
COMPOS - a development environment for
composing internet-of-things services

Alfred Åkesson

Licentiate thesis, 2019

Department of Computer Science
Lund University

ISBN 978-91-7895-364-6 (printed version)
ISBN 978-91-7895-365-3 (electronic version)
ISSN 1652-4691
Licentiate Thesis 2, 2019
Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: alfred.akesson@cs.lth.se
Webpage: http://cs.lth.se/alfred-akesson/

Typeset using LATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2019

c© 2019 Alfred Åkesson

i

Abstract
Internet-of-things (IoT) systems consist of spatially distributed devices with ser-
vices. Compared to desktop applications, IoT systems are always running and need
to deal with unresponsive devices and weak connectivity. In this thesis, we exam-
ine the following question: How can we simplify the development of IoT systems?
We begin to answer this question by proposing a domain-specific language (DSL),
called COMPOS, for composing IoT services. In the DSL, the user specifies the
reaction to a message. The reaction can be programmed to request and receive
responses in sequence and parallel. COMPOS can abort a running reaction when
a new message arrives; this is to support unresponsive devices and weak connec-
tivity. We demonstrate our language by creating a bird-spying system that takes
photos of a garden and then stores the ones containing a bird. The COMPOS editor
supports live programming for programming a running system. Programming in
our DSL is divided into three phases: finding services (explore), composing ser-
vices (assemble), and abstracting compositions as new services (expose). When
developing a DSL, it takes effort specifying the syntax and semantics, building the
editor, and integrating with the middleware. To reduce the effort needed to exper-
iment with our DSL, we have created a tool called JATTE. The tool is a generic
projectional editor that can be tuned for different languages using attribute gram-
mars. We have integrated the editor built with the tool into an IoT development
environment supporting discovery of devices and services.

iii

Acknowledgements
I like first of all, to thank my main supervisor, Görel Hedin, for giving me this
opportunity and for all the support. I also want to thank Görel for teaching me
about research and academic writing and presenting. Also, I want to thank my
co-supervisor Boris Magnusson for all our discussions and for taking me on as a
research assistant. I want to thank my other co-supervisor, Niklas Fors, for his
support.

Huge thanks to my co-author, travel buddy and demo operator, Mattias Nor-
dahl. Björn Johnsson, I thank you, especially for insight about how PalCom is
used. Thanks, Jesper Öqvist, my go-to guy for JastAdd problems. I like to
thank the other members of the research SDE group Christoph Reichenbach, Noric
Couderc, Alexandru Dura, and Emma Söderberg. Also, I like to thank all the mem-
bers of the computer science department for all fika and support.

This work was partially supported by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation. Therefore I want to thank the Knut and Alice Wallenberg Foundation.
I also want to thank all my fellow batch-1-WASP-AS students and teachers and all
other people in WASP.

I detta sista stycke, vill jag tacka mina föräldrar, Bengt och Anna-Karin Åkesson
för allt deras stöd och rådgivning. Jag vill även tacka mina syskon Albin, Alma
och Allis Åkesson samt mina far- och morföräldrar Åke och Elisabeth Andersson
och Nils-Eric och Kerstin Andersson samt min övriga släkt för allt stöd. Jag vill
tacka mina vänner som har givit mig inblick i "verkligheten". Ett tack även till alla
i equmenia Nävlinge och Rickarum som har givit mig en meningsfull fritid och till
alla mina syskon i Equmeniakyrkan Nävlinge-Rickarum för omsorg och förböner.
Ett tack till den treeniga Guden för att ha, bland annat, skapat en värld där datorer
existerar.

iv Contributions of the author

This thesis is a compilation consisting of an introduction, two papers, and a
technical report. The technical report is a revisited and extended version of a
paper.

Contributions of the author
List of included peer-reviewed publications by the thesis author.

Paper I Alfred Åkesson and Görel Hedin. “Jatte: A Tunable Tree Editor for
Integrated DSLs”. In: Proceedings of the 2nd ACM SIGPLAN International Work-
shop on Comprehension of Complex Systems. CoCoS 2017. Vancouver, BC,
Canada, 2018, pp. 7–12

The thesis author did all of the technical work and is the main author of sec-
tions 3-7.

Paper II Alfred Åkesson, Mattias Nordahl, Görel Hedin, and Boris Magnusson.
“Live Programming of Internet of Things in PalCom”. In: Conference Companion
of the 2nd International Conference on Art, Science, and Engineering of Program-
ming. Nice, France, 2018, pp. 121–126

The thesis author created the example and is the main author of sections 3-5.

Paper III Extended version of: Alfred Åkessson, Görel Hedin, Boris Mag-
nusson, and Mattias Nordahl. “ComPOS: Composing Oblivious Services”. In:
2019 IEEE International Conference on Pervasive Computing and Communica-
tions Workshops (PerCom Workshops). Kyoto, Japan, Mar. 2019, pp. 132–138

The thesis author did all of the technical work and is the main author of this
paper as well as the extended version presented in this thesis.

Other publications

Alfred Åkesson, Mattias Nordahl, Görel Hedin, and Boris Magnusson. “Demo:
A DSL for composing IoT systems”. In: Proceedings of the 19th ACM/IFIP Mid-
dleware Conference: Posters and Demos. Rennes, France, 2018, pp. 17–18

Alfred Åkesson. “DSL for End-user Service Composition”. In: Conference
Companion of the 2nd International Conference on Art, Science, and Engineering
of Programming. Nice, France, 2018, pp. 239–240

CONTENTS

1 Introduction . 1
2 IoT middleware . 2
3 Domain-Specific Languages . 6
4 Live Programming . 9
5 Contributions . 9
6 Conclusions and Future work . 12
References . 12

I JATTE: A Tunable Tree Editor for Integrated DSLs 17
1 Introduction . 17
2 Background . 18
3 Default Tree Editor . 19
4 Customizing the Editor . 19
5 Case Study: IoT Language . 25
6 Implementation . 28
7 Related Work . 28
8 Conclusion . 29
References . 29

II Live Programming of Internet of Things in PalCom 33
1 Introduction . 33
2 The PalCom Middleware Toolkit 34
3 Live programming in PalCom 35
4 Example: Photo booth . 36
5 Related Work . 42
6 Conclusions . 44
7 Acknowledgements . 44
References . 44

vi Contributions of the author

III COMPOS: Composing
Oblivious Services 47
1 Introduction . 47
2 Motivating example . 49
3 The COMPOS language . 54
4 Extending the bird-watcher scenario 56
5 Adapting semantics for spontaneous

messages . 59
6 Utility Analysis . 62
7 Related work . 66
8 Conclusions and future work . 67
References . 68
Appendix A A COMPOS Specification 71
Appendix B Full examples . 82

Introduction 1

1 Introduction
The cost of computers is decreasing, and low-cost computers are getting better
connectivity. More devices get a connected computer embedded into them. These
communicating devices enable new types of systems to emerge. We refer to this
trend as the Internet-of-Things (IoT).

An IoT system is a system containing multiple connected devices. An example
of IoT systems is in home care, where kidney-failure patients can weigh them-
selves at home and automatically get their weight sent to the hospital [JM16].
Another example of IoT systems is in home-automation, for example, having the
colour of a light indicating the energy consumption of the home [CC16].

In the paper "A Roadmap to the Programmable World" [TM17], Taivalsaari
and Mikkonen point out some challenges with programming IoT systems. Two
challenges of particular interest for this thesis are:

• IoT systems have weak connectivity where devices may disconnect and re-
connect to the rest of the system at any time.

• IoT systems are always running, even if single devices may shut down or
disconnect.

Another challenge is to understand what happens in the system and to under-
stand the different dependencies between devices [WGB99]. There is potentially a
lot of useful IoT systems that we can build. To create these IoT systems faster, we
can make it so simple to build IoT systems that even end-users can do it [Tet+15].

How can we simplify the development of IoT systems? That is the main ques-
tion we strive to answer with this research. We take steps to answer this question
by proposing a domain-specific language (DSL) (paper III), a development envi-
ronment with support for live programming (paper II), and a tool for experimenting
with the DSL and the development environment (paper I). Our proposed DSL is
called COMPOS and is designed to handle weak connectivity (paper III). Our de-
velopment environment supports live programming [Tan90; Tan13] to enable users
to explore and evolve always-running IoT systems (paper II). To enable us to ex-
periment with the DSL, we have created a meta-tool for generating editors called
JATTE. JATTE generates editors with support for end-user-friendly features such
as projectional editing and drag-and-drop (paper I).

The research we present in this thesis is built on prior work. COMPOS is
built on top of the PalCom middleware toolkit [SF09]. JATTE and COMPOS are
implemented using reference attribute grammars [Hed00] (in the JastAdd meta-
compiler [HM03]).

As a part of our research method, we create artefacts [KV15]. Using the arte-
facts, we can then implement scenarios to show our contributions. For the creation
of the artefact, we use an iterative approach. First, we make a prototype and use
it to implement a scenario. From the experience of implementing the scenario, we
design the next prototype.

2 Introduction

The rest of this chapter includes three sections of background (sections 2-4).
Then follows a summary of the contributions of the thesis (section 5). Finally,
we present conclusions and future work (section 6). The first background section
describes IoT middleware and PalCom (section 2). The next background sec-
tion describes domain-specific languages and their benefits, as well as projectional
editing and reference attribute grammars (section 3). The third background section
explains live programming (section 4).

2 IoT middleware

Middleware [Ber96] is an abstraction between an application and the underlying
platform. It often abstracts the network in order to make it easier to program dis-
tributed applications. COMPOS is built upon the PalCom middleware toolkit. In
this section, we will first describe PalCom and then look at different classifications
of IoT middleware to classify PalCom.

2.1 PalCom

PalCom [SF09; SF+09] is a service-based middleware toolkit. It provides a pro-
tocol allowing devices to continuously discover each other as well as the services
that each device currently run. Devices are uniquely identifiable running instances
of the PalCom middleware, hosting a set of services. The unique identifiers of
devices, called device id, are used for addressing messages. Services use asyn-
chronous message passing to communicate. Before two services can communi-
cate, a connection needs to be set up between them. There are three kinds of
services: native services, composition1 services and synthesized services. Native
services perform computations and interact with the physical environment. A na-
tive service is normally oblivious, meaning that it does not set up connections to
other services. It also does not know the identity of the service at the other end of a
connection. Compositions compose oblivious services into systems by setting up
connections as well as mediating and adapting messages. A composition service
can also provide its own oblivious services called synthesized services. Synthe-
sized services is an abstraction that composes the functionality of many oblivious
services into one oblivious service.

Figure 1 shows a conceptual model for devices and services: services are
hosted on devices. Services can be either oblivious or compositions, where a com-
position connects to zero or more oblivious services. An oblivious service can be
either native or synthesized, the latter being part of a composition. Each oblivious
service has an interface of incoming and outgoing messages. Figure 2 shows an
instance of the conceptual model with two devices, two native services and two
compositions. Composition C1 provides a synthesized service.

1Compositions are called assemblies in paper I and paper II

Introduction 3

Figure 3 shows a sketch of an interactive tool called the PalCom Browser used
for discovering services and creating compositions. On the left in the sketch is a
view showing the discovered devices and services on the network, and the right is
an editor for creating and editing compositions. In our work, we have integrated a
new editor for COMPOS into the PalCom Browser.

hosted on

connects to*

has

*

Device Service

CompositionOblivious
{msg interface}

Native Synthesized

Figure 1: Conceptual model for PalCom devices and services.

D1

C1N1

S1

D2

C2N2
Composition
with
connections

Device

Synthesized
service with
interface
Native service
with interface

Figure 2: An instance of the conceptual model in figure 1.

2.2 Service-based, Cloud-based, or Actor-based?

There are many different middlewares supporting IoT systems. Ngu et al.
[Ngu+17] propose to classify them into the following three categories:

Service-based A service-based middleware consists of services running either “in
the cloud or on a powerful gateway” [Ngu+17]. There is no peer-to-peer

4 Introduction

PalCom Browser

Network

 Composition: C1

Device: D2
 Native: N2
 Composition: C2

 Native: N1
Device: D1

 Synthesized: S1

Composition: C2 Composition: C1

Figure 3: A sketch of the PalCom Browser with the discovered devices and ser-
vices on the left and the composition editor on the right.

communication between the IoT devices; instead, the devices communicate
with the services.

Cloud-based A cloud-based middleware is a vendor-provided service running in
the cloud. Developers can only interact with the middleware through vendor
applications or API:s.

Actor-based Actors are services that can be added dynamically to a device run-
ning the actor middleware. All devices in a system run the middleware.
Every device that fulfils the hardware requirements of an actor can run it,
e.g. a camera actor can run on every device with an image sensor. Actors
allow for an open system where new devices can enter.

According to this classification, PalCom fits into the category of actor-based
middlewares. PalCom services can be deployed on any device meeting the ser-
vice’s hardware requirements. By including a service in a composition, the service
and the hosting device are added to the system, creating an open system.

We sometimes in this thesis call PalCom a service-based middleware. How-
ever, we do not think that PalCom fits the definition of service-based middleware
given by Ngu et al. [Ngu+17]. When we say that PalCom is service-based, we
allude to the fact that PalCom devices provide a set of services.

2.3 Communication Interaction Models

Eugster, Felber, Guerraoui, and Kermarrec [EFGK03] discuss different interaction
models for distributed systems. They suggest three forms of decoupling between
the sender and the receiver.

Introduction 5

Space decoupling Interacting parties do not need to know the identity of each
other to communicate.

Time decoupling Two interacting parties never need to be connected at the same
time to exchange messages.

Synchronization decoupling The sending and receiving of messages happen out-
side the main flow of the program. The sender of a message does not need
to block, waiting for a response, when sending a message. The receiver of a
message gets asynchronously notified when a new message arrives and does
not need actively to wait for messages to arrive.

Space
decoupling

Time
decoupling

Synchronization
decoupling

Message passing No No Only sender
RPC No No Only sender

Tuple space Yes Yes Only sender
Pub/Sub Yes Yes Yes
PalCom Yes No Yes

Table 1: Different interaction models and their decoupling abilities. Grey parts
from [EFGK03]. Only sender means the sending of message does not need to
block, but the receiving of messages has to.

In table 1 [EFGK03] we see how PalCom compares to different interaction
models. Message passing is a low-level form of interaction where the parties in-
teract by sending messages to each other. Remote Procedure Call (RPC) makes the
interaction with a remote machine look like a procedure call. RPC makes it easier
to program distributed systems because there is no difference between calling a
remote procedure or a local one. Tuple space [Gel85] is a set of tuples available
to all participants in the interaction. Participants can put a tuple into the tuple set,
pull a tuple out of the set and read a tuple from the set. In Publish/Subscribe (Pub-
/Sub), a publisher sends messages to a broker. A subscriber can then connect to
the broker and subscribe to messages. A subscriber can define what messages it
wants to subscribe to in many different ways. One way is that the publisher tags
the message with a topic and the subscriber can then subscribe to that topic.

In PalCom, two oblivious services interact with each other through a composi-
tion. PalCom is space decoupled because oblivious services do not know to whom
they talk. To have time decoupling, we need a third party to store the message
when neither the sender or receiver is connected. A composition could act as such
a third party, but this is not something we have implemented. Time decoupling
could also be accomplished by having a caching service. In PalCom, messages are
sent and received asynchronously, making PalCom synchronization decoupled.

6 Introduction

2.4 Orchestration and Choreography

Two approaches for service composition are orchestration and choreography
[Erl05]. In service orchestration, there is a central service sometimes called the
conductor, which controls the messages sent between services. In choreography,
the services act peer-to-peer, and coordinate messages among themselves without
any central conductor. However, there is a global description describing different
roles services can play in a choreography.

PalCom uses a combined approach with devices communicating peer-to-peer.
Each composition acts as the conductor of a small orchestration. However, since
compositions themselves may have synthesized services, the compositions consti-
tute a graph distributed over different devices without a central conductor, corre-
sponding to a choreography, without any description, at the macro level. In figure
2, we see each composition orchestrating services; at the same time, there is no
central conductor in the system.

3 Domain-Specific Languages

In this section, we discuss domain-specific languages, projectional editing and
reference attribute grammars.

A Domain-Specific Language (DSL) is a programming language designed for
building applications in a specific domain. A DSL has constructs, notation and
abstractions tailored for the domain [DKV00]. One of the contributions of this
thesis is COMPOS, a DSL for composing IoT services.

Völter et al. [Völ+13] discuss a number of benefits and problems of DSLs.
Below we discuss the benefits of particular interest for this thesis:

Productivity A COMPOS script would require writing less code than an equiva-
lent program in a general-purpose programming language, and thus speed-
ing up IoT system development.

Validation and Verification A script written in COMPOS contains much seman-
tic information that can be used when designing analyses of IoT systems.

Productive Tooling Having COMPOS as a DSL allows us to create a custom
editor using JATTE. We have integrated the editor into the PalCom Browser
to support high-level domain-specific editing, e.g., allowing the user add
a message send by dragging a message type from the "Network" window
(figure 3) to the composition.

Below, we list some of the potential problems with DSLs identified by Völter
et al. [Völ+13], and discuss some ways we try to tackle them:

Introduction 7

Evolution and Maintenance When experimenting with the COMPOS language,
it is often hard to have backward compatibility. One benefit of using projec-
tional editing, compared to textual editing and parsing, is that changes in the
concrete syntax are backwards compatible, as long as the abstract syntax is
not changed.

Tool Lock-in COMPOS is built using JastAdd and JATTE, so replacing the under-
lying framework would be a considerable investment. COMPOS uses XML
for serialisation, so creating a parser would be straightforward if COMPOS
were to be reimplemented in another framework.

Learning It takes effort to learn COMPOS, but by using projectional editing,
users do not have to learn the syntax.

Effort of Building the DSLs It takes effort to develop a DSL such as COMPOS.
We use JATTE and JastAdd to speed up the development.

3.1 Projectional editing

When editing the source code of a program in an Integrated Development Environ-
ment (IDE), the IDE parses the code and builds an internal representation, typically
in the form of an Abstract Syntax Tree (AST). The AST is used in analyses to pro-
vide feedback such as error messages and code completion. In projectional editing
[VL14], also known as structural editing [Han71], instead of interacting with text,
the user interacts with the AST [VL14]. The editing is done using operations for
adding, removing, moving and changing AST-nodes. In COMPOS, the AST is
visualised to the user using a textual notation. Our meta-tool JATTE, discussed in
paper I, generates projectional editors from a reference attribute grammar.

3.2 Reference Attribute Grammars

An attribute, in attribute grammars [Knu68], is a property of an AST node, de-
fined by a pure function that can access other attributes. There are two classes of
attributes: synthesized and inherited. A synthesized attribute is declared on a node
class and is like a virtual method. The defining function of a synthesized attribute
is in the class or a subclass. An inherited attribute is also declared on a node class,
but its defining function is in an ancestor node. Inherited attributes are useful for
accessing information higher up in the AST, e.g., finding visible declarations.

Reference Attribute Grammars (RAGs) [Hed00] are attribute grammars where
an attribute value can be a reference to another node in the AST. RAGs are use-
ful for instance in name analysis, giving every use of a name a reference to its
definition.

8 Introduction

JastAdd

JastAdd [HM03] is the meta-compilation system we use to implement JATTE and
COMPOS. In JastAdd the programmers specify their compilers using reference
attribute grammars and aspect-oriented programming.

Aspect-oriented programming is a mechanism for modularisation of cross-
cutting concerns [Kic+97]. JastAdd supports aspect-oriented programming by al-
lowing different members of a class to be defined separately in different aspects,
like open classes in MultiJava and inter type declarations in AspectJ [CLCM00;
Kic+01]. These aspects can be used to separate different parts of a compiler im-
plementation. Name analysis, type analysis and interpretation, are examples of
different aspects. Aspects allow class members to be defined in aspect files, syn-
tactically outside of their respective classes. In JastAdd, the members can be fields,
methods, or attributes. The aspect files are then used by JastAdd to generate Java
implementations of the AST classes. Figure 4 illustrates how JATTE, JastAdd,
PalCom and COMPOS interact to generate the editor.

In JATTE, the user can customise the editor by overriding attributes. In JastAdd
there are two ways of overriding attributes, either by overriding in a subclass like
in Java or by specifying the aspect of the attribute to override.

JastAdd
metacompiler

Jatte lib PalCom

Java
compiler

ComPOS editor

jar jar

jar

Jast
Add

Jast
Add

Jast
Add

ComPOS
Compiler

Specification

ComPOS
Customized

Editor
Specification

Default
Editor

Specification

Java

AST
classes

Java

Application
code

(1)

(2)

(3)

(4)

Figure 4: A sketch of how JATTE, JastAdd, PalCom and COMPOS interact to
generate the editor for COMPOS The customized COMPOS editor (3) overrides
attributes in the default JATTE editor (1), and can use attributes in the COMPOS
compiler (2) and library functions in PalCom (4) to provide advanced editing sup-
port.

Introduction 9

4 Live Programming
Live programming is about editing the program while it is running. The goal of
live programming is to minimise the time from when the programmer edits the pro-
gram until the programmer sees the result. The whole development environment is
involved in supporting live programming. Paper II argues for using live program-
ming when building IoT systems, addressing the always running challenge from
section 1.

To classify how well a development environment supports live programming,
Tanimoto has identified six levels of liveness [Tan13; Tan90]:

1. Informative To run the program, the user has to manually convert the pro-
gram to a lower level language, for example, converting a class diagram to
Java code.

2. Significant The user runs the program with a click of a button.

3. Responsive The development environment reruns the program after every
edited operation. Useful for short running programs.

4. Live The development environment updates the running program after an
edit. For example, changing colour in a game and see the result without
restarting the game.

5. Tactical predictive The development environment tries to predict the next
line the programmer will write and execute it. For example, the programmer
opens a file, and the development environment automatically starts reading
from it.

6. Strategical predictive The development environment tries to predict a large
chunk of code. For example, automatically create a parser for the file the
programmer just opened.

In paper II we argue that the PalCom-development environment supports live-
ness between level 3 and level 4.

5 Contributions
In this section, we describe the contributions of the individual papers and also the
artefacts that were developed during this research.

5.1 JATTE: A Tunable Tree Editor for Integrated DSLs
In paper I, we present JATTE, a tunable projectional editor. Using JATTE, we
show how reference attribute grammars can be used for specifying and tuning

10 Introduction

projectional editors. JATTE generates a default editor from the abstract grammar.
The editor can then be tuned by overriding the default attributes JATTE generates.
The tuning is used to specify the text, formatting, menu, and visibility of an AST
node. In the paper, we build two editors using JATTE, one for a toy language and
one for COMPOS. We also propose a way of integrating projectional editors into
applications using JATTE. This is in contrast to most other projectional editors that
come with their own interactive environment and are not intended to be integrated
into other applications. One way we support integration is the support for drag-
and-drop between the application and the editor. As an example of JATTE’s support
for editor integration, we integrated the COMPOS editor into the PalCom browser.

List of contributions in paper I:

• A new technique for developing projectional editors, based on reference
attribute grammars.

• Examples showing how a generic projectional editor can be tuned to support
context-sensitive editing, by overriding attributes.

• Examples showing how a projectional editor can be integrated into another
application.

• Experimental validation by implementing the approach and applying it to
two different languages, one of which is integrated into an existing applica-
tion.

5.2 Live Programming of Internet of Things in PalCom
In paper II, we discuss using live programming to compose IoT systems in Pal-
Com. Live programming allows the programmer to evolve running systems. We
divided the PalCom live programming experience into three phases: explore, as-
semble and expose. The explore phase is about discovering and interacting with
services, trying to understand their functionality in an exploratory way. The as-
semble phase is about composing services using our DSL. The expose phase is
about exposing the functionality of a composition as a new service, i.e., creating
a synthesized service. We show how the PalCom browser supports these three
phases. In the paper, we also argue that PalCom supports liveness between level 3
and level 4 from Tanimoto’s levels of liveness.

List of contributions in paper II:

• A characterisation of live IoT programming as a process of three interrelated
phases: explore, assemble, and expose.

• A demonstration, showing this process in action.

• Arguing that PalCom supports liveness between levels 3 and 4.

Introduction 11

5.3 COMPOS: Composing Oblivious Services

In paper III, we introduce COMPOS, a DSL for composing services in IoT sys-
tems. In the DSL, connections to services and devices are specified, making depen-
dencies between devices explicit. A COMPOS script contains a list of guarded re-
actions. When a service spontaneously sends out a message that matches a guard,
the composition starts to execute the reaction. The reaction contains actions for
sending and receiving messages, expressing alternatives and doing nested actions
in parallel. When a guard matches, it may abort an already running reaction trig-
gered by the same service (see the paper for details about when this happens).
Using weak connectivity as an argument, we motivate why we abort running re-
actions. For cases where other semantics than to abort is desired, we show how
generic services can be used to adapt compositions semantics. We also propose
utility analysis, an analysis used to determine what devices can fail, while still
supporting partial functionality.

To demonstrate our contributions, we use a scenario with a system that helps a
birdwatcher to spy on birds in a garden. We gradually extended the scenario with
more devices to illustrate the features of the language. We also apply the utility
analysis on the scenario.

List of contributions in paper III:

• A new DSL for composing IoT services with weak connectivity, including
syntax and semantics in the form of an interpreter.

• A case study motivating the constructs in the language and their semantics.

• Examples showing how generic services can be used to change the semantics
of compositions.

• The notion of a utility analysis to determine the usefulness of a system when
different devices in it fail.

Developed artefacts

JATTE JATTE is a framework for creating projectional editors using RAGs and
aspect-oriented programming. JATTE is built using JastAdd and uses
Java Swing for rendering. Our implementation is open source available
at https://bitbucket.org/jastadd/jatte, and an artefact evaluation
is at https://bitbucket.org/jastadd/jatteartifactevaluation/
downloads/.

COMPOS COMPOS consists of two parts, an editor and an interpreter. The in-
terpreter is implemented in JastAdd and uses the PalCom middleware for all
its communication. The editor is implemented using JATTE and integrated

12 Introduction

with the PalCom browser. Videos demonstrating COMPOS are available at
https://lu.box.com/s/wxc9y5psxfk91li4027r88crd1tbe1yj.

6 Conclusions and Future work
In this thesis, we explore ways to simplify the development of IoT systems. IoT
systems are hard to understand with nontrivial dependencies between devices. Our
approach is to design a DSL, called COMPOS, to make the connections in the
system explicit and thereby making the dependencies easier to understand. IoT
systems are weakly connected; hence, COMPOS is designed to handle connections
going down. We also explored how to evolve always-running IoT systems with
live programming. Implementing a DSL with editor support takes effort. To allow
us to experiment with our DSL efficiently, we created JATTE, a tool for creating
projectional editors and integrating them in applications.

In the future, we see three main lines of continued research. The first is to look
into what we can analyse to get an understanding of a connected system. The first
step to that end will be to try to implement the utility analysis described in paper
III. Then we can look into other analyses. One idea is adding more expressive in-
terface descriptions to services that allow us to analyse how messages flow through
a system. Once we can analyse a whole system, we can generate overviews similar
to figure 2. The second line of research is to evaluate COMPOS more extensively
by conducting a larger case study by reimplementing the compositions in a sys-
tem for home care with COMPOS. The third line of research is looking at the
usability aspects of the development environment. Ideally, we would like to sup-
port that end users, without programming experience, can compose IoT systems
using COMPOS. The user studies will hopefully give indications of how usable
the development environment is, and insight into how we can improve usability
[NM90].

Further, in the future, we may be able to reach liveness level 5 and 6 by lever-
aging opportunistic composition engines [YTAA18].

References
[Ber96] Philip A. Bernstein. “Middleware: A Model for Distributed Sys-

tem Services”. In: Commun. ACM 39.2 (Feb. 1996), pp. 86–98.

[CLCM00] Curtis Clifton, Gary T Leavens, Craig Chambers, and Todd Mill-
stein. “MultiJava: Modular open classes and symmetric multiple
dispatch for Java”. In: ACM Sigplan Notices. Vol. 35. 10. ACM.
2000, pp. 130–145.

Introduction 13

[CC16] J. Coutaz and J. L. Crowley. “A First-Person Experience with
End-User Development for Smart Homes”. In: IEEE Pervasive
Computing 15.2 (2016), pp. 26–39.

[DKV00] Arie van Deursen, Paul Klint, and Joost Visser. “Domain-Specific
Languages: An Annotated Bibliography”. In: SIGPLAN Notices
35.6 (2000), pp. 26–36.

[Erl05] Thomas Erl. “Service-Oriented Architecture: Concepts, Technol-
ogy, and Design”. In: Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2005. Chap. 6.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and
Anne-Marie Kermarrec. “The Many Faces of Publish/Subscribe”.
In: ACM Comput. Surv. 35.2 (June 2003), pp. 114–131.

[Gel85] David Gelernter. “Generative Communication in Linda”. In: ACM
Trans. Program. Lang. Syst. 7.1 (Jan. 1985), pp. 80–112.

[Han71] Wilfred J. Hansen. “User engineering principles for interactive
systems”. In: AFIPS ’71 Fall Joint Computer Conference. ACM,
1971, pp. 523–532.

[Hed00] Görel Hedin. “Reference Attributed Grammars”. In: Informatica
(Slovenia) 24.3 (2000), pp. 301–317.

[HM03] Görel Hedin and Eva Magnusson. “JastAdd–an aspect-oriented
compiler construction system”. In: Sci. of Comp. Prog. 47.1
(2003), pp. 37–58.

[JM16] Björn A Johnsson and Boris Magnusson. “Supporting collabo-
rative healthcare using PalCom–The itACiH system”. In: Perva-
sive Computing and Communication Workshops (PerCom Work-
shops), 2016 IEEE International Conference on. IEEE. 2016,
pp. 1–6.

[Kic+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Ir-
win. “Aspect-oriented programming”. In: ECOOP’97 — Object-
Oriented Programming. Ed. by Mehmet Akşit and Satoshi Mat-
suoka. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997,
pp. 220–242.

[Kic+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm, and William G Griswold. “An overview of AspectJ”.
In: ECOOP. Vol. 2072. LNCS. Springer. 2001, pp. 327–354.

[Knu68] Donald E. Knuth. “Semantics of Context-free Languages”. In:
Math. Sys. Theory 2.2 (1968). Correction: Math. Sys. Theory
5(1):95–96, 1971, pp. 127–145.

14 Introduction

[KV15] Shriram Krishnamurthi and Jan Vitek. “The Real Software Crisis:
Repeatability As a Core Value”. In: Commun. ACM 58.3 (Feb.
2015), pp. 34–36.

[Ngu+17] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng.
“IoT Middleware: A Survey on Issues and Enabling Technolo-
gies”. In: IEEE Internet of Things Journal 4.1 (2017), pp. 1–20.

[NM90] Jakob Nielsen and Rolf Molich. “Heuristic Evaluation of User In-
terfaces”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’90. ACM, 1990, pp. 249–
256.

[SF09] David Svensson Fors. “Assemblies of pervasive services”. PhD
thesis. Department of Computer Science, Lund University, 2009.

[SF+09] David Svensson Fors, Boris Magnusson, Sven Gestegård Robertz,
Görel Hedin, and Emma Nilsson-Nyman. “Ad-hoc composition
of pervasive services in the PalCom architecture”. In: Proceedings
of the 2009 international conference on Pervasive services. ACM.
2009, pp. 83–92.

[TM17] Antero Taivalsaari and Tommi Mikkonen. “A roadmap to the pro-
grammable world: software challenges in the IoT era”. In: IEEE
Software 1 (2017), pp. 72–80.

[Tan90] Steven L. Tanimoto. “VIVA: A visual language for image process-
ing”. In: Journal of Visual Languages & Computing 1.2 (1990),
pp. 127 –139.

[Tan13] Steven L Tanimoto. “A perspective on the evolution of live pro-
gramming”. In: Proceedings of the 1st International Workshop on
Live Programming. IEEE Press. 2013, pp. 31–34.

[Tet+15] Daniel Tetteroo, Panos Markopoulos, Stefano Valtolina, Fabio Pa-
ternò, Volkmar Pipek, and Margaret Burnett. “End-User Develop-
ment in the Internet of Things Era”. In: Proceedings of the 33rd
Annual ACM Conference Extended Abstracts on Human Factors
in Computing Systems. CHI EA ’15. Seoul, Republic of Korea:
ACM, 2015, pp. 2405–2408.

[VL14] Markus Völter and Sascha Lisson. “Supporting Diverse Notations
in MPS’ Projectional Editor.” In: GEMOC@MoDELS. 2014,
pp. 7–16.

[Völ+13] Markus Völter, Sebastian Benz, Christian Dietrich, Birgit En-
gelmann, Mats Helander, Lennart C. L. Kats, Eelco Visser, and
Guido Wachsmuth. “DSL Engineering - Designing, Implement-
ing and Using Domain-Specific Languages”. In: dslbook.org,
2013. Chap. 2, pp. 40–43,71,78.

Introduction 15

[WGB99] M. Weiser, R. Gold, and J. S. Brown. “The origins of ubiquitous
computing research at PARC in the late 1980s”. In: IBM Systems
Journal 38.4 (1999), pp. 693–696.

[YTAA18] Walid Younes, Sylvie Trouilhet, Françoise Adreit, and Jean-Paul
Arcangeli. “Towards an Intelligent User-Oriented Middleware for
Opportunistic Composition of Services in Ambient Spaces”. In:
Proceedings of the 5th Workshop on Middleware and Applications
for the Internet of Things. M4IoT’18. ACM, 2018, pp. 25–30.

PA
P

E
R

IPAPER I

JATTE: A Tunable Tree Editor for
Integrated DSLs

Abstract

Complex systems often integrate domain-specific languages to let users customize
the behavior. Developing tooling for such languages is typically time-consuming
and error-prone. We present JATTE, a tool intended to simplify this development.
JATTE works as a generic tree editor for an abstract syntax, but uses aspects and
attribute grammars to support powerful modular ways of tuning both the projected
view and the editing commands. We present the key features of JATTE, and discuss
its application in an orchestration language for internet of things.

1 Introduction

Complex systems often integrate domain-specific languages (DSLs) to let users
customize the behavior. To support close and comprehensible integration with the
application, structural/projectional editing [Han71; TR81; Rei85; Dmi04; Völ09]
can be preferable to textual editing. In particular, parts of the DSL program may
refer to entities in the system that are difficult to understand as text, and which
can be suppressed by a projectional editor. For example, in an orchestration DSL
for an Internet-of-Things (IoT) system, the globally unique name of a particular
device is typically a long string, incomprehensible to a human. A projectional
editor can instead show a human readable name.

Alfred Åkesson and Görel Hedin. “Jatte: A Tunable Tree Editor for Integrated DSLs”. In:
Proceedings of the 2nd ACM SIGPLAN International Workshop on Comprehension of Complex
Systems. CoCoS 2017. Vancouver, BC, Canada, 2018, pp. 7–12

18 Paper I: JATTE: A Tunable Tree Editor for Integrated DSLs

Furthermore, DSL users are typically not expert programmers, and it is useful
for the integrated editor to have intelligent editing support, like drag-and-drop be-
tween visual representations of the system parts and the DSL program, as well as
context-dependent support like code completion.

Generic structural tree editors can be a good starting point for constructing
integrated DSL editors. One example is the Eclipse Modelling Framework tree
editor, EMF.Edit [SBMP08]. However, customizing such editors can be difficult.
There is an example in the EMF book on how to hide a node type in EMF.Edit,
requiring changing the generated Java code, adding 61 non-trivial lines of code.

Customization needs to be done in a much easier way, and without having to
resort to fragile practices like changing generated code. To support these needs,
we have implemented a general tool, JATTE, that supports easy and powerful
customizable tree editing, where customization is added using modular aspects.
JATTE can be tuned to customize what AST nodes are shown, how they are shown,
and what edit commands are provided. It also supports customized editing like
drag and drop from other parts of an application into which the editor is inte-
grated. We believe such customization and close integration with the application
is often vital to the comprehensibility of the DSL.

The customization is done using reference attribute grammars [Hed00] as sup-
ported by the JastAdd metacompilation tool [HM03]. We show through examples
how this gives a powerful way of customizing the editor, easily supporting context-
dependent facilities like intelligent code completion.

We start by giving some brief background on JastAdd and attribute grammars
(Section 2). We then present how JATTE works out of the box as a generic tree
editor (Section 3). In Section 4 we present our main contribution: how the edi-
tor can be customized using attribute grammar aspects.1 We then present a case
study where JATTE is used to implement an editor for an orchestration language
for the IoT middleware PalCom [SF+09] (Section 5). Finally, we briefly discuss
the implementation of JATTE (Section 6), related work (Section 7), and conclude
(Section 8).

2 Background

JastAdd is a compiler construction system supporting aspects and attribute gram-
mars. In JastAdd, the developer specifies an abstract grammar that is equivalent to
a Java class hierarchy. A clause like

Class : SuperClass ::= Right-hand -side;
specifies an AST node class, where the right-hand side declares individual chil-
dren, list children, optional children, and tokens. The developer can then add
methods, attributes, and equations to the node classes. This is done modularly us-

1JATTE is open source. The tool and a video can be downloaded at https://bitbucket.org/
jastadd/jatteartifactevaluation/downloads/.

Paper I: JATTE: A Tunable Tree Editor for Integrated DSLs 19

ing aspects with inter-type declarations, like in MultiJava and AspectJ [CLCM00;
Kic+01].

An attribute is a derived property of an AST node, defined by a directed equa-
tion whose right-hand side is a function that may access other attributes in the
AST.

Attributes are classified as synthesized or inherited. A synthesized attribute
is declared on a node class and is similar to a virtual function, with its defining
equation in the class or a subclass. An inherited attribute is also declared on a node
class, but its defining equation is located in an ancestor node. Inherited attributes
are useful for accessing information higher up in the AST, like visible declarations
[HM03; Knu68]. The JastAdd tool weaves attributes and methods from the aspect
files into Java classes generated from the abstract grammar.

3 Default Tree Editor

By default, the JATTE tree editor displays each AST node as a row, and the node’s
children as nested rows. The displayed label for a node is derived from its name
(as seen from the parent), its actual type, and any tokens with their values:

Name : ActualType < Token = TokenValue >

The abstract grammar in Fig. 1 shows a tiny calculator language, Calc, with
Let expressions. Fig. 2 shows the corresponding default editor. The user has
added a Mul node with two children of type Numeral, one with the token value 1,
and one with the value 2. Menus for editing the tree are generated based on the
abstract grammar, an example of this is shown in Fig. 3. A node can be replaced
by a node of another type, if the change follows the grammar, and tokens can be
edited as text. For lists and optionals, there are additional generic commands to
add and remove nodes.

When adding a node, the AST is automatically completed to a full subtree. For
example, when adding a Mul node, its two operand children will be added as well.
Heuristics are used to construct a subtree with few children and tokens.

The editor supports saving the AST, serializing to it XML.

4 Customizing the Editor

The default editor can be customized by, for example, changing the node labels,
hiding nodes, and changing the menu. The editor behavior is controlled by a num-
ber of attributes declared on the class ASTNode, which is an implicit superclass of
all node classes. For example, there is an attribute ed_label for specifying the
label of a node. The user can add aspect files with equations that override these
attributes for specific node classes. By introducing helper attributes, synthesized
or inherited, powerful customization is supported, as will be illustrated.

20 Paper I: JATTE: A Tunable Tree Editor for Integrated DSLs

Program ::= Expr;

abstract Expr;

Mul : Expr ::= Left:Expr Right:Expr;
Div : Expr ::= Left:Expr Right:Expr;
Numeral : Expr ::= <NUMERAL>;

Let : Expr ::= Binding* Expr;

Binding ::= IdDecl Expr;

IdDecl ::= <ID>;
IdUse : Expr ::= <ID>;

Figure 1: Abstract grammar for tiny Calc language

Figure 2: Default editor for the language in Fig. 1

Figure 3: Default menus for Mul and Numeral nodes.

Paper I: JATTE: A Tunable Tree Editor for Integrated DSLs 21

eq Expr.ed_label() = pp();

syn String Expr.pp() = "";

eq Mul.pp() =
getLeft().pp() + "*" + getRight().pp();

eq Div.pp() =
getLeft().pp() + "/" + getRight().pp();

eq Numeral.pp() = getNUMERAL();

Figure 4: Customizing the labels of expressions

Figure 5: Customized labels for Mul
and Numeral

Figure 6: The Numeral nodes have
been hidden.

4.1 Customizing Node Labels

The editor displays nodes by using the attribute ed_label of type String. Sup-
pose we would like to change the default labels in Calc so that each expression is
shown as a complete textual version. For example, we would like the node labelled
Expr:Mul to instead be labelled 1*2. This can be done by introducing a synthe-
sized attribute pp for prettyprinting of expressions, and redefining ed_label using
pp, as shown in Fig. 4. The result of this customization can be seen in Fig. 5. With
slightly different attribution rules, we can easily define fully or minimally paren-
thesized expressions.

4.2 Hiding Nodes

It is often the case that some nodes are uninteresting to view in the editor. For
example, we might like to hide the Numeral nodes that are children to Mul and
Div-expressions. The editor uses a boolean attribute ed_show to determine if a
node should be shown or hidden. If the value of the attribute is evaluated to true
(default), the node is shown, else it is hidden. Fig. 6 shows what the tree looks
like when Numeral nodes are hidden, using the equation:

eq Numeral.ed_show() = false;

When nodes are hidden, their menus are automatically merged into the menu
of the closest visible ancestor. Fig. 7 shows the default generated menu for the
program with hidden Numeral nodes. Here, the left and right numerals can be
edited or replaced using the menu on the Mul node.

22 Paper I: JATTE: A Tunable Tree Editor for Integrated DSLs

Figure 7: The menus for the hidden Numeral nodes have been merged into the
Mul menu.

Figure 8: Context-dependent hiding of Numerals

Context-dependent Hiding. The hiding of nodes can be made conditional and
context-dependent by defining ed_show using other attributes. As an example,
consider the Let construct in Fig.1, which lets us bind a set of variables to ex-
pressions, and use these variables in the last expression. We would like the last
expression to be shown in the editor, regardless of if it is a Numeral or not, but
hide Numeral otherwise. We thus need the equation for Numeral.ed_show() to
depend on the place where it is located in the tree. The Numeral should be shown
when it is the Expr-child of a Let-node, but hidden otherwise. This can be ac-
complished by introducing an inherited attribute parentHidesMe for expressions.
Since the attribute is inherited, its value is defined by an equation in an ances-
tor. We give a default equation for parentHidesMe in ASTNode (the superclass
of all nodes in the tree), defining it to be true for all children, and then letting
Let override this equation for its Expr-child, defining it as false. The ed_show
attribute for a Numeral can then be defined using its parentHidesMe attribute.
These equations are shown in Fig. 8. Fig. 9 shows a Let construct where the node
for 10 inside the binding a = 10 is hidden, but the node for 5 is shown.

Paper I: JATTE: A Tunable Tree Editor for Integrated DSLs 23

Figure 9: The node for 10 is hidden, but 5 is visible.

abstract Menu ::= <name>; / / Name disp layed i n menu
MenuList:Menu ::= Menu*;
MenuItem:Menu ::= <creator:ASTNode>; / / node to act on
ReplaceType:MenuItem ::= <type:Class>;
...

Figure 10: Subset of abstract grammar for menus

4.3 Customizing Menus

The menu for a node is derived from a set of attributes, making it suitable for
customization. Every node has an attribute ed_menu that represents its menu. This
attribute is a higher-order attribute, i.e., its value is a fresh AST that can itself have
attributes [VSK89]. This way, the structure of the menu is represented using an
AST.

Fig. 10 shows a subset of the abstract grammar for menus. A menu is either
a list containing sub-menus, or a menu item that can be selected. Each menu item
has a method perform that implements what to do when the item is selected.
Different subtypes have different behavior. For example, a ReplaceType menu
item will replace the current node by a node of another type.

The default menu contains items depending on the node-type and on its loca-
tion in the AST. For example, if the node is contained in a list or optional, there
will be a menu item for removing the node. If the node has String tokens, there
will be menu items to edit them. There are menu alternatives that enables the user
to create all trees following the abstract grammar.

If a visible node has hidden children, their menu items are merged (recursively
if needed) into the menu of the node. To handle menu items for hidden children, a
reference to the node to act on is stored in the menu item’s token creator.

The user can customize menus in several ways. Predefined attributes can be
overridden to add new menu items, or hide default ones. When defining new
menu items, the existing menu classes can be used, but the user can also define
new subclasses and override the perform method to add custom behavior. It is
also possible to override the ed_menu definition in order to define a completely
different menu.

Intelligent Code Completion Menus. Through the use of attribute grammars,
it is easy to add customizations for intelligent code completion. For example,

24 Paper I: JATTE: A Tunable Tree Editor for Integrated DSLs

Figure 11: Intelligent code completion

Figure 12: Using drag and drop to reorder a list

attributes can be added to support a menu of visible names when editing variables.
Fig. 11 shows an example of this for the Calc language, where the names in the
enclosing Let expressions are selectable from a menu. This functionality was
implemented using 48 lines of attribute code.

4.4 Drag and Drop

JATTE supports Drag and Drop (DnD), allowing the user to drag information both
between nodes inside the editor and between the editor and a surrounding appli-
cation. All AST nodes have the attributes ed_can_drag(), returning true if the
node can be dragged, and ed_can_drop(Object resource), returning true if
the resource can be dropped on the node. To define what happens when a drop
is done, the method ed_accept_resource(Object resource) is used.

By default, these attributes are defined to allow elements in lists to be reordered
using DnD, as shown in Fig. 12. Here, the ed_can_drag() is defined as true for
all elements in the list. ed_can_drop(Object resource) is defined as true for
elements in the same list as resource. Finally, ed_accept_resource(Object
resource) is defined to move the resource node to the drop target node.

To make use of customized DnD, an aspect can be added that overrides or
refines the definitions of these attributes and methods for particular node types.
By using helper attributes, context-dependent DnD can be defined, for example,
only allowing a node to be dropped at a type-correct location.

Paper I: JATTE: A Tunable Tree Editor for Integrated DSLs 25

5 Case Study: IoT Language

The primary motivation for developing JATTE was the need for fast prototyping of
a new version of an orchestration DSL for IoT. The language is called As2 (As-
sembly script 2), and is used in an IoT middleware called PalCom [SF+09]. An
As2 script is used for connecting services on devices in a network, and mediat-
ing commands between them. Every service defines a set of in-commands that
it can receive and a set of out-commands that it can send. The user can edit a
script by dragging in- and out-commands from a panel of discovered services into
the script’s event handler. Structure editing and code completion can be used for
editing details in the script.

5.1 A Scenario

As a simple example scenario, we will show how to construct an As2 script to
connect a camera service with a database server that can store photos. Each time
the camera snaps a photo, it should be sent over the network to the database where
it is stored for later use.

In Fig. 13 we see a screenshot from an application called the PalCom browser.
This application is used for discovering what devices and services are available
on the network. The JATTE-based As2 editor has been integrated into the browser
application. On the left in Fig. 13 we see a discovery panel with devices and
services found on the network. There is a device called Camera with a service
called PictureService. The service has an out-command called picture, and it is
sent to any connected service every time the camera snaps a photo. There is also
a device called Server with a service named ImageDB (Image database), with an
in-command storeImage.

By using As2, we can create a script that connects to the two services and
forwards the pictures from the camera to the database server.

We first create a new As2 file; this gives us the initial script shown to the right
in Fig. 13. To create an event-handling case, we add a when do construct by
selecting in the context menu for the Script node, see Fig. 14.

We then drag the out-command picture from the discovery panel and drop it
on the when node, giving the script shown in Fig. 15. The event handler will react
every time it receives a picture command from the PictureService.

In addition to the picture command, the DnD command automatically adds
local declarations of the device and service under the Bindings heading. For in-
stance, the Camera device is bound to the local name d0. The DnD command also
defines a local variable local1 in the when clause, capturing the value of the image.

The next step in the As2-script is to forward the image to the Server. We do
this by adding a send to service-action and then dragging the storeImage command
to that action. This drop adds the service and device to Bindings the same way as
for the picture-command. The parameter img in the forwarded message gets its

26 Paper I: JATTE: A Tunable Tree Editor for Integrated DSLs

Figure 13: The PalCom browser with a discovery panel to the left and an As2
script to the right

Figure 14: The menu for adding when do

Figure 15: The script after dragging the picture-command

Paper I: JATTE: A Tunable Tree Editor for Integrated DSLs 27

Figure 16: The final script

value from local1. Now we have completed our task and can save and run the
script. In Fig 16 we see the full script.

5.2 The use of JATTE

We will now discuss how different features of JATTE are used to construct the As2
editor.

Customizing Node Labels. As an example of how we use the feature
for customizing labels, we can look at the first row of Bindings where we
bind a device to d0. The abstract grammar for this row is: DeviceDef
::= DeviceParam:NameDef <deviceRefPON>; Where <deviceRefPON> is a
string containing structured information about the device encoded in the PON-
format [NM16]. The user does not see this string; instead, we have defined the
ed_label attribute to extract the readable name of the device from the PON-
encoded string and show it to the user. Every device also has a UUID used by the
interpreter for identification of devices. Both the UUID and the readable name are
contained in the PON string and saved in the XML file. Since the UUID is irrele-
vant to the user, we think hiding it leads to better comprehension of the language.

Hiding Nodes. We use the feature for hiding nodes. In the abstract grammar,
we have a node called Definitions containing the list of ServiceDef and the list
of DeviceDef. This node is hidden from the user, and instead, the services and
devices are visible directly under Bindings.

Customized Menus. The As2 editor customizes the menus for the nodes. The
menu in Fig 14 has similar actions as the default generated menu but the actions
are reordered and renamed with the use of attributes. This is done in an attempt to
make the DSL more comprehensible and easier to use.

We have also implemented context-dependent code completion. In the abstract
grammar of As2 we have a production called NameUse. NameUse is used every
time we use an identifier. The NameUse can both refer to script-local identifiers

28 Paper I: JATTE: A Tunable Tree Editor for Integrated DSLs

and to things on the PalCom network. We have implemented code completion
for NameUse, presenting visible script-local identifiers in a menu, using a similar
method as described in Section 4.3. The visible names are defined in the ancestor
nodes and different NameUse nodes therefore get different menus depending on
their context.

Drag and Drop. JATTE’s support for drag and drop is utilized in the As2 editor
to interact with the surrounding application. The dragging of a service command
eliminates the need for the user to ensure that the correct service and device is used
for that command because all that information is inferred by the DnD action.

6 Implementation

JATTE is implemented using reflection. It makes use of annotations in the gener-
ated Java classes to find out about the actual abstract syntax, and communicates
with the AST by calling the predefined attributes, for example ed_label. At-
tributes are evaluated on demand, i.e., when they are used. To avoid unnecessary
recomputations during evaluation, the values can be automatically cached. How-
ever, whenever the AST is edited, the cached values could become inconsistent.
Therefore, JATTE clears all caches in the whole AST after each edit operation. The
user interface is then updated using the new values of the attributes. Because of
the on-demand evaluation, the editor is fast enough for interactive use.

7 Related Work

JATTE is similar to EMF.EDIT in that both are general AST editors. In EMF, the
AST is called a model, and containment references correspond to the tree struc-
ture. EMF.EDIT can also be customized, but this is done by changing generated
Java code, and appears to be much more complex than in JATTE. For example,
in chapter 19 of the EMF book [SBMP08], there is an example of how to hide
nodes of type USAddress in a DSL for purchase orders, and delegate the proper-
ties of the hidden node to a parent node so they can be edited. To implement this in
EMF.EDIT requires 61 lines of code. As a comparison, we implemented a similar
example in JATTE, and the corresponding hiding and delegation was accomplished
with the following single line of code:

eq USAddress.ed_show() = false;
EMF.EDIT is, however, a mature tool, widely used, whereas JATTE is still a re-
search prototype.

There are many text and structure-based editors that have used attribute gram-
mars, starting with the Synthesizer Generator [RT84]. Our work is different in that
we target general tree editors for languages with an abstract grammar only, and no
concrete parsing grammar.

Paper I: JATTE: A Tunable Tree Editor for Integrated DSLs 29

Language workbenches support development of advanced editing support for
DSLs [Erd+15], but typically generate plugins to development platforms like
Eclipse, and are therefore difficult to integrate tightly with an arbitrary applica-
tion.

EuGENia is a framework for building diagram based editors on top of the
Eclipse Graphical Modeling Framework (GMF), with the goal of having a higher
abstraction level than GMF. The developer specifies an editor by adding annota-
tions to the classes in the meta-model [KRPP09], somewhat similar to our adding
of attributes to classes. However, attributes also support general computations,
which allows more open ended customization.

8 Conclusion
Our work addresses the problem of how to easily develop powerful DSL editors,
integrated into complex systems. To this end, we have demonstrated how cus-
tomization is done in our tool JATTE, by overriding default behavior using attribute
grammar equations. Examples include customization of displayed node labels,
hiding nodes, customizing menus, and supporting drag and drop editing. Arguably,
this technique is both easy to use and powerful, supporting advanced customiza-
tions like context-dependent node hiding and intelligent code completion with only
a few lines of code. We have exemplified the use of JATTE for an orchestrating
DSL in a research project on IoT, showing examples of advanced customizations
like drag and drop from the application, and intelligent code completion. JATTE
is still a research prototype, and is actively being improved. Because of the ease
with which customizations can be added, JATTE is suitable for rapid prototyping
of DSLs. An interesting direction of further research is to support grammar evo-
lution, i.e., to allow existing programs following an older grammar version to be
read in by the tool and adapted to the new grammar version.

Acknowledgments
This work was partially supported by the Wallenberg Autonomous Systems and
Software Program (WASP). We thank Niklas Fors and the anonymous reviewers
for helpful comments on earlier drafts of the paper.

References
[CLCM00] Curtis Clifton, Gary T Leavens, Craig Chambers, and Todd Mill-

stein. “MultiJava: Modular open classes and symmetric multiple
dispatch for Java”. In: ACM Sigplan Notices. Vol. 35. 10. ACM.
2000, pp. 130–145.

30 Paper I: JATTE: A Tunable Tree Editor for Integrated DSLs

[Dmi04] Sergey Dmitriev. “Language oriented programming: The next
programming paradigm”. In: JetBrains onBoard 1.2 (2004),
pp. 1–13.

[Erd+15] Sebastian Erdweg et al. “Evaluating and comparing language
workbenches: Existing results and benchmarks for the future”. In:
Computer Languages, Systems & Structures 44 (2015), pp. 24–47.

[Han71] Wilfred J. Hansen. “User engineering principles for interactive
systems”. In: AFIPS ’71 Fall Joint Computer Conference. ACM,
1971, pp. 523–532.

[Hed00] Görel Hedin. “Reference Attributed Grammars”. In: Informatica
(Slovenia) 24.3 (2000), pp. 301–317.

[HM03] Görel Hedin and Eva Magnusson. “JastAdd–an aspect-oriented
compiler construction system”. In: Sci. of Comp. Prog. 47.1
(2003), pp. 37–58.

[Kic+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm, and William G Griswold. “An overview of AspectJ”.
In: ECOOP. Vol. 2072. LNCS. Springer. 2001, pp. 327–354.

[Knu68] Donald E. Knuth. “Semantics of Context-free Languages”. In:
Math. Sys. Theory 2.2 (1968). Correction: Math. Sys. Theory
5(1):95–96, 1971, pp. 127–145.

[KRPP09] Dimitrios S Kolovos, Louis M Rose, Richard F Paige, and Fiona
AC Polack. “Raising the level of abstraction in the development
of GMF-based graphical model editors”. In: MiSE@ICSE. IEEE.
2009, pp. 13–19.

[NM16] Mattias Nordahl and Boris Magnusson. “A lightweight data in-
terchange format for internet of things with applications in the
PalCom middleware framework”. In: Journal of Ambient Intelli-
gence and Humanized Computing 7.4 (2016), pp. 523–532.

[Rei85] S. P. Reiss. “PECAN: Program Development Systems that Sup-
port Multiple Views”. In: IEEE Trans. Software Eng. 11.3 (1985),
pp. 276–285.

[RT84] Thomas Reps and Tim Teitelbaum. “The Synthesizer Generator”.
In: SIGSOFT Softw. Eng. Notes 9.3 (Apr. 1984), pp. 42–48.

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Pater-
nostro. EMF: eclipse modeling framework. Boston, MA: Pearson,
2008.

Paper I: JATTE: A Tunable Tree Editor for Integrated DSLs 31

[SF+09] David Svensson Fors, Boris Magnusson, Sven Gestegård Robertz,
Görel Hedin, and Emma Nilsson-Nyman. “Ad-hoc composition
of pervasive services in the PalCom architecture”. In: Proceedings
of the 2009 international conference on Pervasive services. ACM.
2009, pp. 83–92.

[TR81] Tim Teitelbaum and Thomas W. Reps. “The Cornell Program
Synthesizer: A Syntax-Directed Programming Environment”. In:
Commun. ACM 24.9 (1981), pp. 563–573.

[VSK89] Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper.
“Higher-Order Attribute Grammars”. In: PLDI. ACM, 1989,
pp. 131–145.

[Völ09] Markus Völter. “MD* Best Practices”. In: Journal of Object Tech-
nology 8.6 (2009), pp. 79–102.

PA
P

E
R

II

PAPER II

Live Programming of Internet of Things
in PalCom

Abstract

PalCom is a middleware toolkit for pervasive computing and internet-of-things.
We discuss how PalCom supports exploration and live programming through three
phases: exploring services, assembling them into applications, and exposing them
as new services. We give an example of this workflow through the construction of
a simple photo booth application.

1 Introduction

In pervasive computing, including Internet of Things (IoT), software applications
are distributed, making use of many different services on different kinds of devices,
and communicating over different underlying networks. Live programming can
play a key role in programming such systems, allowing developers to explore the
available devices and their services, and experiment with how to combine things
and how to automate tasks.

PalCom [SF+09] is a middleware toolkit, designed to support palpable com-
puting, a variant of pervasive computing where devices are made explicit (palpa-
ble). The toolkit is used in advanced home care applications [JM16], but is still
under constant development.

In this paper, we identify key activities for live programming in PalCom, in-
cluding exploring services, assembling them into partial applications, and expos-

Alfred Åkesson, Mattias Nordahl, Görel Hedin, and Boris Magnusson. “Live Programming of
Internet of Things in PalCom”. In: Conference Companion of the 2nd International Conference on
Art, Science, and Engineering of Programming. Nice, France, 2018, pp. 121–126

34 Paper II: Live Programming of Internet of Things in PalCom

ing new services from such assemblies. These partial applications can again be
explored and assembled into larger applications.

We start with giving some background on PalCom (Section 2). Then we dis-
cuss live programming (Section 3) and give an example of how it is used in con-
structing a simple photo booth application (Section 4). We end with related work
(Section 5), and conclusions (Section 6).

2 The PalCom Middleware Toolkit

PalCom is a service-based middleware toolkit. It provides an automatic discovery
protocol which lets devices announce themselves and the services they provide, as
well as to find other devices and their services. Through an abstraction of underly-
ing network technologies, devices can communicate over different media, e.g., IP,
Bluetooth, IR, or local in-memory communication between processes. This media
abstraction makes it easy to build diverse, heterogeneous networks of devices, and
a built-in routing protocol allows multiple such networks to be interconnected.

PalCom services communicate by asynchronously sending and receiving com-
mands, but are agnostic of whom they communicate with. Each service defines
its own commands, which serves as an API for communicating with it. To com-
bine two or more services, an assembly is used, i.e., a script that connects to the
services, and coordinates messages between them. Metaphorically, an assembly
can be thought of as an adapting multiway cable that plugs into the services it
combines. The assembly can itself provide new services, metaphorically corre-
sponding to the adapting cable itself having a port that other assemblies/cables can
plug into.

When an assembly is started, it automatically connects itself to the services it
uses. So metaphorically, this is like the cable automatically locating the service
ports and plugging itself in. The PalCom middleware takes care of automatically
reconnecting in case parts of the network have been temporarily unavailable, e.g.
when a mobile phone has been out of reach of its cellular network.

Figure 1 shows an example application for a photo booth. The preview assem-
bly coordinates a button, a web camera, and a photo viewer service, and the print
assembly coordinates a second button, a service on the preview assembly, and a
print service. In Section 4, we will show how this application is constructed. The
separation of functionality (in the services) and the coordination and configuration
(in the assemblies), allows services to be reused for different purposes in different
applications.

A running assembly knows exactly which set of services (and on which de-
vices) it should connect to, so it can itself be run on any device in the network.
This is why we don’t show which devices the assemblies run on in Figure 1. They
could run on, for example, a tablet on the same network.

Paper II: Live Programming of Internet of Things in PalCom 35

Laptop computer Printer

Webcam Photo
Viewer

Printer

Button 1

Button 2

preview

print

= Service

= Assembly

= Device

= Connection

Figure 1: Overview of a PalCom photo booth application with two assemblies.

The assemblies are specified in a domain-specific language. An interactive tool
called the PalCom Browser allows users to view discovered devices and services
on the network, and also to create and edit assemblies using a projectional editor.
The user can run the assembly directly in the browser tool, or export it in order to
install it on another device.

3 Live programming in PalCom

To program an application, the developer can connect and script live services on
live devices, using the PalCom browser.

In general, the developer starts by exploring how available services work. The
browser shows the available devices and their services, and for each service what
input- and output commands it has, i.e., its message protocol. To explore how
a service works, the developer can bring up a remote interaction view, allowing
direct interaction with the service, i.e., sending commands to it and viewing its
response. While there may be documentation available for the commands, direct
interaction with the service typically gives a much improved understanding of its
dynamic behavior.

To combine services and automate tasks, the developer can write an assembly
script. The assembly connects to other services and can send and receive mes-
sages from those services. Its script runs in an infinite loop, reacting to incoming
messages in sequential order. The script is programmed mostly through drag-and-
drop actions, dragging input- and output commands from the discovery view to

36 Paper II: Live Programming of Internet of Things in PalCom

the script view in order to specify the assembly’s behavior. The script can also
be edited using a projectional editor, e.g., to make use of conditionals and local
variables. The developer can switch between running and editing the assembly, to
check that it works in the intended way.

It is possible to expose functionality of an assembly, so that it can itself be
connected to by other assemblies. This is done by defining a synthesized service
of the assembly, with input and output commands. The assembly can receive input
commands and send output commands through this service interface. When the
assembly runs, its synthesized services appear in the discovery view like regular
services, allowing them to be explored using remote interaction, as well as being
used in new assemblies. This way, applications can be extended easily.

Figure 2 illustrates the activities of live programming in PalCom, showing that
the user can go between these different activities in the development process.

Figure 2: The activities of live programming in PalCom

4 Example: Photo booth
In this section, we will show how to use PalCom to program a photo booth appli-
cation by combining off-the-shelf equipment like buttons and web cameras. We
assume that all the equipment is running the PalCom middleware, and that all de-
vices are connected to at least one of the interconnected networks.

The intended use of the photo booth is as a guestbook alternative at parties.
The photo booth allows guests to go inside to take some photos, print one of them
and hang the resulting photo on a wall. Here is a list of the equipment we use in
this application:

• Laptop, with a photo viewer and a webcam service

• Printer

• Two separate Buttons communicating over Bluetooth.

Our system should work in the following way; a party guest sits in front of
the laptop and presses one of the buttons. The camera will then take a photo and

Paper II: Live Programming of Internet of Things in PalCom 37

Figure 3: The PalCom Browser. To the left, the discovery view with devices,
services, and commands. To the right, two remote interaction views. One for the
web camera, and one for the click service on one of the buttons.

38 Paper II: Live Programming of Internet of Things in PalCom

Figure 4: The PalCom Browser in assembly code editing mode

show it on the screen. The guest can take as many photos as he/she likes and
preview them on the laptop screen. When the guest is satisfied with the photo,
he/she presses the other button, and the last photo is printed.

One way of constructing this system is to connect the parts according to the
overview shown in Figure 1, where the preview assembly handles the taking and
previewing of the photo, and the print assembly controls the printing of the photo.
Arriving at this solution involves a number of steps using live programming activ-
ities in the PalCom browser.

4.1 Explore

Our first goal is to try to connect one of the buttons to the camera. We begin by
using the browser to explore how the webcam service works, see Figure 3. In the
discovery view (to the left), we can find discovered devices and their services, as
well as the commands of the services. Expanding the discovery information for the
laptop device reveals the webcam service. Double-clicking on the webcam service
opens a remote interaction view (to the right). Here, we can explore its capabili-
ties. In this case, Webcam_Service has only one input command, take_photo. By
clicking on this command, the command take_photo is sent to the camera service,
to which its response is to take a photo and send it back. The right-hand part of the
remote interaction view shows the history of commands sent to and received from
the camera. Here we can see the actual photo, which is a parameter of the received
photo command.

Paper II: Live Programming of Internet of Things in PalCom 39

The next step is to explore the button. In the browser, we open the remote
interaction view for the click service on Button 1. Here we can see that it has no
input commands. On the other hand, we have a physical button that we can press.
As seen in Figure 3, pressing the button results in its click service sending a click
command.

4.2 Assemble

After exploring how the button and camera work, we can take the next step and
combine them, using an assembly.

From the browser, we create a new assembly script, here called preview, see
Figure 4. We would like the camera to take a photo whenever the button is pressed.
To script this, we simply drag the click command from the discovery view into the
editor view. An event handler when ... do ... is then automatically cre-
ated, listening to the click command from the Click_Service. We then drag the
take_photo command from the discovery view to the do part of the event handler
to complete the desired behavior, namely that whenever the button sends a click
command, the assembly will detect this, and send a take photo command to the
camera. The resulting code is shown in block (1) in Figure 4.

When doing the drag-and-drop of commands into the script, local declarations
of the involved device and service instances are automatically created under the
Bindings heading in the script. The developer can edit the script to rename them
to more suitable names if desired as done in the examples here.

We can now run the assembly to verify that it works as intended. Once started,
the assembly connects to the camera and click services as declared in its bindings,
and when the button is pressed take_photo commands are indeed sent to the
camera, which replies with photo commands. In this case, the camera service is
implemented in such a way that it sends the taken photo to all connected parties,
i.e. both to the assembly (which for now, does nothing with it) and the Browser’s
remote interaction view.

4.3 Extending the Assembly

The assembly is not yet complete. We want to connect the photo viewer as well,
so that each photo the camera takes is shown in the viewer. So we explore the
capabilities of the photo viewer by opening a remote view for it. We can then
observe that it has one input command that takes a photo as a parameter. We can
try out this command by invoking it with a photo selected from our computer’s
file system as the parameter. There is no command sent back. Instead, the photo
viewer service shows its latest received photo in a window on its hosting laptop.

After exploring the photo viewer, we extend the assembly script to add a new
event handler that listens for the photo from the webcam and forwards the received
photo to the photo viewer. Adding the event handler and sending the photo is done

40 Paper II: Live Programming of Internet of Things in PalCom

by two drag-and-drop edit actions. After dropping the viewer’s photo command, a
placeholder for its img parameter is generated, to which the image from the camera
service (photo.img) can be assigned, by selecting it from a menu. The resulting
code is shown in block (2) in Figure 4. The when clauses need to be mutually
exclusive, and all incoming commands are handled in sequence. All the actions in
a do section are executed in sequence.

We can now test run the preview assembly, and observe that every time we
press the button, a new image is shown in the photo viewer’s window.

4.4 Expose

We are now half-way finished building our photo booth. The remaining part is to
be able to print the latest viewed photo. We would like to do this by pressing the
second button.

One way of handling this is to let the preview assembly expose the photo just
received from the camera, using a new service defined on the assembly, a so called
synthesized service. We can then construct an additional assembly, print, that
connects to this synthesized service and combines it with the second button and
the printer.

Figure 5 shows how a synthesized service has been added to the script
(Booth_Preview_Service), with an output command photo. The event handler that
receives the photo from the web camera has also been extended with an additional
action: to send the photo command out from the booth preview service, with the
received photo as its parameter. If there are other assemblies that are connected to
the booth preview, they will receive this command.

4.5 Creating the Print Assembly

Now, we can complete the photo booth application by creating the print assembly
that combines the preview assembly with Button 2 and the printer.

We start by exploring the Booth_Preview_Service service that the preview as-
sembly now exposes, again using a remote view. The service appears in the dis-
covery view, like any other service, and we can observe how photo commands
appear in the remote view every time we press the first button, see Figure 6.

We now create the print assembly, and start by adding an event handler that
saves the latest preview photo in a transient variable current_photo. A transient
variable is a global variable that can be assigned and accessed from all event han-
dlers. If the assembly is restarted the transient variable is set to the default value
given in its declaration, which in this example is empty.

Should the variable still be empty when used as a parameter, it will simply be
up to the receiving service how it should be handled. Next, we add a second event
handler that sends the currently saved photo to the printer whenever the second
button is pressed. We can test run the assembly to make sure it works, and use the

Paper II: Live Programming of Internet of Things in PalCom 41

Figure 5: The preview assembly after adding the synthesized service

remote views to explore its different parts. The resulting photo booth assembly is
shown in Figure 7.

4.6 Possible Extensions

We have shown how services can be explored live, and their functionality com-
bined and coordinated by assembling them into useful applications. The photo
booth application could be extended further by incorporating other services, e.g.,
allowing guests to sign their photos, adding different image filters to them, or, in
addition to printing the photos, connecting the assembly to a service in the cloud
to publish the photos on a website. Regardless of what other services are available
on the network, they too can be explored and assembled as just shown.

42 Paper II: Live Programming of Internet of Things in PalCom

Figure 6: The remote interaction view for the synthesized service

5 Related Work

PalCom programming is inspired by the idea of programming by example [Hal84],
in that the interactions programmed in an assembly relate to existing physical or
virtual example objects. The idea of programming-by-example might be pushed
even further by adding support for using recorded interactions in the remote views
to generate parts of the assembly scripts.

For physical objects like buttons and cameras, as in our photo booth example,
an interesting avenue of further research might be to make use of actual physical
interaction in order to build assemblies. In our photo booth example, the user
might, for example, actually click on the button instead of doing a drag-and-drop
in the browser, or interacting with it via the remote view. For physical objects that
do not have built-in interaction like buttons, other interaction techniques might be
investigated, for example, the PICOntrol handheld projector suggested by Schmidt
et al. [SMC12]. However, in most PalCom scenarios, there are also many services
that are virtual rather than physical. Examples are the assemblies themselves, as
well as purely computational services, and web services in the cloud. Furthermore,
physical devices do not necessarily need to be locally available. They might be in
the next room, or in a completely different place. Making use of actual physical
interaction would therefore need to integrate in a smooth way also with remote and
virtual services.

Programming in PalCom can be compared to the read-eval-print loop (REPL)
used in many programming environments. Findler et al. discuss using the REPL
in the context of DrRacket and Scheme [Fin+97], allowing the programmer to
interact with and explore a program. After the developer has tried out some things
in the REPL, he/she can change the original program and begin to experiment with
the new version of the program. This is similar to how the developer can explore
services in a PalCom network, and then change an assembly program to create a
new version of it. A difference from general-purpose programming is that a central
part of PalCom programming is to interact with live devices and services.

Paper II: Live Programming of Internet of Things in PalCom 43

Figure 7: The print assembly, which connects the preview service from the pre-
view assembly with the printer and the second button.

Another relevant comparison is to the idea of liveness, as described by Tan-
imoto [Tan90][Tan13], referring to the ability to modify a running program. He
introduced four levels of liveness in 1990, going from an ancillary description, to
being fully live. Later he expanded the model with two more levels which addi-
tionally includes prediction[Tan13]. The levels primarily apply to general-purpose
programming, but a tangent can be drawn to the live programming of assemblies in
the PalCom Browser. At liveness level four, a program can be modified whilst run-
ning and will immediately reflect the change in its behavior and output. Similarly,
an assembly being updated will immediately change the behavior and output, but
for an entire distributed system (or parts of it), rather than a single program. Going
back to the photo booth example, if the event handler for button 2 was changed
to publish photos to a cloud-based gallery rather than printing them, this new be-
havior would immediately apply the next time the user pressed the button. It is
worth noting, though, that since PalCom’s communication is distributed and event
based, while the behavior of the system is immediately changed, the effect of the
change, and thus user feedback, only becomes apparent once a new event occurs,
e.g. by pressing the button. In this respect, assembly editing might not fulfill the
requirements for Tanimoto’s fourth liveness level.

On the surface, the interaction using Drag and Drop for the Palcom Browser
look similar to the interactions used in Scratch[Mal+10]. Scratch is a visual block

44 Paper II: Live Programming of Internet of Things in PalCom

programming language designed for children. In Scratch, you drag from a list
of blocks concerning the current program whereas in the Palcom Browser you
drag from a dynamic list of devices and services currently present on the network.
When you drop a block in Scratch, it creates a new instance of that block, but
when you drop a command in the Palcom Browser, it creates a reference to that
command.

OSCAR [NES08] is another IoT system supporting service composition. It
focuses specifically on supporting end users, employing an intuitive user interface.
The system allows users to connect media streams, for example, connecting a
video stream from a web camera to a particular TV screen. There is a composition
concept called a Setup which is an end-user programmed connection between two
devices, and where the endpoints (the actual devices) can be dynamically selected
based on rules. PalCom assemblies have a different focus, namely to coordinate
a number of services, and supporting event-based communication. Furthermore,
assemblies can contain logic in order to program multi-step transactions, and they
can expose new services to be used as building blocks for other assemblies.

6 Conclusions
We have discussed how live programming of IoT applications is done in PalCom,
by exploring live services and gradually assembling them into applications where
parts and assembled parts can be test run and changed in an exploratory fashion.
Exposing partial applications as new services allows the same kind of exploration,
using remote views, to be done as for general purpose programmed services.

To illustrate this way of live programming, it was discussed in detail how to
construct a simple photo booth example.

We are currently experimenting with the syntax of the assembly language, and
with naming conventions, in order to get more intuitive scripts. We are also looking
into running user experiments to guide our language design. We are also experi-
menting with how to package applications as configurations of versioned assem-
blies and services, in order to deploy and update them easily. Furthermore, we will
look into different message exchange patterns and ways to visualize and analyze a
running system of several connected services and devices.

7 Acknowledgements
This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation. We thank Christoph Reichenbach and the anonymous reviewers for helpful
comments on earlier drafts of the paper. We also thank the PX workshop partici-
pants for valuable feedback.

Paper II: Live Programming of Internet of Things in PalCom 45

References
[Fin+97] Robert Bruce Findler, Cormac Flanagan, Matthew Flatt, Shriram

Krishnamurthi, and Matthias Felleisen. “DrScheme: A pedagogic
programming environment for scheme”. In: Programming Lan-
guages: Implementations, Logics, and Programs. Ed. by Hugh
Glaser, Pieter Hartel, and Herbert Kuchen. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1997, pp. 369–388.

[Hal84] Daniel Conrad Halbert. “Programming by example”. PhD thesis.
University of California, Berkeley, 1984.

[JM16] Björn A Johnsson and Boris Magnusson. “Supporting collabo-
rative healthcare using PalCom–The itACiH system”. In: Perva-
sive Computing and Communication Workshops (PerCom Work-
shops), 2016 IEEE International Conference on. IEEE. 2016,
pp. 1–6.

[Mal+10] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman,
and Evelyn Eastmond. “The Scratch Programming Language and
Environment”. In: Trans. Comput. Educ. 10.4 (Nov. 2010), 16:1–
16:15.

[NES08] Mark W. Newman, Ame Elliott, and Trevor F. Smith. “Providing
an Integrated User Experience of Networked Media, Devices, and
Services through End-User Composition”. In: Pervasive Comput-
ing. Ed. by Jadwiga Indulska, Donald J. Patterson, Tom Rod-
den, and Max Ott. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2008, pp. 213–227.

[SMC12] Dominik Schmidt, David Molyneaux, and Xiang Cao. “PICOn-
trol: Using a Handheld Projector for Direct Control of Physical
Devices Through Visible Light”. In: Proceedings of the 25th An-
nual ACM Symposium on User Interface Software and Technol-
ogy. UIST ’12. ACM, 2012, pp. 379–388.

[SF+09] David Svensson Fors, Boris Magnusson, Sven Gestegård Robertz,
Görel Hedin, and Emma Nilsson-Nyman. “Ad-hoc composition
of pervasive services in the PalCom architecture”. In: Proceedings
of the 2009 international conference on Pervasive services. ACM.
2009, pp. 83–92.

[Tan90] Steven L. Tanimoto. “VIVA: A visual language for image process-
ing”. In: Journal of Visual Languages & Computing 1.2 (1990),
pp. 127 –139.

[Tan13] Steven L Tanimoto. “A perspective on the evolution of live pro-
gramming”. In: Proceedings of the 1st International Workshop on
Live Programming. IEEE Press. 2013, pp. 31–34.

PA
P

E
R

II
I

PAPER III

COMPOS: Composing
Oblivious Services

Abstract

Future Internet-of-Things systems need to be able to combine heterogeneous ser-
vices and support weak connectivity. In this paper, we introduce COMPOS, a new
domain-specific language for composing services in IoT systems. We show how
Maria, a bird watcher, can use COMPOS to build a system that allows her to spy
on birds in the garden while she is not at home. We demonstrate how COMPOS
handles the unpredictable nature of IoT system by analysing in what cases Maria’s
system is still useful when some devices are unavailable.

1 Introduction

Current IoT applications typically have a cloud-centric architecture, where sensor
devices stream data to cloud servers, computation and storage takes place in the
cloud, and user applications interact with the data in the cloud. This architecture
leads to IoT platform silos, that work in isolation. However, this makes it difficult
to compose existing data, services, and devices from different silos into new appli-
cations [DEDP15; Che+14; PLM14]. Also, future IoT applications are expected to
contain more powerful devices, with more computation taking place at the edge of

Extended version of Alfred Åkessson, Görel Hedin, Boris Magnusson, and Mattias Nordahl.
“ComPOS: Composing Oblivious Services”. In: 2019 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops). Kyoto, Japan, Mar. 2019,
pp. 132–138

48 Paper III: COMPOS: Composing Oblivious Services

the network, and need to handle unreliable (weak) connectivity of heterogeneous
networks in a robust way [TM17].

We are exploring how to program such new kind of systems. Our goals are
to support flexible integration of heterogeneous services to avoid the current si-
los, and to support the programming of robust applications that continue to work
partially even if connectivity is temporarily lost.

Our approach is based on the PalCom IoT architecture [SF09; SF+09;
ÅNHM18b] which uses asynchronous message passing between services hosted
on devices. There are two main kinds of services: native services that contain
computations and interaction with the physical world, and composition services
that compose native services into applications, mediating and adapting messages
between them. Native services are oblivious, meaning that they don’t set up any
connections to other services, and they don’t necessarily know the identity of the
service and device at the other end of a connection. This makes them reusable
in different applications. Compositions, on the other hand, define which oblivi-
ous services on which devices that should be composed, and how messages are
mediated and adapted.

Metaphorically, we can think of native services as ports on physical devices,
and compositions as multiway adaptor cables that connect these ports. Addition-
ally, a composition may itself have oblivious services, so called synthesized ser-
vices, that other compositions can connect to. This would correspond to there
being a port on the adaptor cable that another cable can plug into.

Metaphors from the physical world often need to be enhanced with some de-
gree of “magic” to better fit a computational system [Smi87]. In our case, the
multiway cable (composition) has the ability to automatically connect itself to de-
vices, as soon as they are within reach and turned on. To have this capability, the
composition is itself hosted on a device, and “within reach" means that the two
devices can reach each other via some network. Furthermore, each “cable end" of
a composition can adapt to fit in the “port" of the oblivious service, so they do not
depend on specific standardized service interfaces. Additionally, it is possible for
several different “cables" to connect to the same “port" at the same time.

Figure 1 shows a conceptual model for devices and services: services are
hosted on devices. Services can be either oblivious or compositions, where a com-
position connects to zero or more oblivious services. An oblivious service can be
either native or synthesized, the latter being part of a composition. Each oblivious
service has an interface of incoming and outgoing messages.

This report presents a domain-specific language (DSL) for programming com-
positions. The language, COMPOS (Composition language for PalCom Oblivious
Services), generalizes the currently used PalCom composition language [SF09],
that was too simple for many interesting applications. In particular, COMPOS
supports nested and parallel message sequences, and request messages that may
have alternative replies. To support these constructs, COMPOS introduces reac-
tions that add state to the compositions. In this report, we choose to remove old

Paper III: COMPOS: Composing Oblivious Services 49

hosted on

connects to*

has

*

Device Service

CompositionOblivious
{msg interface}

Native Synthesized

Figure 1: Conceptual model for PalCom devices and services.

reactions when new arrive, and moreover we will motivate this choice. A main
design goal is to make the language easy to use, as well as to allow analysis with
respect to composition. For this reason, COMPOS includes only constructs related
to messages and message sequencing, and all computations on data are delegated
to native services.

In the following sections, we first present a motivating example for composing
services (Section 2). We then introduce our DSL, explaining the features and the
interpreter (Section 3). To exemplify more features of the DSL we do a couple
of extensions to the example (Section 4). Further, we change how a composition
handles spontaneously incoming messages. We do this by adding an extra service
and changing the composition (Section 5). We then introduce a utility analysis
in order to analyze what happens in the system when devices come and go. We
use this analysis to analyze the extended example (Section 6). Finally, we discuss
related work (Section 7), and end with conclusions and prospectives for future
research (Section 8).

2 Motivating example

As a motivating example, we will use a variant of a bird watching sce-
nario [ÅNHM18a], and discuss how to construct a supporting application using
COMPOS.

2.1 Bird watching scenario

Maria is interested in birds and likes to keep track of what birds visit her garden.
However, she cannot constantly be on the watch, so she would like to have an
automatic system that does it for her. She has an idea of building a system that
will automatically take pictures of the birds during the day, which she can check
when she gets home. She has hardware and software that she wants to use to build

50 Paper III: COMPOS: Composing Oblivious Services

the system: a motion sensor, a camera, and some artificial intelligence software
that can recognize if a bird is present in an image or not. She would like to design
the system such that it takes a photo every time the motion sensor detects that
something is moving in the garden. If the bird recognition software detects a bird
in the photo, it should get saved for later inspection.

2.2 Devices and services used
Figure 2 shows the hardware and software that Maria uses to implement the auto-
matic bird watcher application. The camera, the motion sensor, and the laptop are
devices connected to the local wifi network and they can discover each other using
the PalCom middleware.1

The functionality is packaged as PalCom native services, each exposing an in-
terface, specifying the messages that the service can send and receive. A message
can be a command (not expecting a response), a request, or a response to a pre-
vious request. For a given request, like has_bird, there can be several alternative
responses, like bird and not_bird. Messages can have parameters to transfer data
between services. For example, the has_bird request has a parameter img for the
image to be analyzed.

The services in Maria’s system are:

• A storage service, to which images can be sent.

• A bird service that can classify an image as containing a bird or not.

• A motion service that sends a move command each time a movement is
detected

• A camera service that can take a photo on request and return the image.

Commands and requests are said to be spontaneous messages. When a spon-
taneous message is received, it starts a new independent reaction in the receiving
service. I.e., spontaneous messages are not considered to have any causal relation-
ship to previously received messages. Responses, on the other hand, are expected,
and will continue a reaction that was initially started by a spontaneous message.

2.3 Composing the application
To construct the bird watcher application from the above services, Maria creates
a composition (a COMPOS script), that connects to the relevant services, and
that includes a script for how messages should be mediated. Figure 3 shows an
overview of the system and Figure 4 shows the composition script and a cor-
responding sequence diagram. When a move message arrives from the motion

1The PalCom middleware allows automatic discovery of devices and services on application-
defined networks consisting of local networks, connected using UDP or TCP.

Paper III: COMPOS: Composing Oblivious Services 51

Camera
Service

Motion
Service

Bird
Service

Storage
Service

Camera

Motion
Sensor

Laptop

store(img)

move()

take_photo()
photo(img)

has_bird(img)

not_bird()
bird()

Figure 2: Services (green boxes with rounded corners) running on devices (white
boxes with sharp corners). Commands and requests (solid arrows), responses
(dashed arrows).

52 Paper III: COMPOS: Composing Oblivious Services

C
om

pu
te
r Bi
rd

Se
rv
ic
e

St
or
ag
e

Se
rv
ic
e

M
ot
io
n

Se
ns
or

M
ot
io
n

Se
rv
ic
e

C
am

er
a

C
am

er
a

Se
rv
ic
e

N
at

iv
e

se
rv

ic
e

w
ith

 in
te

rfa
ce

D
ev

ic
e

C
om

po
si

tio
n

w
ith

co

nn
ec

tio
ns

Fi
gu

re
3:

O
ve

rv
ie

w
of

th
e

B
ir

d
w

at
ch

er
sy

st
em

sh
ow

in
g

th
e

co
nn

ec
tio

ns
be

tw
ee

n
se

rv
ic

es
an

d
th

e
co

m
po

si
tio

n.

Paper III: COMPOS: Composing Oblivious Services 53

M
ot

io
n

C
am

er
a

B
ir

d
St

or
ag

e
C

om
po

si
tio

n

m
ov

e(
)

ta
ke

_p
ho

to
()

ph
ot

o(
im

g)

ha
s_

bi
rd

(i
m

g)

bi
rd

() st
or

e(
im

g)

no
t_

bi
rd

()

A
lt

A
lt

1

2
3 4

5

re
ac

tio
n

re
ac

tio
n

bl
oc

ke
d

sp
on

ta
ne

ou
s

ex
pe

ct
ed

Fi
gu

re
4:

B
ir

d
w

at
ch

er
co

m
po

si
tio

n
sc

ri
pt

(r
ig

ht
)

w
ith

co
rr

es
po

nd
in

g
se

qu
en

ce
di

ag
ra

m
(l

ef
t)

.
D

ot
te

d
ar

ro
w

s
in

di
ca

te
w

ha
tp

ar
t

of
th

e
se

qu
en

ce
di

ag
ra

m
co

rr
es

po
nd

s
to

w
ha

tp
ar

to
ft

he
co

de
.S

ee
th

e
fu

ll
sc

ri
pt

in
ap

pe
nd

ix
B

.1
.

54 Paper III: COMPOS: Composing Oblivious Services

sensor, a take_photo request is sent to the camera, which responds with a photo
message. A request has_bird is then sent to the bird recognition service which
responds with either a bird or a not_bird reply. In the case of a bird reply, a com-
mand store is sent to the storage service. In addition to the script, the composition
contains a configuration part that lists what services are used, what devices they
run on, and what local names are used for these services (not included in Figure
4, see appendix B.1). Both the configuration part and the script can be created in
an easy way using structure editing and drag-and-drop from a service discovery
browser [ÅNHM18b; ÅH18].

Maria deploys the composition service to the Laptop device and starts it. The
system now store images of the birds during the day and she can come home after
work and enjoy a new set of bird photos.

3 The COMPOS language

3.1 Coordination constructs

A COMPOS coordination script consists of a set of guarded actions, so called
when-dos. The when part contains a service reference and a message name, see
(1) in Figure 4 for an example. The input actions must be mutually exclusive, so
when a message arrives, there is only one guarded action that can match. The
do part, also called a reaction-specification, contains a sequence of actions to be
executed when the input message is received.

Actions can be blocking or non-blocking. Assignment is a non-blocking action
that assigns a value to a local variable. The value can be a literal, a reference to
another variable, the latest received message (using the message keyword (3)), or
a dereference for accessing a part of a structured value, for example, a parameter
of a message (4).

The send action is non-blocking, and sends a command or request message to
a receiver. Arguments to the message are assigned in a similar way as variables.

The receive action is blocking, and waits for a response from a previous request
(2). The select action is also blocking, and contains a set of mutually exclusive
guarded actions (5), like at the top level of the script. However, in a select, the input
actions are responses, whereas at the top level, they are commands or requests.

There are also actions parallel and finish first that both run a set of action
sequences in parallel. The difference is that parallel will block until all action
sequences are finished, whereas finish first will block until one of the sequences
has finished. These actions will be exemplified in Section 4. A more in depth
description of the syntax and semantics of the language can be found in appendix
A.

Paper III: COMPOS: Composing Oblivious Services 55

3.2 The COMPOS interpreter
To execute COMPOS scripts, we implemented an interpreter. When the interpreter
starts running a composition, it sets up connections to all currently discoverable
services that are specified in the configuration part of the composition. During
interpretation, connections are automatically set up or taken down, as the corre-
sponding remote services are discovered or undiscovered, e.g., due to network
errors. The interpreter has a queue for incoming messages, and handles the mes-
sages in order of arrival. When receiving a message that matches a when-do clause
at the outermost level, the interpreter creates a new reaction for the correspond-
ing reaction-specification. The reaction is associated with the connection for the
incoming message starting the reaction. It contains values for local variables and
keeps track of the currently executing action. The interpreter continues to execute
the current reaction until the reaction blocks or finishes. If the reaction blocks,
it is suspended, and the interpreter continues by processing the next message in
the event queue. If the next message is a response expected by a suspended re-
action, the interpreter continues to execute that reaction. A received message can
match at most one outer when-do or blocked reaction, and gets ignored if it has no
match. Messages sent to connections that are currently down, are by default lost.2

Pseudocode for the interpreter can be found in appendix A.3.

3.3 Spontaneous messages during reactions
A blocked reaction will continue to run when the message it is waiting for ar-
rives. However, if a connection is temporarily down, or if the remote service is not
working as expected, this might take a very long time, or might never happen at
all. It might also be the case that new spontaneous messages arrive on the same
connection, in which case it is unclear if this should start a new reaction or not.
For example, what should happen if a new move message arrives, while there is
already an ongoing reaction for an earlier move? Possible ways of dealing with
this situation are:

parallel Start a parallel reaction for the new message.

queue Queue up the message and start its reaction when the ongoing reaction has
completed.

ignore Ignore the new message.

abort Abort the current reaction and start a new one.

In our interpreter, we have chosen the abort option: abort the current reaction, and
start a new reaction for the new message. This way we avoid old reactions that re-
main indefinitely, which would happen for the options parallel, queue, and ignore,

2There is also functionality for declaring connections as reliable, in which case the messages are
buffered until the connection is up again.

56 Paper III: COMPOS: Composing Oblivious Services

and we avoid having an unbounded number of simultaneous reactions that might
arise from parallelisation. Furthermore, abort will prioritize the latest information,
in contrast to queueing and ignoring. In some situations, one of the options paral-
lel, queue or ignore are more suitable. By choosing to abort we can build the other
options on top. To create the behaviour of these three options, we relay incoming
messages to a message strategy service (see section 5).

3.4 Separating reactions related to remote reactions

Sometimes, incoming spontaneous messages on the same connection are indepen-
dent, and these messages should not abort each other’s reactions. This is the case
when two messages of the connection originate from different services. To han-
dle this, each reaction is associated with the connection and the reaction id of its
first message, called the remote-reaction id. Messages on the same connection but
with different remote-reaction ids result in independent reactions that do not abort
each other. This way, many ongoing reactions over the same connection can be
handled. Examples where this happens are given in sections 4.3 and 5.3. Note
that messages matching different guards abort each other if they come on the same
connection, and they have the same remote-reaction id.

4 Extending the bird-watcher scenario

We will now extend the bird-watcher scenario to illustrate the use of synthesized
services and multiple remote reactions.

4.1 Composing compositions using
synthesized services

A synthesized service [SF+09] is an abstraction mechanism that allows a compo-
sition to provide functionality in the form of oblivious services. This means that
a composition can coordinate multiple services and provide their combined func-
tionality as an oblivious service for the rest of the system. For example, if Maria
finds out that the bird service gives too many false negatives, she may want to
combine her local bird service with one she finds online. She decides to create
a composition, Combine Bird Services, with a synthesized service that has the
same interface as the bird service but is a combination of a local bird service and
an online bird service. It replies bird if either of the local or the remote bird ser-
vices recognizes a bird in the picture, and not_bird if both the local and the remote
bird services reply not_bird, see Figure 5 (right) or appendix B.2.2. Messages re-
ceived by the synthesized service of a composition can be used as guarded actions
in the when-dos, and reactions can send and reply messages to other compositions
connected to its synthesized service.

Paper III: COMPOS: Composing Oblivious Services 57

4.2 Reactions triggered from multiple connections
Suppose now that Maria wants to add one more camera to her system, to see the
birds from more angles. She modifies her bird watcher composition and uses the
parallel action to allow both cameras to take and process pictures in parallel. She
calls this modified version of the composition Two Cams, see Figure 5 (left) or ap-
pendix B.2.1. This composition uses the synthesized service Bird to use the com-
bined local and remote bird-recognizing services. See Figure 6 for an overview of
the system.

In Two Cams, she sets up two connections to the same Com-
bine Bird Services composition, allowing it to differentiate between the differ-
ent requests. This way, the Combine Bird Services composition will create one
reaction for each request instead of letting them abort each other. It would be
desirable to be able to avoid multiple connections to the same service. In future
work, we will investigate how this could work, in particular for identical requests
from parallel branches.

4.3 Duplicated code factored out to new composition
The Two Cams composition has duplicated code that Maria would like to avoid.
She dose this by refactoring out the duplicated code into a new composition called
Store Bird Image with a synthesized service Store If Bird. Two Cams now
sends the pictures to Store If Bird, using two different connections. Because
of the two different connections, pictures from the two cameras will start different
reactions at Store Bird Image, without aborting the other. Each of these reactions
has a unique reaction id, and messages they send will therefore not abort each
other, even if they are sent on the same connection. Figure 7 shows an overview
of the system, pointing out the connections and reaction ids. See appendix B.3
for a listing of the Store Bird Image composition and the refactored version of
Two Cams using Store If Bird.

58 Paper III: COMPOS: Composing Oblivious Services

Camera 1

Camera
Service

Camera 2

Camera
Service

Motion
Sensor

Motion
Service

Remote
Device

Bird
Service

Computer

Storage
Service

Bird
Service

Two Cams Combine Bird Services

Figure 5: Compositions used in the extended scenario. Two Cams (left) is a mod-
ified version of the original bird watcher composition. Combine Bird Services
(right) is a composition of two different bird recognizers. An initial move message
(black) to Two Cams leads to two parallel subreactions (red and blue), leading to
two corresponding reactions in Combine Bird Services.

Computer

Two Cams
Bird

Service

Storage
Service

Combine
Bird Services

Bird
Service

Remote
Device

Bird
Service

Motion
Sensor
Motion
Service

Camera 1
Camera
Service

Camera 2
Camera
Service

Composition
with
connections

Device
Synthesized
service with
interface
Native service
with interface

Figure 6: Overview of the two camera system before refactoring.

Paper III: COMPOS: Composing Oblivious Services 59

Computer

Two Cams
Bird

Service

Storage
Service

1

1

1 1,2

1,2

1,2

1,2 Reaction ids

Store
Bird Image

 Store If Bird
Service

Combine
Bird Services

Bird
Service

1,2

11 1,2

Remote
Device

Bird
Service

Motion
Sensor
Motion
Service

Camera 1
Camera
Service

Camera 2
Camera
Service

Composition
with
connections

Device
Synthesized
service with
interface
Native service
with interface

Figure 7: An overview of the system after refactoring, illustrating the connections
and reaction ids.

5 Adapting semantics for spontaneous
messages

We chose the abort strategy from 3.3 as default, but sometimes another strategy is
preferable. In this section we describe how we can implement ignore, queue and
parallel from section 3.3. This is done by adding a message strategy service and
changing the composition. Figure 8 shows an overview of the original one-camera
system with an added strategy service.

Computer

Bird
Service

Storage
Service

Motion
Sensor
Motion
Service

Camera

Camera
Service

Native service
with interface

Device

Composition
with
connections

Strategy
Service

Figure 8: An overview of the system where a strategy service is used, for example,
a latch

60 Paper III: COMPOS: Composing Oblivious Services

Motion Camera Bird Storage Composition

move()

take_photo()

photo(img)

has_bird(img)

move()

take_photo()

photo(img)

has_bird(img)

bird()

store(img)

not_bird()

AltAlt

Figure 9: The sequence diagram shows the move command aborting the currently
blocked reaction (yellow) and initiating a new one (green).

Paper III: COMPOS: Composing Oblivious Services 61

open closed

signal/signal

signal/∅

reset/∅

reset/∅

Figure 10: State machine for the latch service. The labels of the edges have the
form (received message/sending message) where ∅ means sending no message.

5.1 Ignoring spontaneous messages

Sometimes we want to be able to ignore the spontaneous messages that arrive dur-
ing an reaction. For example, in Figure 9 we see another sequence diagram from
Maria’s system. In this diagram, we see how the second move message aborts the
old reaction and creates a new one. The interpreter has undesired default behaviour
in this situation. If the motion sensor sends move messages with a high frequency,
no reaction will be able to finish. This is because a new move message will abort
the ongoing reaction before it has finished.

To deal with this undesirable behaviour, Maria wants a reaction always to fin-
ish. She wants the composition to ignore move messages arriving during a reac-
tion. This means having the composition work like ignore in 3.3. To do this, she
uses a latch service. The latch service implements the state machine shown in Fig-
ure 10. The first time the latch service receives a signal it sends a new signal as
a spontaneous command. After that, the service ignores all incoming signals until
it receives a reset command. After the reset, the latch service goes to its initial
state. To use the latch service, Maria adds a when-do that every time it receives
a move, it sends a signal command. She changes the other when-do to listen for
a signal message and to send a reset message at the end of the reaction. See the
full code in appendix B.4. The change of the composition allows a reaction to run
to completion, without being aborted by any move message. Figure 11 shows a
scenario where the latch pattern prevents the abortion of a reaction.

5.2 Queuing messages

Instead of ignoring incoming spontaneous messages, it may be desirable to queue
them up, and treat them one at the time. We can implement this by using a similar
approach to ignore, but using a queuing service instead of a latch service. The
queuing service is like the latch service but instead of ignoring messages it puts
them in a queue. When it receives a reset it sends the next message in the queue.

62 Paper III: COMPOS: Composing Oblivious Services

5.3 Parallelizing messages

When the motion sensor sends messages with a high frequency, we could instead
of ignoring them handle the messages in parallel. In the parallel form, we would
like each spontaneous command to start a new parallel reaction. To implement this
semantics we use a parallelizer service. The parallelizer service has one in com-
mand and one out command. When the parallelizer service gets an in command,
it sends an out command with a new reaction id. To use the parallelizer service
we need to add a when-do like the one used in the latch pattern. This when-do
listens for the message that we want to parallelize and sends an in command to the
parallelizer service. We use the out command as the trigger for the reaction we
want to parallelize. Figure 12 shows the use of a parallelizer service in a sequence
diagram.

5.4 Discussion

In deciding the semantics for incoming spontaneous messages, we chose the abort
solution from 3.3 as the default. This allows us to create all the other solutions
using an extra service. We run the composition and the extra service on the same
device to ensure that no messages between them get lost. We are considering
adding syntactic sugar to allow the end user to express these patterns concisely.
Today we have to create a custom variant of the extra service to enable it to forward
messages of a specific type. In the future, we may add support for some kind of
generics to parametrize the extra services with different message types.

6 Utility Analysis

One requirement of the composition language was to support mobile devices and
weak connectivity. In this section, we introduce a utility analysis to analyze what
happens to the utility of the system when devices come and go. We will apply
this analysis to the system shown in Figure 5. The utility analysis looks at what
happens if one or several of the devices disconnect from the others for some reason.
This is to emulate what happens if a device is, for example, out of reach, out of
battery, or has connection problems3.

The purpose of Maria’s system is to store images of birds for later inspection.
For the purpose of utility analysis, we say that the system is useless if no image can
get stored, due to some devices being disconnected, and that the system is useful
if images can in some way get stored. The utility analysis explores whether the
system is useful or useless when different sets of devices are disconnected. Table
1 shows the utility analysis of the two-camera system in Figure 5.

3The functionality for declaring connections as reliable allows for resending messages when having
temporary connection problems.

Paper III: COMPOS: Composing Oblivious Services 63

Motion Camera Bird Storage Composition Latch

move
signal

signal

take photo

photo

has bird

move
signal

bird

store

not bird

AltAlt

reset

move
signal

signal

Figure 11: The sequence diagram shows the use of a latch service. When the
first signal command arrives at the latch, the service sends a signal back to the
composition. However, when the second signal arrives, the latch ignores it, and it
does not send any command. When the third signal arrives at the latch, the latch
has recently received a reset command, and a signal command is again sent to the
composition. The use of the latch ensures that the reaction dealing with the photo
always finishes.

64 Paper III: COMPOS: Composing Oblivious Services

Motion Camera Bird Storage Composition Parallelizer

move1

signal1

signal1

take photo1

move1

signal1

signal2

take photo2

photo1

has bird1

photo2

has bird2

bird2

store2

not bird2

AltAlt

bird1

store1

not bird1

AltAlt

Figure 12: The sequence diagram shows the use of a parallelizer service. The
superscript after the message name is the reaction id of the message. In the dia-
gram, the parallelizer sends back a signal command with unique a reaction id each
time. The composition interpreter starts a reaction for every signal command with
a unique reaction id.

Paper III: COMPOS: Composing Oblivious Services 65

Table 1: A utility analysis of the system shown in Figure 5.

Disconnected
devices

Status Reason

Computer Useless The system has nowhere to
store images.

Motion sensor Useless No move messages arrive to
start a reaction.

one Camera Useful The other camera can still
take a photo and store it
because the branch asso-
ciated with that camera
works as intended. For
every new move message,
the Two Cams composition
creates a new reaction and
aborts the old one.

Remote
Device

Useful The synthesized service
will never be able to send
not_bird, but in the case the
local bird service detects a
bird the synthesized service
will reply with bird.

both Cameras Useless No camera to take the photo
to be stored.

one Camera
and Remote
Device

Useful If the local bird service de-
tects a bird in a photo from
the connected camera, that
photo will be stored.

all other com-
binations

Useless

66 Paper III: COMPOS: Composing Oblivious Services

From Table 1 we see that having a reaction being aborted when a new move
command arrives, allows the system to still be useful when devices come and go. If
Maria also uses a latch service in her system, there would no longer be support for
weak connectivity–the system would become useless as soon as one of the devices
was no longer reachable. Having a timer that resets the latch would restore these
properties, again making it useful even when it is only partially connected.

7 Related work

7.1 Previous composition languages for PalCom
Svensson, Hedin, and Magnusson [SHM07] introduced compositions (called as-
semblies) and synthesized services in PalCom. These compositions are stateless,
limiting reactions to only contain actions for sending messages and setting global
variables. Svensson Fors’ implementation is included in the current release of Pal-
Com (4.0.19)4. Linus Åkesson [Åke16] created an experimental composition lan-
guage for Palcom, optimized for latency-critical distributed applications. This lan-
guage is similar to COMPOS in that compositions have state and supports nested
and parallel action sequences, but differs in the semantics of new spontaneous mes-
sages that arrive during a reaction. In Linus Åkesson’s approach, new messages
start a parallel reaction (option 1 in section 3.3), and indefinitely running reactions
are avoided using timeouts. This is in contrast to COMPOS, where the current re-
action is aborted (option 4). Another difference is that Linus Åkesson’s language
is purely text-based, without any integration with a GUI, and is not intended for
end users.

7.2 Web-service composition
Web-service composition has similarities to IoT service composition, but differs
in that web services are assumed to be always available, wheras IoT services may
come and go.

Examples of languages for web-service composition are Jolie [MGZ14] and
BPEL [Bar+07]. These languages have similar features to COMPOS, with sup-
port for both parallel and finish first actions. A main difference is, however, that
Jolie and BPEL support general computation rather than focusing on composition,
and they target professional developers rather than end users like Maria from our
example.

7.3 AmbientTalk
AmbientTalk [Cut+07] is a domain-specific language developed for program-
ming message-based applications in mobile ad-hoc networks. It is thus similar to

4http://palcom.cs.lth.se/Palcom/Download/Download.html

Paper III: COMPOS: Composing Oblivious Services 67

COMPOS in its application domain, but differs in that it targets developers rather
than end-users, and does not separate between oblivious services and composi-
tions.

7.4 End-user development for IoT

There are different approaches for end-user development of IoT systems. Some
use programming by demonstration [LLCM17], whereas others use different types
of DSL:s, like TeC [Sou+11], Midgar [GGBECF14], and AppsGate [CC16].

TeC [Sou+11] is a framework with the goal of allowing end users in differ-
ent domains to create IoT applications. Similar to COMPOS, TeC has a dis-
tributed programming model with services (called activities) and compositions
(called team designs). However, its computational model is quite different: activi-
ties have a kind of declarative spreadsheet semantics with input and output events,
and can be adapted by the user. The team designs wire together input and out-
put events of activities, but do not themselves contain any event logic or message
adaptation.

Midgar [GGBECF14] is a system that uses a graphical language to enable users
to create compositions. The programs in Midgar are compiled and run on a central
server.

AppsGate [CC16] is an end-user development environment, specifically in-
tended for programming smart homes. Similar to COMPOS, the user uses a
structure-oriented editor for programming the environment, but AppsGate uses
a pseudo-natural language resembling English as its concrete syntax. AppsGate
supports event rules similar to when-dos in COMPOS, but without any notion of
request-responses, parallel actions, or synthesized services as in COMPOS, thus
limiting the expressivity. AppsGate programs run on a central node in the network,
and the program implicitly keeps track of the states of connected components, and
supports relating them using state rules. An example of a state rule is "While
temperature < 21 then keep the heater on". In contrast, COMPOS scripts can be
executed on different nodes in the network, and all communication is based on
explicit messages.

8 Conclusions and future work

In this paper we have presented COMPOS, a DSL for composing services into
IoT systems. COMPOS is a new DSL supporting robust behavior in the presence
of weak connectivity. We have introduced the notion of utility analysis and ap-
plied it to an example. We have shown how Maria, a fictive bird watcher, can use
COMPOS to build a simple bird-watching system (Section 2). To give an example
of the abstraction mechanism (synthesized services) and the parallel construct, we
extended the example to use two cameras and two bird recognizer services (Section

68 Paper III: COMPOS: Composing Oblivious Services

4). We show how to change the semantics for spontaneous messages with an extra
service (Section 5). In an IoT system with mobile devices it is more a rule than an
exception that devices disconnect from the network for one reason or another. To
illustrate how COMPOS handles this, we have used our utility analysis to analyse
what happens when devices in the system disconnect (Section 6). In this particular
example, we showed that up to two devices could fail and the system would still be
useful. From the utility analysis, we conclude that it is possible to build systems
using COMPOS that are useful even if some devices get disconnected.

In the future, we plan to formalize the utility analysis and build a tool for it. To
improve COMPOS, we want to generalise our language to support e.g. automat-
ically parallelize requests to avoid multiple connections to the same service (see
4.2) and parametrization of services (see 5.4). We would also like to continue look-
ing into the end-user programming perspective of COMPOS, and do user studies
to evaluate its usability.

Acknowledgements
This work was in part supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation,
and in part by the Swedish Foundation for Strategic Research, grant RIT17-0035.

References
[ÅHMN19] Alfred Åkessson, Görel Hedin, Boris Magnusson, and Mattias

Nordahl. “ComPOS: Composing Oblivious Services”. In: 2019
IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops). Kyoto, Japan,
Mar. 2019, pp. 132–138.

[Bar+07] Charlton Barreto, Vaughn Bullard, Thomas Erl, John Evdemon,
Diane Jordan, Khanderao Kand, Dieter König, Simon Moser,
Ralph Stout, Ron Ten-Hove, Ivana Trickovic, and Danny van der
Rijn. Web Services Business Process Execution Language Version
2.0. Standard. OASIS, 2007.

[Che+14] Shanzhi Chen, Hui Xu, Dake Liu, Bo Hu, and Hucheng Wang.
“A vision of IoT: Applications, challenges, and opportunities
with China perspective”. In: IEEE Internet of Things journal 1.4
(2014), pp. 349–359.

[CC16] J. Coutaz and J. L. Crowley. “A First-Person Experience with
End-User Development for Smart Homes”. In: IEEE Pervasive
Computing 15.2 (2016), pp. 26–39.

Paper III: COMPOS: Composing Oblivious Services 69

[Cut+07] T. V. Cutsem, S. Mostinckx, E. G. Boix, J. Dedecker, and W. D.
Meuter. “AmbientTalk: Object-oriented Event-driven Program-
ming in Mobile Ad hoc Networks”. In: XXVI International Con-
ference of the Chilean Society of Computer Science (SCCC’07).
2007, pp. 3–12.

[DEDP15] Hasan Derhamy, Jens Eliasson, Jerker Delsing, and Peter Priller.
“A survey of commercial frameworks for the internet of things”.
In: IEEE International Conference on Emerging Technologies and
Factory Automation: 08/09/2015-11/09/2015. IEEE Communica-
tions Society. 2015.

[GGBECF14] Cristian González García, B Cristina Pelayo G-Bustelo, Jordán
Pascual Espada, and Guillermo Cueva-Fernandez. “Midgar: Gen-
eration of heterogeneous objects interconnecting applications. A
Domain Specific Language proposal for Internet of Things sce-
narios”. In: Computer Networks 64 (2014), pp. 143–158.

[LLCM17] Toby Jia-Jun Li, Yuanchun Li, Fanglin Chen, and Brad A. My-
ers. “Programming IoT Devices by Demonstration Using Mo-
bile Apps”. In: End-User Development. Ed. by Simone Barbosa,
Panos Markopoulos, Fabio Paternò, Simone Stumpf, and Stefano
Valtolina. Cham: Springer International Publishing, 2017, pp. 3–
17.

[MGZ14] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro.
“Service-Oriented Programming with Jolie”. In: Web Services
Foundations. Ed. by Athman Bouguettaya et al. New York, NY:
Springer New York, 2014, pp. 81–107.

[PLM14] Riccardo Petrolo, Valeria Loscri, and Nathalie Mitton. “Towards a
smart city based on cloud of things”. In: Proceedings of the 2014
ACM international workshop on Wireless and mobile technolo-
gies for smart cities. ACM. 2014, pp. 61–66.

[Smi87] Randall B. Smith. “Experiences with the Alternate Reality Kit:
An Example of the Tension between Literalism and Magic”. In:
Proceedings of the SIGCHI/GI Conference on Human Factors
in Computing Systems and Graphics Interface. CHI ’87. ACM,
1987, pp. 61–67.

[Sou+11] João P Sousa, Daniel Keathley, Mong Le, Luan Pham, Daniel
Ryan, Sneha Rohira, Samuel Tryon, and Sheri Williamson. “TeC:
end-user development of software systems for smart spaces”. In:
International Journal of Space-Based and Situated Computing
1.4 (2011), pp. 257–269.

70 Paper III: COMPOS: Composing Oblivious Services

[SHM07] D. Svensson, G. Hedin, and B. Magnusson. “Pervasive applica-
tions through scripted assemblies of services”. In: IEEE Interna-
tional Conference on Pervasive Services. 2007, pp. 301–307.

[SF09] David Svensson Fors. “Assemblies of pervasive services”. PhD
thesis. Department of Computer Science, Lund University, 2009.

[SF+09] David Svensson Fors, Boris Magnusson, Sven Gestegård Robertz,
Görel Hedin, and Emma Nilsson-Nyman. “Ad-hoc composition
of pervasive services in the PalCom architecture”. In: Proceedings
of the 2009 international conference on Pervasive services. ACM.
2009, pp. 83–92.

[TM17] Antero Taivalsaari and Tommi Mikkonen. “A roadmap to the pro-
grammable world: software challenges in the IoT era”. In: IEEE
Software 1 (2017), pp. 72–80.

[ÅNHM18a] Alfred Åkesson, Mattias Nordahl, Görel Hedin, and Boris Mag-
nusson. “Demo: A DSL for composing IoT systems”. In: Pro-
ceedings of the 19th ACM/IFIP Middleware Conference: Posters
and Demos. Rennes, France, 2018, pp. 17–18.

[ÅH18] Alfred Åkesson and Görel Hedin. “Jatte: A Tunable Tree Editor
for Integrated DSLs”. In: Proceedings of the 2nd ACM SIGPLAN
International Workshop on Comprehension of Complex Systems.
CoCoS 2017. Vancouver, BC, Canada, 2018, pp. 7–12.

[ÅNHM18b] Alfred Åkesson, Mattias Nordahl, Görel Hedin, and Boris Mag-
nusson. “Live Programming of Internet of Things in PalCom”.
In: Conference Companion of the 2nd International Conference
on Art, Science, and Engineering of Programming. Nice, France,
2018, pp. 121–126.

[Åke16] Linus Åkesson. On the design of connector languages for latency-
critical distributed applications. Licentiate thesis 2016:1. Depart-
ment of Computer Science, Lund University, 2016.

Paper III: COMPOS: Composing Oblivious Services 71

Appendix A A COMPOS Specification

A.1 Syntax
In this section we describe the projected syntax for COMPOS using W3C style
EBNF5. Because COMPOS uses a projectional editor, the grammar does not need
to be parsable and therefore contains some ambiguities. The grammar symbols are
described in appendix A.2.

Composition ::=
version

"bindings:" bindings

"synthesized services:" synthesized -service*
"script:" script;

bindings ::= device-variable*
service-variable* transient -variable*;

device-variable ::= name-def "=" device-ref;

service-variable ::= name-def "=" service-ref

"on" device-access;

transient -variable ::= "transient" name-def type

("=" <init-value >)?;
name-def ::= text-literal;

name-use ::= text-literal;

access ::=
simple-access

| qualified -access;

simple-access ::= name-use;

qualified -access ::= name-use "." access;

device-access ::= access;

service-access ::= access;

message-access ::= access;

type ::= "[" type-string "]";

synthesized -service ::= "synthesized service"

name-def message-def*
message-def ::=

in-message-def

| out-message-def;

in-message-def ::= "in:" name-def parameter*
out-message-def ::= "out:" name-def parameter*
parameter ::= name-def type

script ::= when-do*
when-do ::= "when" condition "do" branch;

condition ::=
message-condition

| service-connected

| service-disconnected;

message-condition ::= message-access;

service-connected ::= service-access;

service-disconnected ::= service-access;

5https://www.w3.org/TR/xml/#sec-notation

72 Paper III: COMPOS: Composing Oblivious Services

branch ::= action*
action ::=

local-variable

| assign

| receive

| select

| parallel

| finish-first

| send-to-service

| send-from-synthesized;

local-variable ::= "var" name-def ("=" expr)?;
assign ::= access "=" expr;

receive ::= "receive" message-access;

select ::= "select" when-do*;
parallel ::=

"parallel"

(branch "with")*
branch

"end";

finish-first ::=
"finish first"

(branch "or")*
branch

"end";

send-to-service ::= "send to" message-access ("(" arg+ ")")?;
send-from-synthesized ::= send-type "from" message-access

("(" arg+ ")")?;
arg ::= access "=" expr;

send-type ::=
send

| reply;

send ::= "send";

reply ::= "reply";

expr ::=
text-literal

| latest-message

| access;

latest-message ::= "message";

Paper III: COMPOS: Composing Oblivious Services 73

A.2 Grammar symbols

In this section, we describe most of the grammar symbols used in appendix A.1.
Some of the grammar symbols are literals with an internal structure that is not ed-
itable with parts hidden from the user. For example, universally unique identifiers
(UUIDs) of device and service references are hidden.

Symbol Description
Composition The root of the composition.
version Contains the version information of the composi-

tion; it contains both UUID and readable name.
The version is projected as the readable name of
the composition and the readable name of the ver-
sion.

bindings Lists all global variables, including devices and
services.

device-variable Declares a local name for the device used in the
composition.

device-ref A reference to a device, including both a readable
name and a UUID.

service-variable Declares a local name for a specific service run-
ning on a specific device.

service-ref A reference to a service type with a specific in-
stance name.

transient-variable Declares global variable with the lifetime of the
running composition. When starting the composi-
tion, the variable is initialised to the init-value. If
the type of the variable is text, the init-value can
be set; otherwise, the initial value is empty.

type The type-string is either a meme-type or a pon-
type.("pon" is a JSON-like notation used in Pal-
Com)

name-def Defines a name used in the composition.
name-use Uses a name defined inside or outside (e.g. mes-

sage parameters) the composition.
text-literal A text literal.
access Access through a simple or a qualified name.
simple-access Access something by name.
qualified-access Access something qualified by another access.
device-access,
service-access

Access to a device or service by the name defined
in the composition.

message-access Access to a message on a service.

74 Paper III: COMPOS: Composing Oblivious Services

synthesized-service Specifies a synthesized service and giving names
to it.

command-def,
out-command-def,
in-command-def

Defines the name of a message. Defines whether
it is an in or an out-message.

parameter Defines a parameter of a message on a synthesized
service.

script Defines the scripting part of the composition.
Contains a list of outer when-dos that match com-
mands. When a when-do matches it creates a new
reaction.

when-do Listens for a command that matches the condition.
When it matches, it executes the branch.

command-condition A condition waiting for a given message from a
specific service. The message can either be a mes-
sage sent to a synthesised service specified by the
composition or a message sent from a connected
oblivious service.

service-connected,
service-disconnected

A condition waiting for a service to connect or dis-
connect. The service is specified by the access.

branch Contains a list of actions.
action A blocking or non-blocking action.
local-variable Defines a local variable accessible in current and

nested branches. Optional to have initial value.
This is a non-blocking action.

assign Assigns the value of the expr to the variable ac-
cessed by the access. The variable can be either
local or global. This is a non-blocking action.

receive Waits for a response specified by the access. This
is a blocking action.

select Blocks and waits for one of its when-dos to match.
parallel Starts to execute all its branches. Blocks until all

branches have finished.
finish-first Starts to execute all its branches. Blocks until one

branch has finished.

Paper III: COMPOS: Composing Oblivious Services 75

send-to-service Access specifies what message is sent and to what
service. The list of arguments is evaluated and em-
bedded in the message.

arg The access is the name of the argument. The expr
is evaluated to the value of the argument.

send-from-synthesized Send a message from a synthesized service. Ac-
cess specifies what message on what synthesized
service. The list of arguments is evaluated and em-
bedded in the message. Send type is how to send
the message.

send Send a message out on a synthesized service to all
that are connected to that service.

reply Send a reply to the service that previously sent a
request to the synthesized service that matched the
condition of outer when-do.

expr An expression.
message References the latest received message.

76 Paper III: COMPOS: Composing Oblivious Services

A.3 Semantics
In this section, we describe parts of the semantics for COMPOS by showing the
pseudo-code implementation of the interpreter. To only highlight the interesting
features, we have omitted variables and service-connected conditions.

Epoch id and Reaction id are values attached to messages and used in the in-
terpreter. Reaction ids are used to separate messages over the same connection for
different reactions. The epoch id identifies each incarnation of a reaction, so that
replies from already aborted reactions are ignored. In section A.3.1 we illustrate
the use for reaction id and epoch id.

In addition to the AST nodes that hold the static code structure, we have two
notable run-time data structures in the pseudo-code implementation, Message and
Reaction. Below we have two tables describing the fields in these:

Message
Field Description

connection connection the message is sent over
toService service the message is sent to

reactionId reaction id of the sending service
epochId epoch id of the sending service
matched TRUE if message already matched an action, FALSE by default

Reaction
Field Description

connection connection to the service initiating the reaction
reactionId the reaction id

epochId the epoch id of the reaction
remoteReactionId the reaction id in the message initiating the reaction

remoteEpochId the epoch id in the message initiating the reaction
currentAction pointer to the current action in the reaction

childReactions a list of reactions, used in parallel and finish-first

To make the code easier to read, we have marked different types of tokens de-
pending on their role: global variable, local variable, AST node variable, AST node
type, state-changing procedure, and PROCEDURE DEFINED IN PSEUDO-CODE .

Paper III: COMPOS: Composing Oblivious Services 77

Algorithm 1 Pseudo-code for the event loop handling incoming messages
messageQueue . queue of messages arriving to the composition
composition . the AST of the composition
reactions := [] . list of all started reactions
epochId := 0 . counter used to create new epoch id
reactionId := 0 . counter used to create new reaction id
loop

message = messageQueue.waitForNextMessage()
if composition.MATCHSPONTANEOUS(message) then

. new spontaneous incomming message
reactionSpec := composition.findMatch(message)
reaction := FINDREACTION(message)
if reaction = NULL then . new reaction

reaction := new Reaction()
reaction.currentAction := reactionSpec.startAction()
reaction.connection := message.connection
reaction.reactionId := reactionId
reaction.remoteReactionId := message.reactionId
reaction.epochId := epochId
reaction.remoteEpochId := message.epochId
reactions.add(reaction)
reactionId := reactionId + 1

else . abort ongoing reaction
reaction.epochId := epochId
reaction.remoteEpochId := message.epochId
reaction.removeChildReactions()
reaction.currentAction := reactionSpec.startAction()

. reaction id is reused in order to propagate the abort, see A.3.1
end if
RUNUNTILBLOCK(reaction, message)
epochId := epochId + 1

else
for reaction in reactions do

. There will be at most one reaction that matches (currently not checked)
RUNUNTILBLOCK(reaction, message)

end for
end if

end loop

78 Paper III: COMPOS: Composing Oblivious Services

Algorithm 2 Pseudo-code for FINDREACTION, RUNUNTILBLOCK, and MATCH

procedure FINDREACTION(message)
for reaction in reactions do

if message.connection = reaction.connection
∧ message.reactionId = reaction.remoteReactionId then
return reaction

end if
end for
return NULL

end procedure

procedure RUNUNTILBLOCK(reaction, message)
while reaction.currentAction.PERFORM(reaction, message) do
end while

end procedure

procedure (receive ∨ message-condition).MATCHRESPONSE(reaction, message)
return (message.name = this.message-access.messageName()

∧ message.connection = this.message-access.service().connection
∧ message.epochId = reaction.epochId ∧¬ message.matched)

end procedure

procedure Composition.MATCHSPONTANEOUS(message)
for condition in this.allOuterMessageConditions() do

access := condition.message-access
if message.name = access.messageName()

∧ (message.connection = access.service().connection
∨ message.toService = access.synthesizedService()) then
return TRUE

end if
end for
return FALSE

end procedure

Paper III: COMPOS: Composing Oblivious Services 79

Algorithm 3 Pseudo-code for PERFORM

abstract procedure action.PERFORM(reaction, message)
. return TRUE to continue to next action

end procedure

procedure receive.PERFORM(reaction, message)
if this.MATCHRESPONSE(reaction, message) then

message.matched = TRUE
reaction.currentAction = this.nextAction()
return TRUE

end if
return FALSE

end procedure

procedure select.PERFORM(reaction, message)
for whenDo in this.whenDos do

if whenDo.condition.MATCHRESPONSE(reaction, message) then
message.matched = TRUE
reaction.currentAction = whenDo.startAction()
return TRUE

end if
end for
return FALSE

end procedure

procedure send-to-service.PERFORM(reaction, message)
send(this.findService().connection, this.messageName(), this.args(. . .),

reaction.reactionId, reaction.epochId)
reaction.currentAction = this.nextAction()
return TRUE

end procedure

procedure send-from-synthesized.PERFORM(reaction, message)
if this.send-type is send then

for service in this.findSynthesizedService().connectedServices() do
send(service.connection, this.messageName(), this.args(. . .),

reaction.reactionId, reaction.epochId)
end for

else if this.send-type is reply then
send(reaction.connection, this.messageName(), this.args(. . .),

reaction.remoteReactionId, reactionId.remoteEpochId)
end if
reaction.currentAction = this.nextAction()
return TRUE

end procedure

80 Paper III: COMPOS: Composing Oblivious Services

Algorithm 4 Pseudo-code for PERFORM continue
procedure parallel.PERFORM(reaction, message)

if ¬ reaction.hasChildReaction() then
. This branch is taken the first time performed is called on this node for a epoch id.

for branch in this.branches do
childReaction := new Reaction()
childReaction.currentAction := branch.startAction()
childReaction.connection := message.connection
childReaction.reactionId := reaction.reactionId
childReaction.remoteReactionId := reaction.remoteReactionId
childReaction.epochId := reaction.epochId
childReaction.remoteEpochId := reaction.remoteEpochId
reaction.addChildReaction(childReaction)

end for
end if
for childReaction in reaction.childReactions do

RUNUNTILBLOCK(childReaction, message)
end for
for childReaction in reaction.childReactions do

if ¬ childReaction.isFinish() then
return FALSE

end if
end for
reaction.removeChildReactions()
reaction.currentAction = this.nextAction()
return TRUE

end procedure

procedure finish-first.PERFORM(reaction, message)
. . . . The same beginning as Parallel
for childReaction in reaction.childReactions do

if childReaction.isFinish() then
reaction.removeChildReactions()
reaction.currentAction = this.nextAction()
return TRUE

end if
end for
return FALSE

end procedure

Paper III: COMPOS: Composing Oblivious Services 81

A.3.1 Example for use of reaction id and epoch id

To highlight the use of the reaction id and epoch id, we have an example on a
message sequence in the refactored two camera bird watcher scenario from sec-
tion 4. The message sequence is shown in a sequence diagram below. To make
the example clearer, we have omitted some of the interactions. We have annotated
every message in the sequence diagram with two numbers, the first number is the
reaction id and the second number is the epoch id. The first that happens in the se-
quence is that the Motion Sensor sends a move message. The Two Cams compo-
sition then takes a photo, omitted in the diagram, and sends it to Store Bird Image
with reaction id 3 and epoch id 6. Store Bird Image then sends bird to the Com-
bine Bird Services with reaction id 2 and epoch id 4. In this example, the motion
sensor then gets triggered again and aborts Two Cams that starts a new reaction
with the same reaction id and a new epoch id. We need to use the same reaction
id, 3, when we create a new reaction to be able to abort depending reactions, in
this case, the depending reaction of Store Bird Image. Store Bird Image aborts
its reaction and starts a new one with the same reaction id and epoch id 5. Before
Combine Bird Services receives the new has bird message, it replies bird with
epoch Id 4. The only way Store Bird Image differentiates this old reply from a
reply for the message just sent is by looking at the epoch id and sees that the reply
is from epoch 4 and now it is epoch 5. The reply is then ignored, since it is from
an older aborted reaction.

Motion Two Cams Store Bird Image Combine Bird Services

move1,1

store If Bird3,6

has bird2,4

move1,1

store If Bird3,7

has bird2,5 bird2,4
reaction

reaction blocked

omitted interactions

spontaneous
expected

The reply bird2,4 is ignored since it arrives when the epoch has changed to 5

82 Paper III: COMPOS: Composing Oblivious Services

Appendix B Full examples

B.1 Bird watcher composition

Full code for the bird watcher composition.
BirdWatcher version: 1

bindings:
motion_sensor = MotionSensor

camera = Camera

computer = Computer

motion_service = Motion_Service:1 on motion_sensor

camera_service = Camera_Service:1 on camera

bird_service = Bird_Service:1 on computer

storage_service = Storage_Service:1 on computer

synthesized services:
script:
when

motion_service.move
do
send to camera_service.take_photo
receive camera_service.photo
var photo = message
send to bird_service.has_bird(

image = photo.img
)

select
when

bird_service.bird
do
send to storage_service.store_image(

image = photo.img
)

when
bird_service.not_bird

do

Paper III: COMPOS: Composing Oblivious Services 83

B.2 Extended example

B.2.1 Two Cams

Full code for the Two Cams composition before refactoring.
Two_Cams version: 1

bindings:
motion_sensor = MotionSensor

camera1 = Camera1

camera2 = Camera2

computer = Computer

motion_service = Motion_Service:1 on motion_sensor

camera_service_1 = Camera_Service:1 on camera1

camera_service_2 = Camera_Service:1 on camera2

bird_service_1 = Bird_Service:1 on computer

bird_service_2 = Bird_Service:1 on computer

storage_service_1 = Storage_Service:1 on computer

storage_service_2 = Storage_Service:1 on computer

synthesized services:
script:
when

motion_service.move
do
parallel
send to camera_service_1.take_photo
receive camera_service_1.photo
var photo = message
send to bird_service_1.has_bird(

image = photo.img
)

select
when

bird_service_1.bird
do
send to storage_service_1.store_image(

image = photo.img
)

when
bird_service_1.not_bird

do
with
send to camera_service_2.take_photo
receive camera_service_2.photo
var photo = message
send to bird_service_2.has_bird(

image = photo.img
)

select
when

bird_service_2.bird

84 Paper III: COMPOS: Composing Oblivious Services

do
send to storage_service_2.store_image(

image = photo.img
)

when
bird_service_2.not_bird

do
end

Paper III: COMPOS: Composing Oblivious Services 85

B.2.2 Combine Bird Services

Full code for the Combine Bird Services composition.
Combine_Bird_Services version: 1

bindings:
server = Server

computer = Computer

remote_bird = Bird_Service:1 on server

local_bird = Bird_Service:1 on computer

synthesized services:
synthesized service Bird:
in: has_bird

image[image/jpeg]
out: not_bird

out: bird

script:
when

Bird.has_bird
do
var has_bird_cmd = message
send to remote_bird.has_bird(

image = has_bird_cmd.image
)

send to local_bird.has_bird(
image = has_bird_cmd.image

)

finish first
receive local_bird.bird
reply from Bird.bird

or
receive remote_bird.bird
reply from Bird.bird

or
parallel
receive local_bird.not_bird

with
receive remote_bird.not_bird

end
reply from Bird.not_bird

end

86 Paper III: COMPOS: Composing Oblivious Services

B.3 Adding Store If Bird
B.3.1 Two Cams using Store If Bird

Full code for the Two Cams composition refactored to use Store If Bird.
Two_Cams version: 2

bindings:
motion_sensor = MotionSensor

camera1 = Camera1

camera2 = Camera2

computer = Computer

motion_service = Motion_Service:1 on motion_sensor

camera_service_1 = Camera_Service:1 on camera1

camera_service_2 = Camera_Service:1 on camera2

store_if_bird_1 = Store_If_Bird:1 on computer

store_if_bird_2 = Store_If_Bird:1 on computer

synthesized services:
script:
when

motion_service.move
do
parallel
send to camera_service_1.take_photo
receive camera_service_1.photo
var photo = message
send to store_if_bird_1.store_if_bird(

image = photo.img
)

with
send to camera_service_2.take_photo
receive camera_service_2.photo
var photo = message
send to store_if_bird_2.store_if_bird(

image = photo.img
)

end

Paper III: COMPOS: Composing Oblivious Services 87

B.3.2 Store Bird Image

Full code for the Store Bird Image providing the synthezised service
Store If Bird.
Store_Bird_Image version: 1

bindings:
computer = Computer

bird_service = Bird_Service:1 on computer

storage_service = Storage_Service:1 on computer

synthesized services:
synthesized service [Store_If_Bird]:
in: store_if_bird

image[image/jpeg]
script:
when

Store_If_Bird.store_if_bird
do
var msg = message
send to bird_service.has_bird(

image = msg.image
)

select
when

bird_service.bird
do
send to storage_service.store_image(

image = msg.image
)

when
bird_service.not_bird

do

88 Paper III: COMPOS: Composing Oblivious Services

B.4 Latch

Full code for the latch composition.

Latch version: 1

bindings:
motion_sensor = MotionSensor

camera = Camera

computer = Computer

motion_service = Motion_Service:1 on motion_sensor

camera_service = Camera_Service:1 on camera

bird_service = Bird_Service:1 on computer

storage_service = Storage_Service:1 on computer

latch_service = Latch_Service:1 on computer

synthesized services:
script:
when

latch_service.signal
do
send to camera_service.take_photo
receive camera_service.photo
var photo = message
send to bird_service.has_bird(

image = photo.img
)

select
when

bird_service.bird
do
send to storage_service.store_image(

image = photo.img
)

when
bird_service.not_bird

do
send to latch_service.reset

when
motion_service.move

do
send to latch_service.signal

