UNIVERSITY

ComPOS — a Domain-Specific
Language for Composing

Internet-of-Things Systems
ALFRED AKESSON, PHD DEFENCE, 2021-06-18

Internet-of-Things (I0T) systems

* loT: trend of connected devices (e.g. lamp, dishwasher)

* loT system: system of connected devices r
» Two challenges ‘.

- Weak connectivity
- Always running

How can we simplify development of IoT systems?

* Programming experience

- Paper 1: Live Programming of Internet of Things in PalCom
- Combining discovery and composition in connecting loT system

- Paper 4: Jatte: A Tunable Tree Editor for Integrated DSLs

- Meta-tool for creating custom projectional editors, e.q., loT editor

* Programming model
- Paper 2: ComPOS: Composing Systems of Services

- Domain specific language (DSL) for connecting devices

* System understanding

- Paper 3: Runtime modeling and analysis of 0T systems
- Runtime model for analysis of loT systems
- Device Dependency Analysis (DDA)

PalCom Middleware

 Service-based middleware with message passing
- A device has a set of services

 Device/service discovery

» Service compositions (this thesis)

Camera
service

composition

Storage
service

Composing services

*Services [P «Compositions A
- Provide functionality - Used to compose services
- Do not know who they talk to - Specified in Domain Specific Language

- Accessible through an interface =—(

Camera
service

i

composition

Storage
service

Papers 1: Live Programming of Internet of
Things in PalCom

Programming activates

Explore
N

A @A
—y

PalCom Browser — Development environment

Device and
Service discovery

\

File Configuration

(] Browser B8

1 Universe
> E PalcomBrowser
v HE Computer
v [=F Services
v B Al
¥V 7 Unicast
bird (out)
not_bird (out)
\ v % has_bird (in)
image (image/jpeg)
Vv [Storage_Service:1
¥V 7 Unicast
v e ERERYT)
image (image/jpeg)
» [Connections
VvV HE MotionSensor
v [=F Services
Vv B Motion_Service:1
¥V 1 Unicast
move (out)
» [Connections
Vv HE Camera
v [=F Services
Vv B Camera_Service:1
¥V 1 Unicast
take_photo (in)
v = photo (out)
img (image/jpeg)
> [] Connections

[] GardenGarden X ™\ @d

1 Garden version: Garden

N

O 00 N O Ul A W

10
11
12
13
14
15
16
17
18
19
20
21
22
23

W]

bindings:
deviced = MotionSensor
devicel = Camera
device2 = Computer
device3 = Computer

Motion_Service = Motion_Service:1 on device®
Camera_Service = Camera_Service:1 on devicel
AI = AI:1 on device2

Composition
editor built using
Jatte

—Y

Storage_Service = Storage_Service:1 on detlereT
synthesized services:
script:
when
Motion_Service.move
do
send to Camera_Service.take_photo
receive Camera_Service.photo
var photo = message
send to AI.has_bird(
image = photo.img
)
select
when

AT L.

Undo text to clipbord

Paper 2: ComPOS: Composing
Systems of Services

* ComPOS a new DSL for composing services

* Strategies for handling new messages

» Case study

ComPOS DSL

« Coordinates incoming and outgoing messages
* No computations

* Control flow constructs
- Sequence
- Select
- Parallel
- Finish first

10

ComPOS example

composition SimpleBirdwatcher
service sensor

service camera .
service birdAI . Motion Sensor
service storag
when notif move from sensor do
send req take_photo to camera
receive resp photo(var img) from camera
send req has_bird(img) to birdAI
select
when resp is_bird from birdAI do
send cmd store_image(img) to storage
when resp is_not_bird from birdAI do
end

storage

Camera Laptop

11

ComPOS example

composition SimpleBirdwatcher

service se¢
i Starts new
service c-

servico pj reaction Motion Sensor
s ce storage = ...

m) when notif move from sensor do
send req take_photo to camera
receive resp photo(var img) from camera
send req has_bird(img) to birdAI
select
when resp is_bird from birdAI do
send cmd store_image(img) to storage
when resp is_not_bird from birdAI do
end

Camera

Laptop

storage

12

composition SimpleBirdwatcher

service sensor =

service camera =

service birdAI =

service storage =

when notif move from sensor do

m) send req take_photo to camera
receive resp photo(var img) from camera
send req has_bird(img) to birdAI Camera

ComPOS example

Motion Sensor

select
when resp is_bird from birdAI do

send cmd store_image(img) to storage

when resp is_not_bird from birdAI do

end

storage

13

ComPOS example

composition SimpleBirdwatcher

service sensor =

service camera =

service birdAI =

service storage =

when notif move from sensor do
send req take_photo to camera

ﬁ}receive resp photo(var img) from camera
send req has_bird(img) to birdAI
select

when resp is_bird from birdAI do

send cmd store_image(img) to storage

when resp is_not_bird from birdAI do

end

Motion Sensor

camera

Camera

storage

14

ComPOS example

composition SimpleBirdwatcher

service sensor =

service camera =

service birdAI =

service storage =

when notif move from sensor do
send req take_photo to camera

mp receive resp photo(var img) from camera
send req has_bird(img) to birdAI

select
when resp is_bird from birdAI do

send cmd store_image(img) to storage

when resp is_not_bird from birdAI do

end

Motion Sensor

Camera

Laptop

storage

15

ComPOS example

composition SimpleBirdwatcher

service sensor =

service camera =

service birdAI =

service storage =

when notif move from sensor do
send req take_photo to camera
receive resp photo(var img) from camera

m send req has_bird(img) to birdAI
select

when resp is_bird from birdAI do

send cmd store_image(img) to storage

when resp is_not_bird from birdAI do

end

Motion Sensor

Camera

Laptop

storage

16

ComPOS example

composition SimpleBirdwatcher
service sensor =
service camera = ...
service birdAI = ... Motion Sensor
service storage =
when notif move from sensor do
send req take_photo to camera
receive resp photo(var img) from camera
send req has_bird(img) to birdAI Camera Laptop
C>select
when resp is_bird from birdAI do
send cmd store_image(img) to storage
when resp is_not_bird from birdAI do
end

birdAl

storage

17

ComPOS example

composition SimpleBirdwatcher

service sensor =

service camera =

service birdAI =

service storage =

when notif move from sensor do
send req take_photo to camera
receive resp photo(var img) from camera
send req has_bird(img) to birdAI
select
mpwhen resp is_bird from birdAI do

send cmd store_image(img) to storage

when resp is_not_bird from birdAI do

end

Motion Sensor

Camera

Laptop

storage

18

ComPOS example

composition SimpleBirdwatcher

service sensor
service camera
service birdAI
service storage

when notif move from sensor do
send req take_photo to camera
receive resp photo(var img) from camera
send req has_bird(img) to birdAI

select

when resp is_bird from birdAI do
m) send cmd store_image(img) to storage
when resp is_not_bird from birdAI do

end

Motion Sensor

Camera

Laptop

storage

19

ComPOS example

composition SimpleBirdwatcher

service sensor =

service camera =

service birdAI =

service storage =

when notif move from sensor do
send req take_photo to camera
receive resp photo(var img) from camera
send req has_bird(img) to birdAI
select

when resp is_bird from birdAI do

send cmd store_image(img) to storage

when resp is_not_bird from birdAI do

¢>end

Motion Sensor

Camera

Laptop

storage

20

Strategies for handling new messages

composition SimpleBirdwatcher
service sensor = ...
service camera = ...

service birdAI = ... Motion Sensor
service storage =
when notif move from sensor do

send.req take_photo to c.:amera storage
receive resp photo(var img) from camera

send req has_bird(img) to birdAI Camera Laptop
select
when resp is_bird from birdAI do
send cmd store_image(img) to storage
when resp is_not_bird from birdAI do
end

21

Strategies for handling new messages

composition SimpleBirdwatcher
service sensor = ...
service camera = ...

service birdAI = ... Motion Sensor
service storage =

when notif move from sensor do 7
send req take_photo to camera 7 storage
receive resp photo(var img) from camera

send req has_bird(img) to birdAI Camera Laptop
select
when resp is_bird from birdAI do
send cmd store_image(img) to storage
when resp is_not_bird from birdAI do

¢>end

22

Strategies for handling new messages

composition SimpleBirdwatcher
service sensor = ...
service camera = ...

service birdAI = ... Motion Sensor
service storage =
when notif move from sensor do

send.req take_photo to c.:amera storage
receive resp photo(var img) from camera

send req has_bird(img) to birdAI Camera Laptop
select

when resp is_bird from birdAI do

m) send cmd store_image(img) to storage

when resp is_not_bird from birdAI do
end

23

Strategies for handling new messages

composition SimpleBirdwatcher

service sensor =

service camera =

service birdAI =

service storage =

when notif move from sensor do
send req take_photo to camera
receive resp photo(var img) from camera
send req has_bird(img) to birdAI
select
mpwhen resp is_bird from birdAI do

send cmd store_image(img) to storage
when resp is_not_bird from birdAI do

end

sensor

Motion Sensor

camers g0

Camera

Laptop

24

Strategies for handling new messages

composition SimpleBirdwatcher .
service sensor = ... X birdAl
service camera = ...
service birdAI = ... Motion Sensor

service storage =

when notif move from sensor do
send req take_photo to camera m_c
receive resp photo(var img) from camera
send req has_bird(img) to birdAI Camera Laptop
C>select
when resp is_bird from birdAI do
send cmd store_image(img) to storage

when resp is_not_bird from birdAI do
end

25

Strategies for

composition SimpleBirdwatcher
service sensor =
service camera = ...
service birdAI =
service storage =
) when notif move from sensor do
send req take_photo to camera
receive resp photo(var img) from
send req has_bird(img) to birdAI
C>select

handling new messages

Motion Sensor

camera

Camera Laptop

when resp is_bird from birdAI do

send cmd store_image(img) to

storage P Ignore

when resp is_not_bird from birdAI do

end

* Queue
* Parallel
* Abort

26

Strategies for

composition SimpleBirdwatcher
service sensor =
service camera = ...
service birdAI =
service storage =
@when notif move from sensor do
send req take_photo to camera
receive resp photo(var img) from
send req has_bird(img) to birdAI
C>select

handling new messages

birdAl

Motion Sensor

camera

Camera Laptop

when resp is_bird from birdAI do

send cmd store_image(img) to

storage « |gnore the new message

when resp is_not_bird from birdAI do

end

* Queue
* Parallel
* Abort

27

Strategies for

composition SimpleBirdwatcher
service sensor =
service camera = ...
service birdAI =
service storage =
C>when notif move from sensor do
send req take_photo to camera
receive resp photo(var img) from
send req has_bird(img) to birdAI
C>select

handling new messages

birdAl

Motion Sensor

camera

Camera Laptop

when resp is_bird from birdAI do

send cmd store_image(img) to

storage P Ignore

when resp is_not_bird from birdAI do

end

- Queue the new message
- Parallel
* Abort

28

Strategies for handling new messages

composition SimpleBirdwatcher ’
service sensor = ... g birdAl

service camera = ...
service birdAI = ... Motion Sensor
service storage = ...

when notif move from sensor do
msend req take_photo to camera m_(
receive resp photo(var img) from camera
send req has_bird(img) to birdAI Camera Laptop
C>select
when resp is_bird from birdAI do

send cmd store_image(img) to storage ° IgnOre
when resp is_not_bird from birdAI do

end * Queue

- Parallel — process also the new message
* Abort

29

Strategies for handling new messages

composition SimpleBirdwatcher
service sensor
service camera
service birdAI
service storage = ...
when notif move from sensor do
mpsend req take_photo to camera

receive resp photo(var img) from camera m_(

send req has_bird(img) to birdAI Camera Laptop

C§ﬁe1ect

when resp is_bird from birdAI do
send cmd store_image(img) to storage ° IgnOre
when resp is_not_bird from birdAI do

e * Queue

Motion Sensor

- Parallel
» Abort the old message chain (our choice)

30

Strategy comparison

ignore queue parallel
Responsive No No Yes
Bounded Yes No No
Eager Abort No No No
Need Timer Yes Yes Yes

Using abort we can implement other strategies with additional services

Implementing abort with Epoch

* Only newer “related” messages can abort a reaction
* An epoch has a place (connection) and time (logical clock)
¢ P,
* An epoch aborts another epoch when they are from the same place and one

is newer then the other
 P’.aborts P IFFP'=Pandt’ >t

32

Epoch example 1

Epoch example 1

=«
@ | O O

&

y. SOl

Epoch example 1
source 1 HCUNG)ﬂ—@—m
=D < Y. SO

&

Epoch example 1
- DN - SR
@D | S O T

&

Epoch example 1

<ouce 1

V.
= V.- S8

&

Epoch example 1

<ouce 1

V.
= V.S

&

Epoch example 1
couce 1
. O

o W
e

&

Epoch example 1

<ouce 1

source 2 AN

&

y. SOl
0D

Epoch example 2

Epoch example 2
source 1 HCUNG)ﬂ—@—m
=D < Y. SO

&

Epoch example 2
- DN - SR
@D | S O T

&

Epoch example 2

<ouce 1

V.
= V.- S8

&

Epoch example 2

source 1 SCAS M
o o

&

Epoch example 2

‘zaborts *1 because @ =® and2>1

Epoch example 2

<ouce 1

D=
= V.- S8

& ‘zaborts *1because‘ =® and2>1
47

Epoch example 2

<ouce 1

&

O 4

oD
o

Epoch example 2

‘2 and ¥ ; do not abort each other
because @ = +

Epoch example 2

‘2 and ¥ ; do not abort each other
because @ = +

50

Case study

« Home care of kidney failure

* Reimplementation of 11
compositions using
ComPOS

* ComPOS more explicit
control flow than original
composition language

]
'
.

MANUELLT

V98 Visa matvarden sedan: 1 vecka

HISTORIK CHATT FOTOGRAFI

—— Vikt

Tablet Core Server

LocalPatient %0 PatientDB
LocalPatient Sync Patient
Chat PatientChat’ (of F:14

Current v

—2 Patientinfo S

User |nterface_ “ LocalConfig)—m
\Kldneylnl Staf‘fDB

BLEManager 'CurrentPatlent
Devi Measurement Server
evice Fetch
Discovery LocalChart FromMTDB
Beurer
L B Scal Measurement ync
O) Buffering Measurement
’
’
J
/

ImageDB

51

Paper 3: Runtime modeling and
analysis of IoT systems

Meta-model

* Runtime model of the system
specified using relational
reference attribute grammars

 Analysis specified using
reference attribute grammars

* Device Dependency Analysis
finds: What devices are needed
for a specific event to happen?

<

System

* |

— e

DynamicPart

DeviceHandle

deviceld

]

Device

0..1

deviceld

gt

* |

StaticPart

gt

* |

ServiceHandle

—

serviceld

0/

+ | Composition

Service

1

0..1

serviceld

Native

?

¢

1

¢

ComPOSscript

Synthesized

l

52

Device Dependency Analysis

* What devices are needed for 4 to happen?

Motion Sensor

Camera 1

Camera 2

53

Device Dependency Analysis

* What devices are needed for 4 to happen?

| sensor I

Motion Sensor

! camera I storage
v,

Y,

H
*
ast

Camera 2

54

Device Dependency Analysis

* What devices are needed for 4 to happen?

|Motion Sensor|

Camera 1

v

|Camera 2 |

55

Paper 4: Jatte: A Tunable Tree
Editor for Integrated DSLs

* Framework for integrated DSL editors

« Customizable using Attribute Grammars (JastAdd)

Requirement _____Solution

Fast prototyping Editor generated from abstract grammar
Customizable Tunable using attribute grammars
Hide information Projectional editing

Interact with Palcom Browser Drag and Drop

56

Architecture

Jast
Add

‘ Java\

Application
code

Jatte \

Jast
Add

ComPQOS

ComPOS
Editor
Specification

>

&

)‘Java\ >

AST
classes

Complier
Specification
Jast
Add

JastAdd

ComPQOS editor

(O

Jatte lib Palcom

Java

Results

Paper 1

« We propose three activities for programming Palcom loT systems: Explore, Compose, and Expose.

* We classify the Palcom programming environment as between levels 3 and 4 using Tanimoto’s levels of
liveness.

Paper 2

* We propose ComPOS, a DSL for composing services.

» We describe four different strategies for handling new messages: Ignore, Queue, Parallel, Abort.

* We implement Abort using epochs.

« We show how to get the other strategies using an additional service.

* We evaluate ComPOS in a case study reimplementing compositions in a home care system.

* The case study shows that ComPOS has more explicit control flow than the original composition language.

« We propose implementations for seven common home automation scenarios proposed by Rodeiguez Avila et.al.

Paper 3

« We propose a conceptual model for Palcom systems specified using Relational Reference Attribute Grammars.

» We formulate and implement the Device Dependency Analysis (DDA) on top of our conceptual model.

Paper 4

« We propose a new technique for developing integrated projectional editors using reference attribute grammars.

« We implement this technique in the Jatte tool and assess it by implementing editors for a toy language and
ComPOS.

THE END

