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Machine Learning Meta-challenges

ML models are getting more and more complex
Many parameters (e.g. deep neural networks)

Automate the selection of critical hyper-parameters (see also:
Automated Machine Learning (AutoML) [Hutter et al., 2018])
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Example 1: Deep Neural Networks

Great interest in large neural networks

When well-tuned, very successful for visual object
identification, speech recognition, computational biology,
etc.

Big investments by Google, Facebook, Microsoft, etc.

Hyper-parameters: Number of layers, weight regularization,
layer size, which nonlinearity, batch size, learning rate
schedule, momentum
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Example 2: Detection and Localization in CT

Objective: Efficient anatomy detection and localization in
computed tomography scans

Regression Forests [Criminisi et al., 2013]

Hyper-parameters: Number of trees, max depth, max
features, class weights, criterion
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Search for Good Hyper-parameters

Define an objective function
Usually, we care about generalization performance
Cross validation to measure parameter quality

Standard search procedures:
Grid search
Random search – Very simple, works surprisingly well
Dark magic – A ninja developer using their intuition

Painful:
Training may be very expensive (e.g., time or money)
Many training cycles
Possibly noisy

Alternative approach: Bayesian optimization
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Bayesian Optimization Applications
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Motivation

BO is an effective tool for HPO, but:

Low adoption among practitioners
[Bouthillier and Varoquaux, 2020]

Can waste evaluations on poor designs

Disregards user beliefs on the location of the optimum

Can we incorporate expert knowledge in Bayesian optimization?

Luigi Nardi (Lund/Stanford/DBtune) User Priors for HPO October 12, 2022 11 / 60



Motivation

BO is an effective tool for HPO, but:

Low adoption among practitioners
[Bouthillier and Varoquaux, 2020]

Can waste evaluations on poor designs

Disregards user beliefs on the location of the optimum

Can we incorporate expert knowledge in Bayesian optimization?

Luigi Nardi (Lund/Stanford/DBtune) User Priors for HPO October 12, 2022 11 / 60



Motivation

BO is an effective tool for HPO, but:

Low adoption among practitioners
[Bouthillier and Varoquaux, 2020]

Can waste evaluations on poor designs

Disregards user beliefs on the location of the optimum

Can we incorporate expert knowledge in Bayesian optimization?

Luigi Nardi (Lund/Stanford/DBtune) User Priors for HPO October 12, 2022 11 / 60



Motivation

BO is an effective tool for HPO, but:

Low adoption among practitioners
[Bouthillier and Varoquaux, 2020]

Can waste evaluations on poor designs

Disregards user beliefs on the location of the optimum

Can we incorporate expert knowledge in Bayesian optimization?

Luigi Nardi (Lund/Stanford/DBtune) User Priors for HPO October 12, 2022 11 / 60



Motivation (Contd.)

ML practitioners typically choose between these approaches

Bayesian Optimization Expert Manual Tuning
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Idea

Accelerate Bayesian optimization by allowing users to integrate
beliefs that are typically reserved to manual search

Bayesian Optimization 

with User Beliefs

Example belief: Adam’s best learning rate is likely around 10−3
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Bayesian Optimization Setting

Setting
Globally optimize an objective function that is expensive to
evaluate (e.g. cross-validation error for a massive DNN)

Build a probabilistic surrogate model for the objective using
outcomes of past experiments as training data

The model is cheaper to evaluate than the original objective

Optimize cheap surrogate model to determine where to
evaluate the true objective next

Common surrogate: Gaussian Processes
But also Random Forests, Tree Parzen Estimators, Bayesian
Neural Networks
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Bayesian Optimization Setting (Contd.)

Objective: Find global minimum of objective function g:

x∗ ∈ argmin
x∈X

g(x)

We can evaluate the objective g pointwise
But we do not have an easy functional form or gradients
Observations may be noisy
Evaluating g is costly (e.g. train a deep network)
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Bayesian Optimization Key Steps

Avoid evaluating g an excessive number of times
=⇒ approximate it using a surrogate model g̃

g̃ is cheap to evaluate, e.g., Gaussian Process

Find a global optimum g̃(x∗) of surrogate g̃

Evaluate true objective g at x∗

Works well if g̃ ≈ g

Usually not the case
⇒ Repeat this cycle and keep updating g̃

Luigi Nardi (Lund/Stanford/DBtune) User Priors for HPO October 12, 2022 17 / 60



Bayesian Optimization Key Steps

Avoid evaluating g an excessive number of times
=⇒ approximate it using a surrogate model g̃

g̃ is cheap to evaluate, e.g., Gaussian Process

Find a global optimum g̃(x∗) of surrogate g̃

Evaluate true objective g at x∗

Works well if g̃ ≈ g

Usually not the case
⇒ Repeat this cycle and keep updating g̃

Luigi Nardi (Lund/Stanford/DBtune) User Priors for HPO October 12, 2022 17 / 60



Bayesian Optimization: Illustration
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Using Uncertainty in Global Optimization

Goal: choosing the next point to evaluate the true objective
Find a good (global) optimum =⇒ Need to get out of local
optima

Extrapolate from collected observations
GP gives us closed-form means and variances =⇒ Trade off
exploration and exploitation

Exploration: seek places with high variance
Exploitation: seek places with low mean

Acquisition function α trades off exploration and
exploitation for our proxy optimization
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Gaussian Processes One-slide Review

Due to Gaussian form
=⇒ closed-form solutions for many useful questions about
finite data
Log likelihood:

lnp(y|X ,θ) = −N
2
ln2π − 1

2
ln |Kθ| −

1
2

yTK−1
θ y

Predictive distribution at test point ytest :

ytest ∼ N (µ, σ2)

µ = kT
θK−1

θ y σ = ktest
θ − kT

θK−1
θ kθ

We compute these matrices from the covariance function:

[Kθ]i,j = K(xi ,xj;θ)

[kθ]i = K(xtest ,xi ;θ) ktest
θ = K(xtest ,xtest ;θ)
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Examples of GP Kernels
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Where to Evaluate Next?
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Where to Evaluate Next to Improve Most?

Upper panel: Samples from a probabilistic model g̃
Lower panel: Corresponding expected improvement over
the best solution so far (black cross)

Evaluate g at the maximum of the expected improvement
Expected improvement is one possible acquisition function α
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Expected Improvement (EI): Illustration

EI selects queries heuristically as

xn+1 ∈ argmax
x∈X

E
[
[f ∗

n − f (x)]+
]
= [*closed form*]

It queries points that are likely good or uncertain
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Bayesian Optimization Pseudo-code

1: Init: Data set D0 = {X0,y0}
2: for n = 1,2, ... do
3: Update GP using data Dn−1

4: Select xn ∈ argmaxx α(x) by optimizing acquisition function
5: Query true objective g at xn
6: Augment data set Dn = Dn−1 ∪ (xn ,yn)
7: end for
8: return best input in Dn: x∗ ∈ argminx y(x)
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Closed-Form Acquisition Functions

For all x ∈ RD the GP posterior gives a predictive mean µ(x)
variance σ2(x). Define

γ(x) =
g(xbest)− µ(x)

σ(x)

Probability of Improvement [Kushner, 1964]:

αPI(x) = Φ(γ(x))

Expected Improvement [Mockus et al., 1978]:

αEI(x) = E[max{0,g(xbest)− g(x)}]

=⇒ αEI(x) = σ(x)(γ(x)Φ(γ(x)) +N (γ(x)|0,1))

Lower Confidence Bound [Srinivas et al., 2010]:

αLCB(x) = −(µ(x)− κσ(x)), κ > 0
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Test of Time Award – ICML 2020

Gaussian Process Upper Confidence Bound (GP-UCB) paper:
[Srinivas et al., 2010]
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Optimizing the Acquisition Function

Optimizing the acquisition function requires a global
optimizer inside BO

What have we gained?

Evaluating the acquisition function is cheap compared to
evaluating the true objective

=⇒ We can afford evaluating it many times
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The Idea Mentioned Earlier

Accelerate Bayesian optimization by allowing users to integrate
beliefs that are typically reserved to manual search

Bayesian Optimization 

with User Beliefs

Example belief: Adam’s best learning rate is likely around 10−3
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Available Priors in Bayesian Optimization

Typically there are several ways prior knowledge can be injected
in the optimization:

Narrowing the search space

Biasing the initial design

Transforming the inputs and/or outputs

Using a prior over functions p(f ) via the GP kernel

Assuming monotonicity of the objective or non-stationary
covariance

Transfer learning

These are not aligned with the knowledge that users posses

Users know what ranges of hyperparameters tend to work best
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Users know what ranges of hyperparameters tend to work best

Luigi Nardi (Lund/Stanford/DBtune) User Priors for HPO October 12, 2022 31 / 60



Available Priors in Bayesian Optimization

Typically there are several ways prior knowledge can be injected
in the optimization:

Narrowing the search space

Biasing the initial design

Transforming the inputs and/or outputs

Using a prior over functions p(f ) via the GP kernel

Assuming monotonicity of the objective or non-stationary
covariance

Transfer learning

These are not aligned with the knowledge that users posses

Users know what ranges of hyperparameters tend to work best
Luigi Nardi (Lund/Stanford/DBtune) User Priors for HPO October 12, 2022 31 / 60



Simple User Prior Belief

We propose one of the simplest forms of priors
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Bayesian Optimization Problem Setting

Optimize a (noisy) black-box function f over X ⊂ Rd

x∗ ∈ argmin
x∈X

f (x)
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BO with User Beliefs Problem Setting

User beliefs – A density on the location of the optimum

π(x) = P
(

f (x) = min
x′∈X

f (x′)

)
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Examples of User Prior Beliefs
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Approach Desiderata

Incorporation of expert beliefs

Robustness to poor priors

Versatility across acquisition functions and priors
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Prior-weighted Acquisition Function: πBO

Approach: Weight the acquisition function α(x,Dn) by the prior
π(x), raised to a time-dependent decay term β/n

The new decaying prior acquisition function takes into account
π(x) but gradually de-emphasize it

xn ∈ argmax
x∈X

απ(x,Dn) = argmax
x∈X

α(x,Dn)π(x)β/n
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πBO Point Selection Illustrated

α(x,Dn), π(x)β/n and απ,n(x,Dn) are visualized across iterations
High-probability regions are amplified early on

The user-specified density becomes less peaked with time
The rest of the search space is eventually explored
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Theoretical Foundation of πBO

Theorem (Convergence of piBO)
The loss of πBO using EI is asymptotically equal to regular EI:

Ln(EIπ,n ,Dn ,Hℓ(X ),R) ∼ Ln(EIn ,Dn ,Hℓ(X ),R),

so we obtain a convergence rate for EIπ identical to EI [Bull, 2011]

Ln(EIπ,n ,Dn ,Hℓ(X ),R) = O(n−(ν∧1)/d(logn)γ)

The convergence rate is independent of the choice of prior
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Outline

1 Introduction

2 Bayesian optimization

3 User priors in Bayesian optimization

4 Applications to hyperparameter optimization

5 Generalization to other applications: HW design, robotics

6 Conclusions and future work
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Evaluation on Surrogate Tasks

We consider three surrogate tasks:

Branin (2D)

Profet FCNet (6D)

Profet XGBoost (8D)

We consider three types of priors:

Strong – Well located, high density on optimal region

Weak – Well located, moderate density on optimal region

Wrong – Poorly located, almost no density on optimum

Comparison to RS, prior sampling and prior-initialized BO
(Spearmint [Snoek et al., 2012] + prior mode)
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Evaluation on Surrogate Tasks – Results

Plots are in log scale

Takeaways:

πBO is a superior option to BO with prior initialization

πBO displays robustness to incorrect priors
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Evaluation on MLP Classification Tasks

We compare πBO on six MLP classification tasks from the
HPOBench benchmarking suite

Comparison against related work using priors:

BOPrO [Souza et al., 2020a]

BOWS [Ramachandran et al., 2020]

Prior sampling

Priors are constructed as wide Gaussians around library
default values
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Evaluation on MLP Classification Tasks – Results

Takeaways:

πBO yields superior performance on five out of six tasks

BOPrO is competitive while BOWS struggles
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Evaluation on Computer Vision Tasks

We consider two popular CV architectures and tasks:

U-Net (medical segmentation, 6D)

ImageNette-128 (light-weight ImageNet, 6D)

We compare against vanilla BO provided with the default
configuration
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Evaluation on Computer Vision Tasks – Results

Takeaways:

πBO yields superior performance on ImageNette
establishing a new state-of-the-art at 94.14%

Large speedups over prior-initialized BO (2.5× to 12.5×)
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Outline

1 Introduction

2 Bayesian optimization

3 User priors in Bayesian optimization

4 Applications to hyperparameter optimization

5 Generalization to other applications: HW design, robotics

6 Conclusions and future work
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Exotic Applications #1: Compiler Autotuning

Integrated HyperMapper to 4 programming languages: Spatial
[Nardi et al., 2019], HPVM [Ejjeh et al., 2022], TACO
[Kjolstad et al., 2017], RISE/ELEVATE [Hagedorn et al., 2020]

Autotuning of compilers for CPUs, GPUs, and FPGAs

For the Spatial language: Optimize runtime under the
constraint that the design fits in the FPGA

Expert Spatial programmer priors are available
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Exotic Applications #2: Robotics

Learning Skill-based Industrial Robot Tasks with User
Priors [Mayr et al., 2022b, Mayr et al., 2022a, Mayr et al., 2021]

Presentation and video
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“I just want to use BO with priors”

The BO framework that my group maintains is HyperMapper:
https://github.com/luinardi/hypermapper

HyperMapper implements both πBO [Hvarfner et al., 2022b]
and BOPrO [Souza et al., 2020a]

SMAC supports πBO https://github.com/automl/SMAC3

Spearmint implementation is available under request
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Conclusions

We have presented a human-centric approach to HPO

πBO is flexible across myopic acquisition functions and
surrogates

Effective and conceptually simple

Low-budget application settings benefit from user priors

No expertise in BO or ML needed to inject user prior beliefs
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Future Work

What if we only have 10 evaluations?
E.g. I can only train 10 models

Use of multi-fidelity optimization with priors

Integration of beliefs over optimal values

Find a principled Bayesian approach for πBO

Extend πBO to non-myopic acquisition functions
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Material Related to This Lecture

Resources from our team:

Practical design space exploration [Nardi et al., 2019]

Prior-guided Bayesian optimization [Souza et al., 2020a]

πBO: Augmenting Acquisition Functions with User Beliefs for Bayesian
Optimization [Hvarfner et al., 2022b]

PriorBand: HyperBand + Human Expert Knowledge [Mallik et al., 2022]

Other literature on priors:

Incorporating expert prior in Bayesian optimisation via space
warping [Ramachandran et al., 2020]

Combining sequential model-based algorithm configuration with default-guided
probabilistic sampling [Anastacio and Hoos, 2020]

Incorporating expert prior knowledge into experimental design via posterior
sampling [Li et al., 2020]

Bayesian Optimization with Informative Covariance
[Eduardo and Gutmann, 2022]

Recommended review on Bayesian optimization:

A tutorial on Bayesian Optimization [Frazier, 2018]

Taking the Human Out of the Loop: A Review of Bayesian
Optimization [Shahriari et al., 2016]
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Further Topics in BO

Entropy-based acquisition functions
[Hennig and Schuler, 2012, Hernández-Lobato et al., 2014,
Wang and Jegelka, 2017, Hvarfner et al., 2022a]
Non-myopic BO [Osborne et al., 2009]
High-dimensional optimization
[Wang et al., 2016, Papenmeier et al., 2022]
Large-scale BO [Hutter et al., 2014, Eriksson et al., 2019]
Non-GP BO:

Random Forests [Hutter et al., 2011]
Tree Parzen Estimators [Bergstra et al., 2011]
Bayesian Neural Networks [Springenberg et al., 2016]

Constraints [Gardner et al., 2014, Gelbart et al., 2014]
Automated machine learning [Hutter et al., 2018]
Multi-objective, parallelizing
[Paria et al., 2018, Snoek et al., 2012]
Human-centric BO
[Souza et al., 2020b, Hvarfner et al., 2022b]
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