding variation

points of the platform to create specific products is not
present in the current organization [9]. The lack of
clear responsibilities results in an absence of clear,
specific and strategic goals and long term
improvements.
 The configuration of new products is achieved in an
iterative manner between developers, configuration
management and testers [7]. Due to the lack of a
specific ownership, the configuration is not always
properly reviewed, which is often a reason for missing
functionality. As a result, testing and maintenance
efforts may increase. The knowledge about product
derivation and variability is not formalized [7,10].
 As mentioned previously, the unrestricted rules for
creating and managing variation points results in their
excessive creation. Many variation points become
obsolete either due to the fact that they were not
created for product configuration purposes or because
of the complex dependencies. It is undefined who is
responsible for removing these obsolete variation
points from the configuration file. This fact makes the
configuration file hard to manage and overview.
 In our case, the flexibility that needs to be copied by
standardization of the product line [9], in the sense of
amount of variation points is too great and offers many
more configuration capabilities than is needed for
product configuration and differentiation. The number
of variation points, and their structure is too complex to
be managed by the people responsible for the product
configuration and differentiation. The variability
capabilities need to be more standardized and less
detailed to handle the costs associated with the
flexibility.
 The biggest challenge throughout the organization
turned out to be the lack of complete product
specifications, which may lead to the following
problems:

• Time consuming “detective” work where
information is gathered through informal
communication and unofficial documents.

• Faulty bug reports.
• Double maintenance of fragmented product

information that exists in different documents
and versions throughout the organization.

• Faulty configuration.
• Critical knowledge about variability

configuring products possessed by
individuals.

• Increased effort in verifying the configuration
of a product.

 These problems is tackled by the use of unofficial
documents specifying the product characteristics for
both hardware and software. The documents are

created in an informal way and are neither reviewed
nor a part of the formal approval process, but still used
throughout the organization. These documents and the
related process can be improved with respect to
configuration management, as uncontrolled
documentation procedures may result in unintended
product configurations.

5. Improvement Proposal

 In order to improve the issues presented in section
4.3, we have developed a set of improvements
regarding variability documentation, granularity and
management. In order to improve the variation point
granularity we propose to introduce an abstraction
layer in the configuration interface allowing a clear
separation between product configuration and feature
configuration. Regarding documentation issues, we
propose to use the product configuration specification
as the only source for the product differentiation
specification, which should be used by all stakeholders
involved in the product creation process.
Improved traceability between requirements and
variants. Our proposal will reuse the configuration
package concept, described in section 2, to associate
the configuration parameters with the requirements.
The configuration packages should be used by the
product planners to configure the products. By
associating the configuration packages with the
configuration parameters, traceability links to both
requirements and configuration parameters will be
established. The division into configuration packages
should be done in cooperation between developers and
requirements engineers to fully capture all possible
aspects of variability. Newly created variation points
should be explicitly documented and spread across all
stakeholders. This approach will result in a more
complete traceability between the configuration
packages and the configuration interface, and can be a
step towards the automatic generation of a product
configuration directly from the product configuration
specification in the future.
Abstraction layer. The overview of the proposed
abstraction level is described in figure 4. In the current
structure the configuration file contains all detailed
feature configuration on a very low level for all
products defined. The file is edited by both product
configuration managers and developers and because of
its size and granularity it is vulnerable and subject to
merge conflicts. Our proposal introduces a new
abstraction layer, CP-Conf, between the product
configuration interface and the software modules. The
low level configuration is moved into the lower layer,

and a high level product configuration based on the
configuration packages is used on the product
configuration level. This solution clearly separates the
responsibilities between the developers and the product
configuration manager, where the developers are

becoming responsible for the CP-Conf layer and the
modules associated with it. The product configuration
manager is only responsible for the high level product
configuration. To be able to introduce an abstraction
level, configuration parameters in the configuration file
need to be moved to a separated files where a
parameters belonging to a certain development team
reside. The specification of selected modules needs to
be in these separated files too, since it depends on the
selected configuration packages. However, the
definition of the module versions is a configuration
manager responsibility, associated with the integration
of the delivered software modules, and has to be
separated from the respective development team’s
configuration files. This division should remove many
of the false merge conflicts. Also, when this abstraction
layer is introduced and the parameters are named
according to the configuration packages, there should
be no need to change the existing variation point
naming since the parameters will be moved out from
the main configuration file. The solution is described in
figure 5.
New configuration parameters. Today the naming of
the configuration parameters includes a feature
description indicating what functionality the parameter
affects. However, the features in the configuration
parameters are not mapped to the requirements by
including an identifier connected to a specific

Proposed structure

Current structure

If (ProductA)
 CPM_ GenericPlayer=On

If (CPM_ GenericPlayer)
PLAYER_TYPE=GenericPlayer
AUDIOVISUALIZER = On

 METADATA_TAG_ALBUMART= On

If (ProductA)
PLAYER_TYPE=GenericPlayer
AUDIOVISUALIZER = On

 METADATA_TAG_ALBUMART=On

Product configuration

CP-Conf CP-Conf

CP-Conf

 M M M M M M M M M

M M M M M M M M M

Product configuration

Figure 4. Overview of the proposed
abstraction layer.

requirement. Since the feature names originate from
two sources, traceability is based only on human
reasoning. We propose a new standard for
configuration parameters where four types of
parameters are available:

• The existing low level parameters which are
presently used for product configuration.
To remove or change these parameters is an
infeasible work.

• The existing parameters which define the
hardware properties of the product should be
assigned a prefix CFG_HW. Today many of
the parameters created are hardware
dependent and could therefore be removed by
using the hardware properties instead of
creating new parameters. The syntax of the
parameters should include the serial number
from the hardware requirements specifying its
value.

• A new type of parameter for configuration
dependencies. The name should include the
dependency type (HW/FormFactor/
Customer/Market). The syntax can e.g. be
CD_<TYPE>_<NAME>.

• An internal binding should be used when
software varies non-significantly.

Documenting variability. Currently, the
documentation of variation points is not mandatory and
resulting in its incompleteness. Since developers in our
proposal will be responsible for the lower levels of
variability, the documentation process will be
simplified by responsible stakeholders’ constraining.
By introducing traceability between the product level
configuration interface and the configuration packages,
no further documentation is needed on the higher level.

The name standard will be descriptive and in line with
the configuration packages. It will enable stakeholders
to find more information in the requirements
management system, where the configuration packages
are defined, described and associated with
requirements.
Managing obsolete configurations. Many parameters
in the configuration file are obsolete. Because of that
we propose that the configuration file should be locked
for changes. Parameters that do change but have the
same value for all products should be moved to the
development team’s specific file, and should not be a
part of any configuration package. Similar to the
configuration parameters, obsolete configuration
packages that are not used in any product should be
moved out from the software product line. If a
configuration package is used in any product it should
be incorporated into the platform and removed from
the set of CPs.
 The values of hardware parameters should be
determined by analyzing the higher level hardware
parameters. In the same fashion as the configuration
packages, the high level hardware parameters should be
left at the product configuration level, while its
associated low level parameters should be moved to the
proposed low abstraction layer and owned by the
developers.
Availability of product specifications. All available
configuration packages in the platform should be
included in the product configuration specification, and
a connection to the previously mentioned abstraction
layer should be made. By applying this approach, the
task of configuring a new product will be simplified
and could possibly be automated in the future. The
automatic configuration file generation can be based
on the configuration packages defined in the
requirements management tool.

6. Evaluation of the Proposals

 The evaluation of the implemented proposals was
carried out as a desktop pilot [12], where the new
structure was applied to the existing structure. The
desktop pilot was run on a subset of the configurations
belonging to two development teams. Two developers
from each team, chosen based on their knowledge
about configuration parameters, have participated in
the redefinition part of the evaluation. The
configuration packages defined by requirements
engineers were used to group the existing low level
configuration parameters, as described in the proposal.
This was done in cooperation with the developers.
When parameters could not be linked to a certain

<includes>

Configuration file

Camera.cfg

Multimedia.cfg

If (ProductA)
 CPM_MESSAGING_EMAIL_CONSUMER= On
 CPM_MESSAGING_IMS_MESSAGING = On

Messaging.cfg

If (CPM_MESSAGING_EMAIL_CONSUMER)
 CFG_MSG_EMAIL = On
 CFG_MSG_EMAIL_OMA_NOTIFICATION = On
 CFG_EMAIL_OMA_CLIENT_PROV = On

If (CPM_MESSAGING_IMS_MESSAGING)
 CFG_IMS_SERVICE = On
 CFG_IMS_APP_SETTINGS = On
 ... Owned by

Developers

Owned by
Product-CM

Figure 5. Configuration is distributed into
configuration files according to the concept of
Configuration Packages.

existing configuration package, the developers had to
consider defining a new configuration package,
configuration dependencies or hardware requirements.
From these lessons learned we can conclude that:

• Packages need to be complemented with a
more complex version for greater
differentiation possibilities

• Some packages need to have defined
dependencies to other packages

• The differences between some of the similar
configuration packages need to be described
by requirements engineers

• One package may in the future need to be split
into several packages that contain end-user
functionality and one common package that
does not offer any end-user benefits. This one
package is dependent on others previously
described.

• Problems may arise when new configuration
packages need to be created instantly. In this
case the bottleneck will be the communication
with requirements engineers.

• There are packages that can be removed from
the product due to strong dependencies. In this
case, product planners should not be allowed
to deselect these packages.

 After the redefinition of the configuration, the
developers were asked to fill in the evaluation form
[13], answering questions concerning the improvement
proposal and its possible benefits and drawbacks. To
get as many answers as possible, the information was
held short and concise. The evaluation form was also
sent out to all members in the first development group
and to half of the members in the second group,
totaling with 34 persons. 28 out of 34 persons have
answered and the detailed results are accessible in [14].
 From the evaluation it can be seen that the
participants have been involved in the product
configuration. They also see problems with how it is
handled today. The proposal was considered as easy to
understand and implement.
 Some responders mentioned that customer
specifications were not addressed enough. One
participant also addressed a need for training in
variability management. Most of the participants
thought that the responsibilities and the separation of
product and feature configuration is easy to understand.
In the qualitative part of the results, it was confirmed
that the workload will be reduced by improved division
of responsibilities.
 Most responders strongly agreed to that our
proposal should increase the quality of products. On

the other hand, a few responders claimed that the
quality of the products is now high enough and that our
proposal will not make any significant difference. The
question addressing improvement in the configuration
efficiency scored above average, which indicates that
this proposal would have a significant effect on
efficiency in the way of working rather than end-
product quality. This was emphasized by some people
who stated that the configuration would become more
manageable and less time consuming.
 On the question regarding drawbacks there were
concerns that the configuration packages may get too
large and fail to offer the needed from market
perspective detailed level of configuration. It was also
mentioned that there will be a stabilization period until
the CPs are clearly defined. One responder expects that
quick fixes will be hard to handle using CPs, and that
there therefore could lead to the “quick and dirty”
solutions which are hard to maintain. There is a risk
that the number of CPs will increase and that the same
problems will arise again. Some responders were also
worried about customer specific configurations, which
the proposal does not specify in detail. Most
participants stated that their work will not be affected
negatively. Moreover, they stated that there will be less
work for the developers with the proposal. The
developers would have fewer responsibilities and for
some participants their responsibility for product
configuration will be completely removed. Overall, the
proposal was considered as a better solution than the
current way of working.
 In the evaluation with the configuration
management strategists the responses were positive.
Among the positive comments were the possibilities to
define a clear process with unambiguous
responsibilities, to automate product derivation and
verification and to improve the product derivation
process. The concerns regarded the need for a
streamlined process for managing the configuration
packages, including exception handling. Possible
dependency problems when a configuration package
spans many development teams were also discussed.
The overall impression was very positive.
Threats to validity. The way how people were chosen
to participate in the interviews can lead to insufficient
results. By getting recommendations to which people to
interview the risk of getting a subjective picture
increases.
 The results can be biased by continuous
communication with the contact person in the company
or by the fact that some concerned stakeholders might
have been overlooked in different parts of the case
study.

 When performing these kind of evaluations, it is
difficult to cover all aspects. We are aware that this
evaluation only takes a few of the affected development
teams into account, and therefore some important
information may not be reached. Furthermore, the
amount of variation points that each development team
is responsible for or shares with other groups varies.
Therefore, the scale of affection of the proposal on
each development team may vary.
 We have not yet performed any evaluation among
other stakeholders, like product planning and
requirements engineers. Although they are not involved
in the technical parts of the proposal, they are part of
the process associated with the proposal and it is
therefore a drawback not to have these stakeholders
represented in the evaluation.
 We also see some challenges concerning the ability
to maintain the new way of working. It is important that
the configuration packages only reflect the current
needs for variability and that the configuration
packages are not created proactively in the same
manner as variation points are created today. It is also
important to educate people in order to consistently
convince them of the gains achieved about the new
praxis.

7. Related empirical work

 Industrial case studies in existing literature
[1,2,3,4,5,7] describe the process of introducing
product lines. These studies report similar problems to
those reported in this paper appear. For example, in the
Thales case [7] documentation of the platform has
deviated from the actual functionality as the platform
has evolved. In other cases [1,4] the enormous amount
of low level variability in software was reported.
Clements et. al [5] reported that the variability was
present only on the files and folders level. In the
Philips case [3], the problem of too many dependencies
between components, resulting in much time spent on
integration problems, was reported. Patzke et. al [6]
discovered that many of the differentiation point were
actually obsolete and not used any more. The company
was also struggling with outdated documentation that
was not updated regularly.
 In most cases a product line approach was
introduced in an evolutionary way, apart from one
example [4], where all ongoing projects were paused
and the resources were moved to the introduction of the
product line project. In some cases, the product line
was developed around a new architecture, while assets
were derived from an existing base e.g. [3]. Sometimes,
a new product line was based on the most similar

product from the most recent project. Some cases, like
[1], claim that their main success was achieved in the
architecture and reorganization, and resulted in the
change of the hardware to software cost ratio from
35:65 to 80:20.

8. Conclusions

 As mentioned in introduction, software product
lines improves the quality of the products and reduces
the time spent on a product development. However,
managing a product line and its variation points
efficiently requires a consistent way of working and
clear responsibilities. In this case study it has been
found that new products are derived by copying the
most similar configuration from previous products and
iteratively configuring the product between developers,
CM and testers. The variability is neither clearly
specified nor documented. The responsibilities are
unclear. There is no connection between the
requirements and the configuration possibilities in the
product line. These aspects affect negatively the
possibilities to verify the configuration and the time
spent on product configuration.
 To be able to cope with these issues, improvement
consisting of an abstraction layer in the configuration
interface have been proposed. This abstraction
separates the low level feature configuration from the
high level product configuration, and establishes a
traceability from requirements to configuration. To
clarify the product configuration and ensure that
everyone is working consistently, we propose that a
product specification, based on these configuration
packages, is used throughout the company. Below, we
summarize identified problems and corresponding
possible improvements:

• Large number of variation points with an
unmanageable granularity. Variation points
are encapsulated into configuration packages,
separating the high level configuration from
the low level configuration, and resolving the
granularity issues.

• Unclear responsibilities and unstable process
for the product configuration. By dividing the
configuration into different layers and
proposing responsibilities are clarified.

• No clear traceability between configuration
parameters and initial requirements. By
introducing an abstraction layer based on
configuration packages, the configurations are
directly linked to the initial requirements.

• No complete product specification available.
A new and managed product specification

based on configuration packages are spread
throughout the organization and used by all
stakeholders.

• Products are configured in an inefficient and
iterative process without using the initial
requirements. By the use of a complete
product specification and a configuration
interface based on the same configuration
packages, the configuration can be done at
early stage.

 The evaluation of our proposal shows that the
developers are coherently positive to the suggested
improvements. To validate out proposals, the changes
were simulated together with two development teams.
The results showed no major obstacles, but emphasized
the importance of cooperation between the
requirements engineers and the developers in the
definition of the configuration packages. The
expectations of this proposal are as follows:

• to reduce effort and time spent on iterative
configuration,

• to ensure a higher product quality by
improved product verification,

• to state more clear responsibilities among
stakeholders,

• to make the information concerning variability
within the company more accessible.

 It is stated in [9] that explicit documentation of
variability can help to improve making decisions,
communication and traceability. Following [9] we can
also conclude that introducing abstraction levels for
variation points and variants improves understanding
and management of software product line variability.
As a result, we conclude, that our improvement
proposals may be relevant for other contexts by
addressing the general issue of variability in software
product lines with abstraction mechanisms on both
requirements and realization level [8].
 This paper contributes in a detailed investigation on
product derivation from a large software product line,
which addresses research question Q1. Question 2 is
addressed in section 4.3 as a set of challenges in
practice. Finally, Q3 is addressed by the improvement
proposals, decribed in section 5 that may increasing
product quality and decreasing the effort needed for
product defiviation.

Acknowledgements. This work is supported by VINNOVA
(Swedish Agency for Innovation Systems) within the UPITER
project. Special acknowledgements to Per Åsfält for valuable
contributions on problem statements and research direction.

9. References

[1] L. Brownsword and P. Clements, “A Case Study in
Successful Product Line Development”, Technical Report
no. CMU/SEI-96-TR-016, Carnegie–Mellon Software
Engineering Institute, Pittsburgh USA, 1996.
[2] A. Jaaksi, “Developing mobile browsers in a product
line”, IEEE Software, IEEE Computer Society, 2002, pp. 73-
80.
[3] Linden, Frank J., K.van der Schmid and E. Rommes,
Software Product Lines in Action The Best Industrial
Practice in Product Line Engineering, Springer-Verlag,
Berlin Heidelberg, 2007.
[4] Clements P. and L. Northrop, Software Product Lines:
Practices and Patterns. Addison-Wesley Professional,2002.
[5] Clements P. and L. Northrop, Salion, Inc.: A Software
Product Line Case Study, Technical Report CMU/SEI-2002-
TR-038, Carnegie Mellon Software Engineering Institute,
Pittsburgh , 2002.
[6] T. Patzke, R. Kolb, D. Muthig and K. Yamauchi,
“Refactoring a legacy component for reuse in a software
product line: a case study”, Journal of Software Maintenance
and Evolution: Research and Practice, John Wiley & Sons,
UK, 2006, pp.109-132.
[7] S. Deelstra, M. Sinnena and J. Bosch, ”Product
Deriviation in software product families: a case study”, The
Journal of Systems and Software, Elsevier, New York USA,
200, pp.173-194.
[8] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. H.
Obbink, K. Pohl, “Variability Issues in Software Product
Lines”, Software Product-Family Engineering. 4th
International Workshop, Springer-Verlag, Bilbao, Spain, 3-5
Oct. 2001, pp. 13-21.
[9] Pohl, C., G. Böckle, and F. J. van der Linden, Software
Product Line Engineering: Foundations, Principles and
Techniques, Springer-Verlag, New York USA, 2005.
[10] Bosch J., Design and Use of Software Architectures
Adopting and evolving a product-line approach, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
2000.
[11] Babich, W.A, Software configuration management:
coordination for team productivity. Addison-Wesley
Longman Publishing Co.,Inc., Boston, MA USA, 1986.
[12] R. L. Glass, “Pilot Studies: What, Why and How”,
Journal of Systems and Software, Elsevier Science Inc, New
York USA, 1997, pp. 85-97.
[13] Evaluation form can be accessed at
http://www.cs.lth.se/home/Krzysztof_Wnuk/VaMoS_2009/E
valuationForms.pdf
[14] Results of evaluation can be accessed at
http://www.cs.lth.se/home/Krzysztof_Wnuk/VaMoS_2009/R
esultsOfTheEvaluation.pdf
[15] The interview’s instrument and participants distribution
can be accessed at
http://www.cs.lth.se/home/Krzysztof_Wnuk/VaMoS_2009/In
terviewInstumentAndDistribution.pdf

	1. Introduction
	2. Industrial Context
	The case study was performed at the company that has more than 5 000 employees and develops embedded systems for a global market. The company is using a product line approach [9]. Each product line covers different technologies and markets. The s...
	3. Research Methodology
	In this section we present the results from our interview study. We describe the different perspectives on the configuration process, configuration activity measurements, and finally the problems that were identified.
	4.1 Perspectives on the Configuration Process
	4.2. Configuration Activity Measurements

	4.3. Problems Identified
	The configuration of new products is achieved in an iterative manner between developers, configuration management and testers [7]. Due to the lack of a specific ownership, the configuration is not always properly reviewed, which is often a reason...
	5. Improvement Proposal
	6. Evaluation of the Proposals
	8. Conclusions

