
ALFRED ÅKESSON, PHD DEFENCE, 2021-06-18

ComPOS – a Domain-Specific
Language for Composing
Internet-of-Things Systems

1

Internet-of-Things (IoT) systems
• IoT: trend of connected devices (e.g. lamp, dishwasher)

• IoT system: system of connected devices

• Two challenges
- Weak connectivity
- Always running

2

How can we simplify development of IoT systems?
•Programming experience

- Paper 1: Live Programming of Internet of Things in PalCom
- Combining discovery and composition in connecting IoT system

- Paper 4: Jatte: A Tunable Tree Editor for Integrated DSLs
- Meta-tool for creating custom projectional editors, e.g., IoT editor

•Programming model
- Paper 2: ComPOS: Composing Systems of Services
- Domain specific language (DSL) for connecting devices

•System understanding
- Paper 3: Runtime modeling and analysis of IoT systems
- Runtime model for analysis of IoT systems
- Device Dependency Analysis (DDA)

3

PalCom Middleware
• Service-based middleware with message passing
- A device has a set of services

• Device/service discovery

• Service compositions (this thesis)

Storage
service

Camera
service

4

composition

Composing services

•Services

- Provide functionality
- Do not know who they talk to
- Accessible through an interface

•Compositions

- Used to compose services
- Specified in Domain Specific Language

5

Storage
service

Camera
service

composition

Store

Motion

Camera

birdAI

6

Scenario

Papers 1: Live Programming of Internet of
Things in PalCom

7

Explore

ComposeExpose

Programming activates

PalCom Browser – Development environment

Composition
editor built using
Jatte

Device and
Service discovery

8

Paper 2: ComPOS: Composing
Systems of Services
• ComPOS a new DSL for composing services

• Strategies for handling new messages

• Case study

9

ComPOS DSL
• Coordinates incoming and outgoing messages

• No computations

• Control flow constructs
- Sequence
- Select
- Parallel
- Finish first

10

ComPOS example

11

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

move

ComPOS example

12

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

move

Starts new
reaction

ComPOS example

13

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

tak
e_p

hot
o

ComPOS example

14

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

pho
to(i

mg
)tak

e_p
hot

o

ComPOS example

15

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

pho
to(i

mg
)

ComPOS example

16

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

has
_bi

rd(i
mg

)

ComPOS example

17

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

is_b
irdhas

_bi
rd(i

mg
)

ComPOS example

18

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

is_b
ird

ComPOS example

19

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

store_image(img)

ComPOS example

20

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

store_image(img)

Strategies for handling new messages

21

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

Strategies for handling new messages

22

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

store_image(img)

Strategies for handling new messages

23

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

store_image(img)

Strategies for handling new messages

24

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

is_b
ird

25

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

has
_bi

rd(i
mg

)
move

Strategies for handling new messages

26

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

has
_bi

rd(i
mg

)

move

Strategies for handling new messages

• Ignore
• Queue
• Parallel
• Abort

27

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

has
_bi

rd(i
mg

)

move

Strategies for handling new messages

• Ignore the new message
• Queue
• Parallel
• Abort

28

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

has
_bi

rd(i
mg

)

Strategies for handling new messages

• Ignore
• Queue the new message
• Parallel
• Abort

move

29

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

has
_bi

rd(i
mg

)

move

Strategies for handling new messages

• Ignore
• Queue
• Parallel – process also the new message
• Abort

30

sensor

camera storage

birdAI
Motion Sensor

Camera Laptop

has
_bi

rd(i
mg

)

move

Strategies for handling new messages

• Ignore
• Queue
• Parallel
• Abort the old message chain (our choice)

Strategy comparison

31

abort ignore queue parallel
Responsive Yes No No Yes
Bounded Yes Yes No No
Eager Abort Yes No No No
Need Timer No Yes Yes Yes

Using abort we can implement other strategies with additional services

Implementing abort with Epoch

32

• Only newer “related” messages can abort a reaction
• An epoch has a place (connection) and time (logical clock)

• Pt
• An epoch aborts another epoch when they are from the same place and one

is newer then the other
• P’t’ aborts Pt IFF P’ = P and t’ > t

Epoch example 1

33

Epoch example 1

34

source 1

source 2

sink

A

B1 compute 1

B2 compute 2

🍓

🍦

Epoch example 1

35

source 1

source 2

sink

A

B1 compute 1

B2 compute 2

🍓

Epoch example 1

36

source 1

source 2

sink

A

B1 compute 1

B2 compute 2

🍓1

🍓
1

🍓1

🍓

Epoch example 1

37

source 1

source 2

sink

A

B1 compute 1

B2 compute 2

🍓1

🍓1

🍓1

🍓

🍓1

🍓1

Epoch example 1

38

source 1

source 2

sink

A

B1 compute 1

B2 compute 2

🍓1

🍓1

🍓1

🍓

🍓1

🍓1

Epoch example 1

39

source 1

source 2

sink

A

B1 compute 1

B2 compute 2

🍓1

🍓
1

🍓1

🍓

Epoch example 1

40

source 1

source 2

sink

A

B1 compute 1

B2 compute 2🍓
1

🍓

Epoch example 2

41

Epoch example 2

42

source 1

source 2

sink

A

B1 compute 1

B2 compute 2

🍓

Epoch example 2

43

source 1

source 2

sink

A

B1 compute 1

B2 compute 2

🍓1

🍓
1

🍓1

🍓

Epoch example 2

44

source 1

source 2

sink

A

B1 compute 1

B2 compute 2

🍓1

🍓1

🍓1

🍓

🍓1

🍓1

Epoch example 2

45

source 1

source 2

sink

A

B1 compute 1

B2 compute 2

🍓1

🍓1

🍓1

🍓

🍓1

🍓1

Epoch example 2

46

source 1

source 2

sink

A

B1 compute 1

B2 compute 2

🍓1

🍓1

🍓2

🍓

🍓1

🍓1

🍓2

🍓
2

🍓2 aborts🍓1 because 🍓 = 🍓 and 2 > 1

Epoch example 2

47

source 1

source 2

sink

A

B1 compute 1

B2 compute 2

🍓2

🍓2

🍓2

🍓

🍓2

🍓2

🍓2 aborts🍓1 because 🍓 = 🍓 and 2 > 1

Epoch example 2

48

source 1

source 2

sink

A

B1 compute 1

B2 compute 2

🍓2

🍓

🍓2

🍓2

🍦

🍓2

🍓2

Epoch example 2

49

source 1

source 2

sink

A

B1 compute 1

B2 compute 2

🍓2

🍓2

🍓2

🍓

🍓2

🍓2

🍦1

🍦

🍦1

🍦
1

🍓2 and🍦1 do not abort each other
because 🍓 ≠ 🍦

Epoch example 2

50

source 1

source 2

sink

A

B1 compute 1

B2 compute 2

🍓2

🍓2

🍓2

🍓

🍓2

🍓2

🍦1

🍦

🍦1

🍦1

🍦1

🍦1

🍓2 and🍦1 do not abort each other
because 🍓 ≠ 🍦

Case study
• Home care of kidney failure

• Reimplementation of 11
compositions using
ComPOS

• ComPOS more explicit
control flow than original
composition language

51

Tablet

KidneyInit

Init
PatientChat

LocalChart

LocalStaff

BeurerScale

CurrentPatient

LocalPatient
Chat

LocalConfig

LocalPatient

Measurement
Buffering

BLEManager

Device
Discovery

Current
PatientInfo

Beurer

Scale

Patient
Chat

PatientDB

Sync
PatientChat

Sync
Patient

MTDB

Fetch
FromMTDB

Sync
Measurement

ImageDB

Sync
Chart

Sync
Config Config

Sync
Staff StaffDB

User interface

Core Server

Measurement Server

Paper 3: Runtime modeling and
analysis of IoT systems

• Runtime model of the system
specified using relational
reference attribute grammars

• Analysis specified using
reference attribute grammars

• Device Dependency Analysis
finds: What devices are needed
for a specific event to happen?

52

Meta-model
Runtime modeling and analysis of IoT systems MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

checks which devices are needed for his new thermometer to send
a store message to the database. The DDA is run on the deployed
system in order to resolve this expressions and to compute what
concrete devices the system depends on. To Mark’s surprise, the
analysis reports that not only the new thermometer and the hospital
database are needed, but the old thermometer is needed as well!

Mark looks at the composition again, and realizes that the old
thermometer is used for the encryption. While this works, it means
that the new thermometer will stop working if the old one runs out
of battery. He �xes the problem by updating the compositions on
line 3 to bind to the Encrypter on the same device (using this for
the device).

4 THE FULL SYSTEM MODEL
The full systemmodel includes support for incomplete systems (due
to unavailable devices) and composition scripts for allowing �ne-
grained analyses. Both the conceptual model and its corresponding
speci�cation using Relational RAGs is shown in Figure 3.

A System contains both a dynamic part for what is currently
known about devices, service instances, and composition instances
on the network, and a static part that contains the composition
scripts. Each composition instance is related to its corresponding
script (line 13 in the grammar). There is an abstract grammar for
the composition scripts as well, that we omit here for brevity, and
that is reused from the implementation of C��POS [1].

The dynamic part is similar to the basic runtime model in Fig-
ure 1, but introduces handles DeviceHandle and ServiceHandle.
These are used for representing devices and service instances that a
composition (tries to) connect to, regardless of if they are available
on the network or not. The handles have optional relations to the
corresponding true Device and Service entities, that are present
in the model if they are available on the network.

Thermometer Hospital

Device

Temperature Encrypter

TemperatureToHospital MeasurementDB

Composition Native Synthesized

connectionprovide synthesized

mesurement encrypt

store

encrypted

Figure 2: Overview ofMark’s initial system. (See Figure 5 for
example with synthesized service.)

Listing 2: Composition connecting services
1 composition: TemperatureToHospital
2 service tmp = Temperature on Thermometer
3 service enc = Encrypter on Thermometer
4 service mDB = MeasurementDB on Hospital
5 when receive measurement(var t) from tmp do
6 send encrypt(t) to enc
7 receive encrypted(var et) from enc
8 send store(et) to mDB

*

*

* *

* *

**

0..1

*

*

1 0..1

*

1

System

StaticPart

ComPOSscript

...

DynamicPart

DeviceHandle

deviceId

ServiceHandle

serviceId

Device

deviceId

Composition

Service

serviceId

Native Synthesized

1 System ::= DynamicPart StaticPart;
2 DynamicPart ::= DeviceHandle*;
3 DeviceHandle ::= <deviceId> ServiceHandle* [Device];
4 Device ::= <deviceId> Native* Composition*;
5 ServiceHandle ::= <serviceId>;
6 abstract Service ::= <serviceId>;
7 Native:Service;
8 Synthesized:Service;
9 Composition ::= Synthesized*;
10 rel Composition.connectedTo* <-> ServiceHandle.connectedFrom*;
11 rel ServiceHandle.service? <-> Service.serviceHandle;
12 StaticPart ::= ComPOSscript*;
13 rel Composition.implementation <-> ComPOSscript.instances*;
14
15 ComPOSscript ::= ...

Figure 3: Full system model with diagram and grammar
(C��POS details omitted)

System

DynamicPart StaticPart

ThermometerHandle

HospitalHandle

Thermometer

EncrypterHandleTemperatureHandle

TemperatureToHospital

EncrypterTemperature

Hospital MeasurementDBHandle

MeasurementDB

ComPOSscript

Figure 4: Object diagram over Mark’s system

4.1 Handling unavailable devices
Each device is identi�ed by a globally unique id, deviceId, and each
running service instance has a device-locally unique id, serviceId. A
running service is globally identi�ed with a tuple (deviceId, servi-
ceId).

Device Dependency Analysis
• What devices are needed for 4 to happen?

53

sensor

camera storage

birdAI
Motion Sensor

Camera 1 Laptop

1

42
2

3

camera
Camera 2

Device Dependency Analysis
• What devices are needed for 4 to happen?

54

sensor

camera storage

birdAI
Motion Sensor

Camera 1 Laptop

1

42
2

3

camera
Camera 2

Device Dependency Analysis
• What devices are needed for 4 to happen?

55

sensor

camera storage

birdAI
Motion Sensor

Camera 1 Laptop

1

42
2

3

camera
Camera 2

Paper 4: Jatte: A Tunable Tree
Editor for Integrated DSLs

• Framework for integrated DSL editors

• Customizable using Attribute Grammars (JastAdd)

56

Requirement Solution
Fast prototyping Editor generated from abstract grammar
Customizable Tunable using attribute grammars
Hide information Projectional editing
Interact with Palcom Browser Drag and Drop

Architecture

57

JastAdd

Jatte lib Palcom

Java

ComPOS editor

jar jar

jar

Jast

Add

Jast

Add

Jast

Add

ComPOS

Complier

Specification

ComPOS

Editor

Specification

Jatte

Java

AST

classes

Java

Application

code

Results
Paper 1
• We propose three activities for programming Palcom IoT systems: Explore, Compose, and Expose.
• We classify the Palcom programming environment as between levels 3 and 4 using Tanimoto’s levels of

liveness.
Paper 2
• We propose ComPOS, a DSL for composing services.
• We describe four different strategies for handling new messages: Ignore, Queue, Parallel, Abort.
• We implement Abort using epochs.
• We show how to get the other strategies using an additional service.
• We evaluate ComPOS in a case study reimplementing compositions in a home care system.
• The case study shows that ComPOS has more explicit control flow than the original composition language.
• We propose implementations for seven common home automation scenarios proposed by Rodeíguez Avila et.al.
Paper 3
• We propose a conceptual model for Palcom systems specified using Relational Reference Attribute Grammars.
• We formulate and implement the Device Dependency Analysis (DDA) on top of our conceptual model.
Paper 4
• We propose a new technique for developing integrated projectional editors using reference attribute grammars.
• We implement this technique in the Jatte tool and assess it by implementing editors for a toy language and

ComPOS.
58

THE END

59

