
Spatial Language and
Compiler

Matthew Feldman, Luigi Nardi, Artur Souza, Kunle Olukotun

1

Introduction
The transition from instruction-based architectures to custom hardware

2

The CPU Power Wall

3

Packing more transistors
onto a chip will no longer
work because of limits on
power delivery and heat
dissipation.

Compute Devices at a Glance

Energy-optimized
CPU

Credit: Stanford CS149
4

Least efficient Most efficient

Throughput-Oriented Device
GPU

Programmable DSP

Programmable Logic
FPGA Application-Specific

Integrated Circuit (ASIC)

Not programmableEasiest to program
Most expensiveLeast expensive

Spatial is focused here

Hardest to program
Specialization is the key
to achieving good performance

FPGA Crash Course
■ Field-programmable gate array

■ Reconfigurable logic device consisting of
■ On-chip Memory (BRAMs) - ~10s Mb
■ Logic Cells (LUTs + FFs) - ~1M
■ Processing blocks (DSPs) - ~1000s

5
Image credit: Bai et al. 2014

Languages for Programming FPGAs
At a glance [1]

[1] N. Kapre et al, "Survey of domain-specific languages for FPGA computing,” FPL 2016
6

Register-Transfer Level
■ Traditional hardware description languages are Verilog or VHDL
■ There are newer, user-friendly alternatives, like Chisel[1], PyMTL[2],

Bluespec[3], MaxJ[4], SystemVerilog, etc.

[1] J. Bachrach et al. “Chisel: Constructing hardware in a Scala embedded language” DAC 2012
[2] D. Lockhart et al. “PyMTL: A Unified Framework for Vertically Integrated Computer Architecture Research“ MICRO 2014
[3] https://www.ece.ucsb.edu/its/bluespec/index.html
[4] https://www.maxeler.com/products/software/maxcompiler/

7

https://www.ece.ucsb.edu/its/bluespec/index.html
https://www.maxeler.com/products/software/maxcompiler/

Domain Specific
■ Languages rooted in a particular application domain include

Aetherling[5], Halide[6], LeFlow[7], DNNWeaver[8], Spiral[9],
SNORT[10], ASV[11], etc.

[5] D. Durst et al. “Type-Directed Scheduling of Streaming Accelerators” PLDI 2020
[6] J. Ragan-Kelley et al. “Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines” PLDI 2013
[7] D. Noronha et al. “LeFlow: Enabling Flexible FPGA High-Level Synthesis of Tensorflow Deep Neural Networks” FSP 2018
[8] H. Sharma et al. "From high-level deep neural models to FPGAs” MICRO 2016
[9] J. Moura et al. “SPIRAL: Automatic Implementation of Signal Processing Algorithms” HPEC 2000
[10] A. Mitra et al. “Compiling PCRE to FPGA for accelerating SNORT IDS” ANCS 2007
[11] Y. Feng et al. “ASV: Accelerated Stereo Vision System” MICRO 2019

8

High Level Synthesis
■ C+pragmas approach: OpenCL[12], Vivado HLS[13], SDAccel[14],

LegUp[15], Merlin[21], SOFF[16], etc.
■ JVM-based hardware DSL approach: Liquid Metal (Lime)[18],

Spatial[19], etc.

[12] https://www.khronos.org/opencl/
[13] https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
[14] https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
[15] A. Canis et al. “LegUp: An Open Source High-Level Synthesis Tool for FPGA-Based Processor/Accelerator Systems” ECS 2012
[16] G. Jo et al. “SOFF: An OpenCL High-Level Synthesis Framework for FPGAs” ISCA 2020
[18] S. Huang et al. “Liquid Metal: Object-Oriented Programming Across the Hardware/Software Boundary” ECOOP 2008
[19] D. Koeplinger et al. “Spatial: a language and compiler for application accelerators” PLDI 2018
[21] https://www.falconcomputing.com/merlin-fpga-compiler/

9

https://www.khronos.org/opencl/
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.falconcomputing.com/merlin-fpga-compiler/

Hardware Design At a Glance
■ A good accelerator has optimized computation and memory accesses

and keeps all parts of the circuit active at all times
■ In order to do this, the designer must make decisions about

■ Parallelism - Run operations concurrently
■ Data Locality - Manually manage on-chip scratchpads
■ Control Flow - Orchestrate how loops execute relative to each other

■ Spatial is an MIT License open source language that exposes these
knobs, which leads to massive design spaces

■ HyperMapper is the key to exploring the large design spaces
automatically

10

Introduction to Spatial
Understanding loops and the memory hierarchy

11

val B = 64 (64 → 1024)
val buffer = SRAM[Float](B)
Foreach(N by B){i =>
 …
}

val P = 16 (1 → 32)
Reduce(0)(N by 1 par P){i =>
 data(i)
}{(a,b) => a + b}
Stream.Foreach(0 until N){i =>
 …
}

Explicit parallelization factors
(optional, but can be explicitly declared)

Explicit size parameters for loop step size and buffer sizes
(informs compiler it can tune this value)

Implicit/Explicit control schemes
(also optional, but can be used to override compiler)

Foreach(64 par 16){i =>
 buffer(i) // Parallel read
}

Implicit memory banking and buffering schemes for
parallelized access

Spatial: Control And Design Parameters

12

Parallel Patterns
■ Parallel patterns are loop abstractions with implicit information

about parallelism and access patterns
X0

f

Y0

X1

f

Y1

X2

f

Y2

X3

f

Y3

X0

f

Y0

X1

f

Y1

X2

f

Y2

X3

f

Y3

Z0 Z1 Z2 Z3

Map
Element-wise function f

Reduce
Combine elements with
(associative) function f

Zip
Element-wise combine function f

X0 X1

Y

X2 X3

f

f f

13

■ Spatial is an imperative language that is designed to easily capture
parallel patterns[20]

[20] R. Prabhakar et al. “Generating Configurable Hardware from Parallel Patterns.” ASPLOS 2016

Spatial: Loops in Hardware
■ A software “loop” is counter chain + controller

■ Counter chain - Collection of iterators that are chained together
■ Controller - A container for a data path or other controllers

■ Controllers are nested:
■ Inner - contains datapaths of only primitive nodes
■ Outer - contains only other controllers (called “children”)

Foreach(N by 1) { i => // Outer controller
 Foreach(M by 1) { j => mem(i,j) = i+j } // Inner controller
 Foreach(P by 1) { j => if (j == 0) … = mem(i,j) } // Inner controller
}

14

i = 0

i = 1

i = 2

i = 3

i = 4

Spatial: Inner Loop Execution
■ The runtime of a controller (T) depends on its latency (L), initiation

interval (II), and number of iterations (iters)

15

Foreach(5 by 1) {i =>
 … // L = 7, II = 2
}

Time

Iteration

L = 7 cycs

Enable signal received from parent

II = 2 cycs

Done signal sent to parent

 cycsT = 2 ⋅ (5 − 1) + 7 = 15
(for communication overhead)±3

Abstract Example

Key Equation:

T = II ⋅ (iters − 1) + L

Spatial: Outer Controller Schedules
■ Outer controller must take a schedule to describe how their

children execute relative to each other
■ Schedules include:

■ Sequential - No overlapping of child controllers
■ Pipelined - Coarse-grained overlapping of child controllers
■ Stream - Data-driven execution of child controllers

■ Sequential and Pipelined are interchangeable without code
rewrites

16

A Closer Look at Schedules

Pipelined.Foreach(…){i =>
 sram load dram
 Foreach(M by 1){ j => sram2(j) = sram(j) * j }
 dram2 store sram2
}

Sequential.Foreach(…){i =>
 sram load dram
 Foreach(M by 1){ j => sram2(j) = sram(j) * j }
 dram store sram2
}

Stream.Foreach(…){i =>
 fifoIn load dram
 Foreach(M by 1){ j => fifoOut.enq(fifoIn.deq() * j) }
 dram2 store fifoOut
}

17

Note: Foreach with no annotation is implicitly “Pipelined”

i = 0

Time

Stage

Load

Foreach

Store

i = 0

i = 0

i = 1

i = 1

Effective Latency and II

i = 0

Time

Stage

Load

Foreach

Store

i = 0

i = 0

i = 1

i = 1

i = 2

i = 1

i = 2

i = 3

Effective Latency Effective II

i = 0

Time

Stage

Load

Foreach

Store

i = 0

i = 0

i = 1

i = 1

i = 2

i = 1

i = 2

i = 3

Effective Latency Effective II

i = 2

i = 3

i = 3

i = 4

A Closer Look at Schedules

Pipelined.Foreach(…){i =>
 sram load dram
 Foreach(M by 1){ j => sram2(j) = sram(j) * j }
 dram2 store sram2
}

Sequential.Foreach(…){i =>
 sram load dram
 Foreach(M by 1){ j => sram2(j) = sram(j) * j }
 dram store sram2
}

Stream.Foreach(…){i =>
 fifoIn load dram
 Foreach(M by 1){ j => fifoOut.enq(fifoIn.deq() * j) }
 dram2 store fifoOut
}

18

Note: Foreach with no annotation is implicitly “Pipelined”

i = 0

Time

Stage

Load

Foreach

Store

i = 0

i = 0

i = 1

i = 1

Effective Latency and II

i = 0

Time

Stage

Load

Foreach

Store

i = 0

i = 0

i = 1

i = 1

i = 2

i = 1

i = 2

i = 3

Effective Latency Effective II

i = 0

Time

Stage

Load

Foreach

Store

i = 0

i = 0

i = 1

i = 1

i = 2

i = 1

i = 2

i = 3

Effective Latency Effective II

i = 2

i = 3

i = 3

i = 4

When an intermediate FIFO is full,
the producer stage is stalled.

When an intermediate FIFO is empty,
the consumer stage is starved.

When the pipeline is full, it is in steady-
state and the longest stage determines II

Spatial: Piecing the Hierarchy Together
■ Consider the slice of a loop nesting with a parent Sequential

Controller and three children.

Sequential.Foreach(Q by TS){ i =>
 Foreach(N by 1){ j => /* Primitives */ }
 Foreach(M by 1){ j => /* Controllers */ }
 Stream.Foreach(P by 1) { j => /* Controllers */ }
}

19

i = 0

Time

Stage

Inner Foreach

i = 0

i = 0

i = 1

i = 1Outer Foreach

Stream Foreach

i = 0

i = 1

Time

Iteration

i = 1

i = 2
i =

Time

Stage

Child0

Child1

Child2

i = 0

i =

i =

i = 1

i =

i =

i = 2

i = i = 0

Time

Stage

Child0

Child1

Child2

i = 0

i = 0

i = 1

i = 1

i = 2

i = 1

i = 2

i = 3

i = 2

i = 3

i = 3

i = 4

Spatial: Memory Hierarchy

20

DDR DRAM
GB

On-Chip SRAM
MB

Local Regs
KB

val image = DRAM[UInt8]
(H,W)

val buffer = SRAM[UInt8](C)
val fifo = FIFO[Float](D)
val lbuf = LineBuffer[Int]
(R,C)

val accum = Reg[Double]
val pixels = RegFile[UInt8](R,C)

buffer load image(i, j::j+C) // dense
buffer gather image(a) // sparse

i=1i=2i=3

i=4 N-Buffer

S

S

S

Foreach(M by 1){ i =>
 val s = SRAM[T](256)
 Foreach(N by 1){k => s(k) = …}
 Foreach(N by 1){k => …}
 Foreach(N by 1){k => … = s(k)}
}

■ Buffering is implicit duplication of a memory to protect accesses
from each other in a Pipelined controller

■ The compiler computes buffering automatically, which can explode
the resource utilization

Spatial: Memory Buffering

i=0 data

i=0
i=1

i=0
i=1 data

i=1

i=2

i=3 data

i=2 datai=2

i=3

i=4 data

21

No-access
i=0

Summary
■ There is always a trade-off between resource utilization and

performance
■ The trade-offs are complex, but HyperMapper can help!

22

