
Empir Software Eng (2018) 23:186–223
DOI 10.1007/s10664-017-9511-7

Open innovation using open source tools: a case study
at Sony Mobile

Hussan Munir1 · Johan Linåker1 · Krzysztof Wnuk2 ·
Per Runeson1 · Björn Regnell1

Published online: 22 April 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Despite growing interest of Open Innovation (OI) in Software Engineering (SE),
little is known about what triggers software organizations to adopt it and how this affects
SE practices. OI can be realized in numerous of ways, including Open Source Software
(OSS) involvement. Outcomes from OI are not restricted to product innovation but also
include process innovation, e.g. improved SE practices and methods. This study explores the
involvement of a software organization (Sony Mobile) in OSS communities from an OI per-
spective and what SE practices (requirements engineering and testing) have been adapted in
relation to OI. It also highlights the innovative outcomes resulting from OI. An exploratory
embedded case study investigates how Sony Mobile use and contribute to Jenkins and Ger-
rit; the two central OSS tools in their continuous integration tool chain. Quantitative analysis
was performed on change log data from source code repositories in order to identify the
top contributors and triangulated with the results from five semi-structured interviews to
explore the nature of the commits. The findings of the case study include five major themes:

Communicated by: Hakan Erdogmus

� Hussan Munir
hussan.munir@cs.lth.se

Johan Linåker
johan.linaker@cs.lth.se

Krzysztof Wnuk
krzysztof.wnuk@bth.se

Per Runeson
per.runeson@cs.lth.se

Björn Regnell
bjorn.regnell@cs.lth.se

1 Department of Computer Science, Lund University, Box 118, Lund, 221 00, Sweden

2 Department of Software Engineering, Blekinge Institute of Technology Karlskrona, Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9511-7&domain=pdf
mailto:hussan.munir@cs.lth.se
mailto:johan.linaker@cs.lth.se
mailto:krzysztof.wnuk@bth.se
mailto:per.runeson@cs.lth.se
mailto:bjorn.regnell@cs.lth.se

Empir Software Eng (2018) 23:186–223 187

i) The process of opening up towards the tool communities correlates in time with a gen-
eral adoption of OSS in the organization. ii) Assets not seen as competitive advantage nor a
source of revenue are made open to OSS communities, and gradually, the organization turns
more open. iii) The requirements engineering process towards the community is informal
and based on engagement. iv) The need for systematic and automated testing is still in its
infancy, but the needs are identified. v) The innovation outcomes included free features and
maintenance, and were believed to increase speed and quality in development. Adopting OI
was a result of a paradigm shift of moving from Windows to Linux. This shift enabled Sony
Mobile to utilize the Jenkins and Gerrit communities to make their internal development
process better for its software developers and testers.

Keywords Open innovation · Open source · OSS communities · Jenkins · Gerrit · Case
study

1 Introduction

Software organizations have recently been exposed to new facets of openness that go
beyond their experience and provide opportunities outside their organizational walls. Ches-
brough (Chesbrough 2003) explains the term Open Innovation (OI) as “a paradigm that
assumes that organizations can and should use external ideas as well as internal ideas,
and internal and external paths to market, as they look to advance their technology”. OI
is based on outside-in and inside-out knowledge flows that help to advance technology and
spark innovation. Some classical examples of inside-out are selling intellectual property
while outside-in correspond to start-up acquisition and integration. There are also coupled
processes (Enkel et al. 2009) where companies give and take during co-creation by making
alliances and joint-ventures. OI is fuelled by increased mobility of workers and knowledge,
more capable universities, greater knowledge access and sharing capabilities that World
Wide Web offers (Chesbrough et al. 2014) and easier access to venture capital for start-ups.

Open Source Software (OSS) was widely used by software organizations before the OI
model became popular (Lee et al. 2009) and nowadays provides a common example of
OI (Munir et al. 2016). OSS leverages external resources and knowledge to increase inno-
vation, product quality and to shorter time-to-market. OSS offers not only potential product
innovation (e.g. by using an OSS platform of commodity parts to build differentiation parts),
but potential process innovations in terms of an implementation of new or significantly
improved production or delivery methods (Linåker et al. 2015).

IBM’s engagement in the Linux community in terms of patent and monetary contribu-
tions exemplifies how a firm can leverage OSS from an OI perspective. Risks and costs
of development were in this case shared among other stakeholders such as Intel, Nokia,
and Hitachi, which also have made significant investments in the Linux community (Lee
and Cole 2003). Thanks to Linux involvement, IBM can strengthen its own business
model in selling proprietary solutions for its clients running on top of Linux. Addition-
ally, the openness of Linux also gave IBM more freedom to co-develop products with its
customers (Chesbrough et al. 2014).

Software organizations that want to benefit from OI via OSS engagement need to adapt
and innovate their internal software development strategies and processes. For example,
influence on feature selection and road-mapping may be gained through a more active
participation, as many OSS communities are based on meritocracy principles (Jensen and
Scacchi 2007). Also, some benefits may first be fully utilized after contributing back

188 Empir Software Eng (2018) 23:186–223

certain parts to the OSS community (Ven and Mannaert 2008). For example, by correct-
ing bugs, actively participating in discussions and contributing new features, a software
organization might reduce maintenance cost compared to proprietary software development
(Stuermer et al. 2009). Hence, in order for a firm to gain the expected benefits of products,
OI process innovations may be a required step on the way forward (Lakhani and von Hippel
2003; Wnuk et al. 2012; Rolandsson et al. 2011). Existing literature does not particularly
focus on how these internal SE process adaptions should be structured or executed (Munir
et al. 2016). Further, little is known about how OSS involvement may be utilized as an
enabler and support for further innovation spread inside an organization, e.g. process, tools,
or organizational innovations.

In this study, we focus on identifying when, why and how a software organization adopts
OI through the use of OSS, and what innovative outcomes can be gained (see Fig. 1). We
investigate these aspects through a case study at Sony Mobile and how it actively participate
and contribute to the communities of the two OSS tools Jenkins and Gerrit. These two
tools are the basis of Sony Mobile’s internal continuous integration tool chain. The study
further investigates how external knowledge and innovation captured through the active
development of these OSS tools may be transferred into the product development teams of
Sony Mobile. More explicitly, this study contributes by studying how OSS may be used,
not only for leveraging product innovation (Linåker et al. 2015) in the tools themselves, but
also how these tools can be used as enablers for process innovation in the form of improved
SE practices and product quality.

This paper is structured as follows. Section 2 highlights the related work and Section 3
outlines the research methodology. In Sections 4 and 5 results from the quantitative and
qualitative analysis are presented, respectively. Finally, Section 6 discussed the results,
followed by conclusions in Section 7.

2 Related work

In this section, we summarize related work in OI strategies, OI challenges in SE and open
source development practices inside software organizations. This section is partly based on
the systematic mapping study by Munir et al. (2014).

The increased openness that OI implies poses significant challenges to software orga-
nizations in terms of securing their competitive advantage (Munir et al. 2016) and under-
standing what to contribute, when and how to maintain differentiation towards competitors

Fig. 1 Study Objectives in the
intersection between proprietary
organizations and open source
software

Innovation
outcomes

Open
Innovation

Open source
software (OSS)

Organization

Who?
Why?
How?
When?

Empir Software Eng (2018) 23:186–223 189

that may also be involved in the OSS community (Henkel 2006; van der Linden et al. 2009;
Jansen et al. 2012). Related to that is the challenge of what requirements should be selected,
when these should be released and how an internal roadmap should be synchronized with the
OSS project’s roadmap (Wnuk et al. 2012; Linåker et al. 2016). These challenges highlight
the need for a clear contribution strategy that software organizations should create to focus
their internal resources on value-creating activities, rather than contributing unnecessary
patches or differentiating features (Wnuk et al. 2012).

Extensive involvement in OSS communities may also bring significant challanges.
Among these challenges, Daniel et al. (2011) suggested that the conflict between organiza-
tional and OSS standards reduces developers’ organizational commitment and it is strongly
dependent on the degree to which developers associate themselves with organizations or
OSS communities. Investing in OSS may also be costly and create differentiation and
property right protection challenges, as indicated by Stuermer et al. (2009) who studied
the Nokia Internet Tablet, which was based on a hybrid of OSS and proprietary software
development.

West and Wood (2008) examined the complex ecosystem surrounding Symbian Ltd.
and identified three inherent difficulties for organizations leading an OI ecosystem: 1) pri-
oritizing the conflicting needs of heterogeneous ecosystem participants, 2) knowing the
ecosystem requirements for a product that has yet to be created, and 3) balancing the
interests of those participants against those of the ecosystem leader.

Looking at OI strategies, Dahlander and Magnusson (2008) show how organizations may
access OSS communities in order to extend the firm’s resource base, align the organization’s
strategy with that of the OSS community, and/or assimilate the community in order to inte-
grate and share results with them. The same authors explained that depending on how open
a firm chooses to be in regards to their business model, different strategies may be enforced,
e.g. symbiotically giving back result to the community, or as a free-rider keeping modifica-
tions and new functionality to oneself (Dahlander and Magnusson 2005). Some strategies
include:

– selectively revealing - differentiating parts are kept internal while commodity parts are
made open (Henkel 2006; West 2003). This requires continuous assessment of what
parts are to be considered commodity as opposed to differentiating value.

– licensing schemas (cf. Dual-licensing (Chesbrough and Appleyard 2007)), technol-
ogy may be fully disclosed, but under a restrictive license (West 2003). Alternatively,
everything may be disclosed under open and transparent conditions (Chesbrough and
Appleyard 2007).

Henkel (2006) reports how small organizations reveal more, as they are likely to benefit
from the external development support. Component manufacturers also reported to con-
tribute a lot as they have a good protection of the hardware they sell; software is seen as
a complementary asset. In a follow-up study, Henkel et al. (2014) further reported how
openness had become a competitive edge, as customers had started to request even more
revealing.

Dahlander and Wallin (2006) show how having an employee in the community can be
an enabler for the organizations to not only gain a good reputation but also to influence the
direction of the development towards the organizations’ own interests. However, to gain the
roles needed to commit or review code written by community developers, individuals need
to contribute and become an active part of the communities as these are often based on the
principles of meritocracy (Jensen and Scacchi 2007).

190 Empir Software Eng (2018) 23:186–223

Inner Source (Stol et al. 2014) has gained interest among researchers and practitioners
as a way to adapt OSS practices at software organizations. Such hybrids of commercial
and OSS practices (Mockus and Herbsleb 2002) could include using the OSS style project
structure, where a core team of recognized experts has the power to commit code to an
official release, and a much larger group contributes voluntarily in many ways.

Summary Research has shown a lot of interest for OI and its different applications (West
and Bogers 2014), including leveraging OSS for OI (Munir et al. 2016). However, the focus
is mostly limited to management and strategic aspects, e.g., (Dahlander and Magnusson
2008; West and Wood 2013; Stuermer et al. 2009), with some exception of inner sourc-
ing (Morgan et al. 2011; Stol et al. 2014). Little is still known about what triggers software
organizations to adopt OSS from an OI perspective and how this affects SE practices (Munir
et al. 2016).

This paper adds to existing knowledge by focusing on the use of OSS from an OI per-
spective in an organization that seek to complement its internal product development and
process innovation (Linåker et al. 2015) with the use of external knowledge from OSS
communities. Furthermore, this study aims to improve our understanding of what and how
a software organization can open up and how SE practices are adapted to deal with the
openness to OSS communities.

3 Case study design

Below we describe the research design of this study. We explain the research questions, the
structure of the case study design, and the methodologies used for data collection as well as
for the quantitative and qualitative analysis.

3.1 Research questions

The focus of this study is on how software organizations use OSS projects from an OI per-
spective, what triggers them to open up and how this impacts the organizations’ innovative
performance and their SE practices (see Fig. 2). We investigate these aspects through a case

Jenkins & Gerrit
Open Source

Software
Communities

Sony Mobile

Other Software-intensive firms NPOs Individuals

Tools Department

Product
Development

Knowledge Transfer

Fig. 2 The Jenkins and Gerrit OSS communities surrounded by Sony Mobile and other members. Arrows
represent knowledge transfer in and out of the community members such as other software organizations,
non profit organizations (NPO) and individuals, which in turn are illustrated by funnels, commonly used in
OI literature (Chesbrough 2003)

Empir Software Eng (2018) 23:186–223 191

study at Sony Mobile, and how they actively participate and contribute to the communities
of the two OSS tools Jenkins (Ohloh.net 2014) and Gerrit (Google Project Hosting 2014).
Both tools constitute pivotal parts in Sony Mobile’s internal continuous integration tool chain.

The study further investigates how external knowledge and innovation captured through
the development of these OSS tools, may be transferred into the product development teams
of Sony Mobile. More explicitly, this study contributes by studying how OSS may be used,
not only for leveraging product innovation (Linåker et al. 2015) in the tools themselves, but
also how these tools can be used as enablers for process innovation in the form of improved
SE practices and tools within the organization.

1. Jenkins is an open source build server that runs on a standard servlet container e.g.
Apache Tomcat. It can handle Maven and Ant instructions, as well as execute custom
batch and bash scripts. It was forked from the Hudson build server in 2010 due to a
dispute between Oracle and the rest of the community.

2. Gerrit code review is an OSS code review tool created by Google in connection with
the Android project in 2007. It is tightly integrated with the software configuration
management tool GIT, working as a gatekeeper, i.e. a commit needs to be reviewed and
verified before it is allowed to be merged into the main branch.

Based on this background, and the research gap identified in earlier work (Munir et al.
2016), we formulate our research questions to study the OI in Sony Mobile in an exploratory
manner (see Table 1). RQ1 addresses the extent to which Sony Mobile is involved in the
Jenkins and Gerrit communities and its key contribution areas (i.e. bug fixes, new features,
documentation etc.). RQ2 and RQ3 explore the rationale behind Sony Mobile’s transition
from closed innovation to OI. RQ4 highlights the key innovation outcomes realized as a
result of openness. Finally, RQ5 aims at understanding whether or not the existing require-
ments engineering and testing processes have the capacity to deal with the OI challenges
in SE. RQ1 is answered with the help of quantitative analysis of repository data, while the
remaining four research questions (RQ2, RQ3, RQ4, RQ5) are investigated using qualitative
analysis of interview data.

Table 1 Research questions with description

Research Questions Objective

RQ1: How and to what extent is Sony Mobile
involved in the communities of Jenkins and Gerrit?

To characterize Sony Mobile’s involvement
and identify potential interviewees.

RQ2: What is the motivation for Sony
Mobile to adopt OI?

To explore the transition from a closed inno-
vation process to an OI process.

RQ3: How does Sony Mobile take a deci-
sion to make a project or feature open
source?

To investigate what factors affect the deci-
sion process when determining whether or
not Sony Mobile should contribute function-
ality.

RQ4: What are the innovation outcomes as
a result of OI participation?

To explore the vested interest of Sony
Mobile as they moved from a closed innova-
tion model to an OI model.

RQ5: How do the requirements engineering
and testing processes interplay with the OI
adoption?

To investigate the requirements engineering
and testing processes and how they deal
with the special complexities and challenges
involved due to OI.

192 Empir Software Eng (2018) 23:186–223

3.2 Case selection and units of analysis

Sony Mobile is a multinational corporation with roughly 5,000 employees, developing
embedded devices. The studied branch focuses on developing Android-based phones and
tablets and has 1600 employees, of which 900 are directly involved in software develop-
ment. Sony Mobile develops software in an agile fashion and applies software product line
management with a database of more than 20,000 features suggested or implemented across
all product lines (Pohl et al. 2005).

However, in order to work with OSS communities, namely Jenkins and Gerrit Sony
Mobile created a designated tools department to acquire and integrate the external knowl-
edge to improve the internal continuous integration process. The continuous integration tool
chain used by Sony Mobile is developed, maintained and supported by an internal tools
department. The teams working on phones and tablets are thereby relieved of this techni-
cal overhead. During the recent years, Sony Mobile has transitioned from passive usage of
the Android codebase into active involvement and community contribution with many code
commits to Jenkins and Gerrit. This maturity resulted in a transition from closed innova-
tion to OI (Chesbrough 2003), assuming that business values are created or captured as an
effect.

From an OI perspective, there are interactions between the Tools department and the
Jenkins and Gerrit communities (see Fig. 2). The in- and outgoing transactions, visualized
by the arrows in Fig. 2, are data and information flows, e.g. ideas, support and commits, can
be termed as a coupled innovation process (Enkel et al. 2009). The exchange is continuous
and bi-directional, and brings product innovation into the Tools department in the form of
new features and bug fixes to Jenkins and Gerrit.

The Tools department can, in turn, be seen as a gate between external knowledge and
the other parts of Sony Mobile (see Fig. 2). The Tools department accesses, adapts and
integrates the externally obtained knowledge from the Jenkins and Gerrit communities into
the product development teams of Sony Mobile. This creates additional transactions inside
Sony Mobile which can be labeled as process innovation (OECD 2005) in the sense that
new tools and ways of working improve development efficiency and quality. This relates
to the internal complementary assets need that is mentioned as an area for future research
by Chesbrough et al. (2006).

We conducted a case study design with Jenkins and Gerrit as units of analysis (Runeson
et al. 2012) as these are the products in which the exchange of data and information enable
further innovation inside Sony Mobile.

3.3 Case study procedure

We performed the following steps.

1. Preliminary investigation of Jenkins and Gerrit repositories.
2. Mine the identified project repositories.
3. Extract the change log data from the source code repositories.
4. Analyze the change log data (i.e. stakeholders, commits etc).
5. Summarize the findings from the change log data to answer RQ1.
6. Prepare and conduct semi-structured interviews to answer RQ2–RQ5.
7. Synthesize data.
8. Answer the research questions RQ1–RQ5.

Empir Software Eng (2018) 23:186–223 193

3.4 Methods for quantitative analysis

To understand Sony Mobile’s involvement in the OSS tools (RQ1), we conducted quantita-
tive analysis of commit data in the source code repositories of Jenkins and Gerrit.

3.4.1 Preliminary investigation of jenkins and gerrit commits

A commit is a snapshot of a developer’s files after reaching a code base state. The number
of lines of code in a commit may vary depending upon the nature of the commit (e.g. new
implementation, update etc.) (Hattori and Lanza 2008). The comment of a commit refers
to a textual message related to the activity that generates the updated new piece of code. It
ranges from a simple note to a detailed description, depending on the project’s conventions.
In this study, we used the keywords provided by Hattori and Lanza (2008) in his study as a
reference point to classify the commit messages (see Table 2).

We mined the source code repositories of Jenkins and Gerrit to extract the commit id,
date, committer name, committer email and commit description message for each commit,
with the help of the tool CVSAnlY (MetricsGrimoire 2014). The extracted data was stored
locally in a relational database with a standard data scheme, independent of the analyzed
code repository. The structure of the database allows a quantitative analysis to be done by
writing SQL queries. The number of commits per committer were added together with the
name and email of the committer as keys.

We extracted the affiliations of the committers from their email addresses by filtering
them on the domain, e.g., john.doe@sonymobile.com was classified with a Sony Mobile
affiliation. It is recognized that committers may not use their corporate email addresses
when contributing their work, since parts of their work could be contributed privately or
under the umbrella of other organizations than their employer. To triangulate and com-
plement this approach, a number of additional sources were used, as suggested by earlier
research (Bird and Nagappan 2012; Gonzalez-Barahona et al. 2013). First, social media sites
as LinkedIn, Twitter and Facebook were queried with keywords from the committer, such
as the name, variations of the username and e-mail domain. Second, unstructured sources
such as blogs, community communication (e.g., comment-history, mailing-lists, IRC logs),
web articles and firm websites were consulted.

Sony Mobile turned out to be one of the main organizational affiliations among the
committers to Gerrit while no evidence of commits to the Jenkins core community was
identified. The reason for this was that Jenkins is a plug-in-based community, i.e. there is
a core component surrounded by approximately 1,000 plug-ins of which each has a sepa-
rate source code repository and community. Our initial screening had only covered the core
Jenkins component. After analyzing forum postings, blog posts and reviewing previously
identified committers, a set of Jenkins plug-ins, as well as two Gerrit plug-ins, were iden-
tified, which then were also included in our analysis. The following Open Source projects
were included for further analysis:

– Gerrit1

– PyGerrit (Gerrit plug-in)2

– Gerrit-events (Gerrit plug-in)3

1https://www.openhub.net/p/gerrit.
2https://www.openhub.net/p/pygerrit.
3https://www.openhub.net/p/gerrit-events.

https://www.openhub.net/p/gerrit
https://www.openhub.net/p/pygerrit
https://www.openhub.net/p/gerrit-events

194 Empir Software Eng (2018) 23:186–223

Table 2 Keywords used to
classify commits taken
from Hattori and Lanza (2008)

Forward
Engineering

Re-engineering Corrective
Engineering

Management

IMPLEMENT OPTIMIZ BUG CLEAN

ADD ADJUST ISSUE LICENSE

REQUEST UPDATE ERROR MERGE

NEW DELET CORRECT RELEASE

TEST REMOV PROPER STRUCTURE

START CHANG DEPRAC INTEGRAT

INCLUD REFACTOR BROKE COPYRIGHT

INITIAL REPLAC DOCUMENTATION

INTRODUC MODIF MANUAL

CREAT ENHANCE JAVADOC

INCREAS IMPROV COMMENT

DESIGN CHANGE MIGRAT

RENAM REPOSITORY

ELIMINAT CODE REVIEW

DEUPLICAT POLISH

RESTRUCTUR UPGRADE

SIMPLIF STYLE

OBSOLETE FORMATTING

REARRANG ORGANIZ

MISS TODO

ENHANCE

IMPROV

– Gerrit-trigger (Jenkins plug-in)4

– Build-failure-analyzer (Jenkins plug-in)5

– External-resource-viewer (Jenkins plug-in)6

– Team-views (Jenkins plug-in)7

3.4.2 Classification of commit messages

Further analysis included creating the list of top committers combined with their yearly
activity (number of commits) in order to see how Sony Mobile’s involvement evolved over
time. Next, we characterized and classified the commits made by Sony Mobile to the corre-
sponding communities by following the criteria defined by Hattori and Lanza (2008). This
was done manually by analyzing the description messages of the commits and searching for
keywords (see Table 2), and then classifying the commits in one of the following categories:

4https://github.com/jenkinsci/gerrit-trigger-plugin.
5https://www.openhub.net/p/build-failure-analyzer-plugin.
6https://github.com/jenkinsci/external-resource-dispatcher-plugin.
7https://github.com/jenkinsci/team-views-plugin.

https://github.com/jenkinsci/gerrit-trigger-plugin
https://www.openhub.net/p/build-failure-analyzer-plugin
https://github.com/jenkinsci/external-resource-dispatcher-plugin
https://github.com/jenkinsci/team-views-plugin

Empir Software Eng (2018) 23:186–223 195

Forward engineering activities refer to the incorporation of new features and implemen-
tation of new requirements including the writing new test cases to verify the requirements.
Re-engineering activities deal with re-factoring, redesign and other actions to enhance the
quality of the code without adding new features. Corrective engineering activities refer
to fixing defects in the software. Management activities are related to code formatting,
configuration management, cleaning up code and updating the documentation of the project.

Multiple researchers were involved in the commit message classification process. After
defining the classification categories, Kappa analysis was performed to calculate the inter-
rater agreement level. First, a random sample of 34% of the total commit messages were
taken to classify the commit messages and Kappa was calculated to be 0.29. Consequently,
disagreement was discussed and resolved since the inter-rater agreement level was below
substantial agreement range. Afterwards, Kappa was calculated again and found to be 0.94.

3.5 Methods for qualitative analysis

The quantitative analysis had laid a foundation to understand the relation between Sony
Mobile, and the Jenkins and Gerrit communities. Therefore, in the next step we added a
qualitative view by interviewing relevant people inside Sony Mobile in order to address
RQ2–RQ5. Interview questions are listed in the Appendix A.

3.5.1 Interviewee selection

The selection of interviewees was based on the committers identified in the initial screening
of the projects. Three candidates were identified and contacted by e-mail (Interviewees 1, 2
and 3, see Table 3). Interviewees 4 and 5 were proposed during the initial three interviews.
The first three are top committers to the Jenkins and Gerrit communities, giving the view
of Sony Mobile’s active participation and involvement with the communities. It should be
noted that interviewee I3, when he was contacted, had just left Sony Mobile for a smaller
organization dedicated to Jenkins development. His responsibilities as the tools manager
for Jenkins at Sony Mobile were taken over by interviewee I4. Interviewee I4 is a Soft-
ware Architect in the Tools department involved further down in Sony Mobile’s continuous
integration tool chain and gives an alternative perspective on the OSS involvement of the
Tools department as well as a higher, more architectural view on the tools. Interviewee I5
is an upper-level manager responsible for Sony Mobile’s overall OSS strategy, which could
contribute with a top-down perspective to the qualitative analysis.

The interviews were semi-structured, meaning that interview questions were developed
in advance and used as a frame for the interviews, but still allowing the interviewers to
explore other relevant findings during the interview wherever needed. The two first authors
were present during all five interviews, with the addition of the third author during the first
and fifth ones. Each interviewer took turns asking questions, whilst the others observed and
took notes. Each interview was recorded and transcribed. A summary was also compiled
and sent back to the interviewees for a review. Any misunderstandings or corrections could
then be sorted out. The duration of the interviews varied from 45 to 50 minutes.

3.6 Validity threats

This section highlights the validity threats related to the case study. Four types of validity
threats (Runeson et al. 2012) are addressed with their mitigation strategies.

196 Empir Software Eng (2018) 23:186–223

3.6.1 Internal validity

This concerns causal relationships and the introduction of potential confounding factors.

Confounding factors To mitigate the risk of introducing confounding factors, the study
was performed on the tools level instead of an organizational level to ensure that the innova-
tion outcomes are merely the result of adopting OI. Performing the study on an organization
level introduces the risk of confounding the innovation outcomes as a result of a product
promotion or financial investment etc. instead of the use of external knowledge from OSS
communities. Therefore, a more fine-grained analysis on the OSS tools level was chosen to
minimize the threat of introducing confounding factors.

Subjectivity It was found in the study that Sony Mobile does not use any general innova-
tion metrics to measure the impact of OI. Therefore, researchers had to rely on qualitative
data. This leads to the risk of introducing subjectivity while inferring innovation outcomes
as a result of OI adoption. In order to minimize this risk, the first two authors independently
performed the analysis and the remaining authors reviewed it to make the synthesis more
objective. Moreover, findings were sent back to interviewees for validation. Furthermore,
subjectivity was minimized by applying the commit messages classification criteria pro-
posed by Hattori and Lanza (2008). During the analysis, the disagreements were identified
using Kappa analysis and resolved to achieve a substantial agreement.

Triangulation In order to mitigate the risk of identifying the wrong innovation outcomes,
we used multiple data sources by mining the Jenkins and Gerrit source code reposito-
ries prior to conducting interviews. Furthermore, we also performed observer triangulation
during the whole course of the study to mitigate the risk of introducing researcher bias.

3.6.2 External validity

This refers to the extent it is possible to generalize the study findings to other contexts. The
scope of this study is limited to a software organization utilizing the notion of OI to acceler-
ate its innovation process. The selected case organization is a large-scale organization with

Table 3 Interviewee demographics

Anonymous
name

ID Tools
involvement

Years of expe-
rience

Role

Interviewee 1 I1 Jenkins 8 Tools manager for Jenkins

Interviewee 2 I2 Jenkins and Gerrit 6 Team lead, Tools manager
for Gerrit

Interviewee 3 I3 Jenkins 7 Former tools manager Jenk-
ins

Interviewee 4 I4 Second line after Jenkins
and Gerrit Build artifacts
and channel distribution

8 Software Architect

Interviewee 5 I5 Open Source policy in
general

20+ Upper-level manager respon-
sible for overall Open Source
strategy

Empir Software Eng (2018) 23:186–223 197

an intense focus on software development for embedded devices. Moreover, Sony Mobile
is a direct competitor of all the main stream organizations making Android phones. The
involvements by other stakeholders in the units of analysis (Jenkins and Gerrit) indicate their
adoption of Google’s tool chain to improve their continuous integration process. Therefore,
the findings of this study may be generalized to major stakeholders identified for their com-
mits to Jenkins and Gerrit, and other OSS tools used in the tool chain development. Our
findings may also be relevant to software organizations with similar context, domain and
size as Sony Mobile.

3.6.3 Construct validity

This refers to what extent the operational measures that are studied really represent
what researcher has in mind, and what is investigated according to the research ques-
tions (Runeson et al. 2012). We took the following actions to minimize construct validity
threats.

Selection of interviewees We conducted a preliminary quantitative analysis of the Jenkins
and Gerrit repositories to identify the top committers and to select the relevant intervie-
wees. The selection was performed based on the individuals’ commits to Jenkins or Gerrit.
Moreover, recommendations were taken from interviewees for suitable further candidates
to attain the required information on OI. Process knowledge, role, and visible presence in
the community were the key selection factors.

Reactive bias Researchers presence might limit or influence the interviewees and causing
them to hide facts or respond after assumed expectations. This threat was limited by the
presence of a researcher that has a long research collaboration record with Sony Mobile and
explained confidentiality rules. Furthermore, interviewees were ensured anonymity both
within the organization and externally in the OSS community.

Design of the interviews All authors validated the interview questionnaire followed by a
pilot interview with an OSS Jenkins community member in order to avoid misinterpretation
of the interview questions.

3.6.4 Reliability

The reliability deals with to what extent the data and the analysis are dependent on the
specific researcher, and the ability to replicate the study.

Member checking To mitigate this risk, multiple researchers individually transcribed
and analyzed the interviews to make the findings more reliable. In addition, multiple data
sources (qualitative and quantitative) were considered to ensure the correctness of the find-
ings and cross-validate them. All interviews were recorded, transcribed and sent back to
interviewees for validation. The commit database analysis was performed and validated by
multiple researchers.

Audit trail Researchers kept track of all the mined data from OSS code repositories as well
as interview transcripts in a systematic way to go back for validation if required. Finally,
this study was not ordered by Sony Mobile to bring supporting evidence for OI adoption.
Instead the idea was to keep the study design and findings as transparent as possible without

198 Empir Software Eng (2018) 23:186–223

Table 4 Sony Mobile’s commits
to Gerrit analyzed per year Commits classification 2010 2011 2012 2013 2014 Total

Forward Engineering 65 44 264 373 207 953

Re-engineering 38 65 240 336 190 869

Corrective engineering 10 12 59 62 26 169

Management 12 15 96 171 73 367

Total 125 136 659 942 496 2358

making any adjustments in the data except for the anonymizing the interviewees. The results
were shared with Sony Mobile prior to submitting the study for publication.

4 Quantitative analysis

This section presents a quantitative analysis of commits made to eight OSS projects, namely:
Gerrit, pyGerrit, Gerrit-events, Gerrit-trigger, Build-failure-analyzer, External-resource-
viewer and Team-views as depicted in Section 3.4.1. It should be noted that the seven latter
projects are plugins to Gerrit and Jenkins, i.e., not part of the core projects. In the analysis
we investigated the types of commits made (see Section 3.4.2), and in what proportion these
were made by Sony Mobile over time, as well as compared to other major organizations.

4.1 Gerrit

The two largest categories of commits for Gerrit are forward engineering (953 commits)
and re-engineering (869 commits), followed by management commits (367 commits) and
corrective engineering commits (169 commits), see Table 5. This dominance of forward and
re-engineering commits remained stable between 2010 and 2014, see Table 4. Sony Mobile
presented the first Android-based mobile phone in March 2010 and as can be seen from the
analysis also became active in contributions to Gerrit with a total of 125 contributions in
2010. From 2012 the number of forward and re-engineering commits became more equal
each year suggesting that Sony Mobile was not only contributing new features but also
actively helping in increasing the quality of the current features and re-factoring (Table 5).

Table 5 Classification of Sony Mobile’s commits to OSS tools based on hattori’s criteria (Hattori and Lanza
2008)

Tools Forward
Engineering

Re-Engineering Corrective
Engineering

Management

Gerrit 953 869 169 367

pyGerrit 27 18 19 36

Gerrit-events 27 18 19 36

Gerrit-trigger 60 40 76 135

Build-failure-
analyzer

60 19 17 36

External-
resource-viewer

28 8 8 6

Team-views 7 0 0 5

Empir Software Eng (2018) 23:186–223 199

0

100

200

300

400

500

600

700

800

900

1000

2009 2010 2011 2012 2013 2014

N
u

m
b

er
 o

f
C

o
m

m
it

s

Years

Gerrit

PyGerrit

Gerrit-events

Gerrit trigger

Team-views

External resource reviewer

Build-failure analyzer

Fig. 3 Sony Mobile’s commits for all OSS tools per year

The number of forward engineering and re-engineering commits remained high and
we notice a substantial decrease of corrective engineering and management commits.
The decrease of management commits may suggest that Sony Mobile reached a high level
of compatibility of its code review processes and therefore requires fewer commits in this
area. This data shows an interesting pattern in joining an OSS community. Since Sony
Mobile is a large organization with several complex processes, their joining of the Gerrit
community had to be associated with a substantial number of forward engineering and re-
engineering commits. This entry to the community lowered the transition time and enabled
faster synchronization of the code review processes between the Android community play-
ers and Sony Mobile. At the same time, Sony Mobile contributed several substantial features
from the first year of participation which is positive for the community. Figure 3 shows the
progression of commits made by Sony Mobile to all OSS tools between year 2009 and 2014.

4.1.1 PyGerrit

PyGerrit is a Python library that provides a way for clients to interact with Gerrit. As
can be seen in Table 6, Sony Mobile initiated this plug-in and is the biggest commit-
ter to it, representing 97.5% of the commits. Management commits are the most frequent

Table 6 Percentage of Sony Mobile’s contribution compared to other Software organizations

Tools Sony Google Ericsson HP SAP Intel Others

Gerrit 8.2 38.5 0 0 10.7 0 42.5

PyGerrit 97.5 0 0 0 0 0 2.4

Gerrit-event 66.1 0 3.3 4.1 0.2 2 24.2

Gerrit-trigger 65.2 0 9.1 2.4 0.7 1.3 21.2

Team-views 100 0 0 0 0 0 0

External-resource-reviewer 89.6 1.5 4.8 0 0 0 4.1

Build-failure-analyzer 85.5 0 0 0 0 0 14.4

200 Empir Software Eng (2018) 23:186–223

category, followed by forward engineering commits. This suggests that some code format-
ting changes, cleaning up code and documentation commits were delivered by Sony Mobile
after opening up this plug-in to the community. Sony Mobile’s yearly contribution analysis
shows a steady growth since its introduction in 2011 (see Fig. 3).

Conclusion This indicates that companies that want the communities to accept their plug-
ins should be prepared to dedicate effort on management type of commits to increase the
code’s quality and documentation and therefore enable other players to contribute.

4.1.2 Gerrit-event

Gerrit-event is a Java library used primarily to listen to stream-events from Gerrit Code
Review and to send reviews via the SSH CLI or the REST API. It was originally a mod-
ule in the Jenkins Gerrit-trigger plug-in and is now broken out to be used in other tools
without the dependency to Jenkins. Table 6 shows that apart from Sony Mobile(66.1%),
HP(4.1%), SAP(0.2%), Ericsson(3.3%) and Intel(2%) commits reveal that they are also
using Gerrit-event in their continuous integration process. Sony Mobile started contribut-
ing to Gerrit-event in 2009 and since then seem to be the largest committer along with
its competitors (see Table 6). Similarly, to the PyGerrit plug-in, management and forward
engineering commits dominate and Sony Mobile is the main driver of features to this
community.

Conclusion Sony Mobile turns out to be the biggest contributor in Gerrit-event where
the focus is mostly on adding new features (forward engineering) based on the internal
organizational needs.

4.2 Jenkins

Commits from Sony Mobile to Jenkins could not be identified in the core product but to a
various set of plug-ins (see Table 6). The ones identified are:

– Gerrit-trigger
– Build-failure-analyzer
– External resource-reviewer
– Team-views

4.2.1 Gerrit-trigger

This plug-in triggers builds on events from the Gerrit code review system by retrieving
events from the Gerrit command stream-events, so the trigger is pushed from Gerrit instead
of pulled as scm-triggers usually are. Multiple builds can be triggered by one change-
event, and one consolidated report is sent back to Gerrit. This plug-in (see Table 6) seems
to attract the most number of commits with the percentage of 65.2% from Sony Mobile.
135 commits were classified as management and 76 as corrective engineering. In this
case, the majority of the commits were not forward or re-engineering, which may sug-
gest that Sony Mobile was more interested in increasing the code quality and fixing the
bugs rather than extending it. It seems logical as for the Jenkins community new func-
tionality can be realized in the form of a new plug-in rather than extending the current
plug-ins.

Empir Software Eng (2018) 23:186–223 201

Conclusion Adding plug-ins allows greater flexibility but increases the total number of
parallel projects to manage and maintain by the community.

4.2.2 Build-failure-analyzer

This plug-in scans build logs and other files in the workspace for recognized patterns of
known causes to build failures and displays them on the build page for quicker recognition
of why the build failed. As can be seen in see Table 6, Sony Mobile came out as the largest
committer (85.5%) to the Build-failure-analyzer. One possible explanation for the lack of
contribution from the other software organizations is that this plug-in might be very specific
to the needs of Sony Mobile, but they made it open to see if the community shows interest
in contributing to further development efforts.

Forward engineering and management commits are the two most common categories.
Moreover, the number of commits have declined after 2012 and Table 5 shows a relatively
low numbers of corrective engineering (17) and re-engineering (19) commits, which seem
to indicate the maturity of this plug-in in terms of quality and functionality.

Conclusion We hypothesize that after creating and contributing the core functionality for
a given plug-in, the number of forward commits declines and further advances are realized
in a form of a new plug-in.

4.2.3 External-resource-viewer

This plug-in adds support for external resources in Jenkins. An external resource is some-
thing attached to a Jenkins slave and can be locked by a build, to get exclusive access
to it, then released after the build is done. Examples of external resources are phones,
printers and USB devices. Like Build-failure-analyzer, Sony Mobile’s is the top commiter
with the largest contribution percentage of 89.6% compared to Google (1.48%) and Eric-
sson (4.8%). Moreover, the majority of the commits are classified as forward engineering,
suggesting that Sony Mobile has come up with the majority of the functionality to this
plug-in. As the number of corrective engineering and re-engineering commits remained
low (8 commits in each category), we can assume that the contributed code was high
quality.

Conclusion This data suggest a hypothesis that companies that frequently interact with
OSS communities learn to contribute high quality code and possibly keep the same quality
standards for other development initiatives.

4.2.4 Team-views

This plug-in provides teams, sharing one Jenkins master, to have their own area with team-
specific views. Sony Mobile turned out to be the only committer for this tool (see Table 6),
which implies that Team-views is tailored for the needs of Sony Mobile. Only forward engi-
neering and management commits were identified in the data, suggesting that high quality
code was contributed and no major re-factoring was required for this plug-in. This result also
supports our previous hypothesis that modular plug-in based OSS communities provide an
efficient way for proprietary companies to participate and contribute with new functionality
as new plug-ins.

202 Empir Software Eng (2018) 23:186–223

Conclusion Decoupling of plug-ins helps in targeting contributions and quality improve-
ment suggestions and simplifies the collaboration networks for discussions on bugs and
future improvements.

5 Qualitative analysis

We conducted thematic analysis (Cruzes et al. 2015; Cruzes and Dybå 2011) to find recur-
ring patterns in the collected qualitative data. The following steps were performed in the
process.

1. Transcribe the interviewed data from the five interviewees (see Table 3).
2. Identify and define five distinct themes in the data (see Table 7).
3. Classify the interview statements based on the defined themes.
4. Summarize the findings and answers to the RQs.

5.1 Opening up

The process of opening up for external collaboration and maturing as an open source
organization, can be compared to moving from a closed innovation model to an OI
model (Chesbrough et al. 2006). The data suggest that the trigger for this process was a
paradigm shift around 2010 when Sony Mobile moved from the Symbian platform (devel-
oped in a joint venture), to Google’s open source Android platform in their products (West
and Wood 2013). Switching to Android correlates to a general shift in the development
environment, moving from Windows to Linux. This concerned the tools used in the prod-
uct development as well. A transition was made from existing proprietary solutions, e.g.
the build-server Electric commander, to the tools used by Google in their Android devel-
opment, e.g. GIT and Gerrit. As stated by I2, “. . . suddenly we were almost running pretty
much everything, at least anything that touches our phone development, we were running
on Linux and open source”. This was not a conscious decision from management but rather
something that grew bottom-up from the engineers. The engineers further felt the need for
easing off the old and complex chain of integration and building process.

At the same time, a conscious decision was made regarding to what extent Sony Mobile
should invest in the open source tool chain. As stated by I5, “. . . not only should [the tool

Table 7 Themes emerging from the thematic analysis

Theme name Definition

Opening up Sony Mobile’s transition process from closed innovation
model to OI model.

Determinants of openness Factors that Sony Mobile considers before indulging them-
selves into OI.

Requirements engineering How Sony Mobile manages their requirements while working
in OI context?

Testing How Sony Mobile manages their testing process while work-
ing in OI context?

Innovation outcome The outcomes for Sony Mobile as a consequence of adopting OI.

Empir Software Eng (2018) 23:186–223 203

chain] be based on OSS, but we should behave like an active committer in the ways we can
control, understand and even steer it up to the way we want to have it”. The biggest hur-
dle concerned the notion of giving away internally developed intellectual property rights,
which could represent competitive advantage. The legal department needed some time to
understanding the benefits and license aspects, which caused the initial contribution pro-
cess to be extra troublesome. In this case, Sony Mobile benefited from having an internal
champion and OSS evangelist (I5). He helped to drive the initiative from the management
side, explained the issues and clarified concerns from different functions and levels inside
Sony Mobile. Another success factor was the creation of an OSS review board, which
included different stakeholders such as legal department representatives, User Experience
(UX) design, product development and product owners. This allowed for management,
legal, and technology representatives to meet and discuss OSS related issues. The OSS
contribution process now includes submitting a form for review, which promotes it fur-
ther after successful initial screening. Next, the OSS review board gives it a go or no-go
decision. As this would prove bureaucratic if it would be needed for each and every contri-
bution to an OSS community, frame-agreements are created for open source projects with
a high-intensity involvement, e.g. Jenkins and Gerrit. This creates a simplified and more
sustainable process allowing for a day to day interaction between developers in the Tools
department and the communities surrounding Jenkins and Gerrit. Sony Mobile’s involve-
ment in OSS communities is in-line with the findings of governance in OSS communities
by Jensen and Scacchi (2010).

Conclusion Adopting OI was a result of a paradigm shift moving from Windows to Linux
environment to stay as close as possible to Google’s tool chain. Furthermore, Sony Mobile
saw a great potential in contributing to OSS communities (Jenkins and Gerrit) and steering
them towards its own organizational interests, as opposed to buying costly proprietary tools.

5.2 Determinants of openness

Several factors interplay in the decision process of whether or not a feature or a new project
should be made open. Jenkins and Gerrit are neither seen as a part of Sony Mobile’s com-
petitive advantage nor as a source of revenue. This is the main reason why developers in the
Tools department can meet with competitors, go to conferences, give away free work etc.
This, in turn, builds a general attitude that when something is about to be created, the ques-
tion asked beforehand is if it can be made open source. There is also a follow-up question,
whether Sony Mobile would benefit anything from it, for example maintenance, support
and development from an active community. If a feature or a project is too specific and it is
deemed that it will not gain any traction, the cost of generalizing the project for open use is
not motivated. Another factor is whether there is an existing community for a feature or a
project. By contributing a plug-in to the Jenkins community or a feature to Gerrit there is a
chance that an active workforce is ready to adopt the contribution, whilst for new projects
this has to be created from scratch which may be cumbersome.

Another strategic factor concerns having a first-mover advantage. Contributing a new
feature or a project first means that Sony Mobile as the maintainer gets a higher influence
and a greater possibility to steer it in their own strategic interest. If a competitor or the com-
munity publishes the project, Sony Mobile may have less influence and will have to adapt
to the governance and requirements from the others. A good example here is the Gerrit-
trigger. The functionality was requested internally at Sony Mobile and therefore undergone
development by the Tools department during the same period it became known that there

204 Empir Software Eng (2018) 23:186–223

was a similar development ongoing in the community. As stated by I3, “. . . we saw a big
risk of the community going one way and us going a very different route”. This led to the
release of the internal Gerrit-trigger as an open source plug-in to Jenkins, which ended up
being the version with gained acceptance in the Jenkins and Gerrit communities. The initial
thought was however to keep it closed according to I3, “. . .We saw the Gerrit-trigger plug-
in as a differentiating feature meaning that it was something that we shouldn’t contribute
because it gave us a competitive edge towards our competitors [in regards to our continu-
ous integration process]”. It should be noted that this was in the beginning of the process
of opening up in Sony Mobile and a positive attitude was rising. A quote from I3 explains
the positive attitude of the organization which might hint about future directions, “. . . in 5
years’ time probably everything that Sony Mobile does would become open”.

Conclusion One of the key determinants of making a project open is that it is not seen as
a main source of revenue. In other words, there is no competitive advantage gained by Sony
Mobile by retaining the project in-house. By maintaining an internal fork, the project incurs
more maintenance cost compared to making it open source. Therefore, all the all projects
with no competitive advantage are seen as good candidates to become open source.

5.3 Requirements engineering

This theme provides insights about requirements engineering practices in an example OI
context. The requirements process in the Tools department towards the Jenkins and Gerrit
communities does not seem very rigid, which is a common characteristic for OSS (Scac-
chi 2002). The product development teams in Sony Mobile are the main customers of the
Tools department. The teams are, however, quite silent with the exception of one or two
power users. There is an open backlog for internal use inside Sony Mobile where any-
one from the product development may post feature requests. However, a majority of the
feature requests are submitted via e-mail. The developers in the Tools department started
arranging monthly workshops where they invited the power users and the personnel from
different functional roles in the product development organization. An open discussion is
encouraged allowing for people to express their wishes and issues. An example of an idea
sprung out from this forum is the Build-failure-analyzer8 plug-in. Most of the require-
ments are, however, elicited internally within the Tools department in a dialogue between
managers, architects and developers. They are seen to have the subject matter expertise
in regards to the tool functionality. According to I2, there are “. . . architect groups which
investigate and collaborate with managers about how we could take the tool environment
further”. This is formulated as focus areas, and “. . . typical examples of these requirements
are sync times, push times, build times and apart from that everything needs to be faster and
faster”. These requirements are high level and later delegated to the development team for
refinement.

The Tools team works in an agile Scrum-like manner with influences from Kanban for
simpler planning. The planning board contains a speed lane which is dedicated for severe
issues that need immediate attention. The importance of being agile is highlighted by I2,
“. . .We need to be agile because issues can come from anywhere and we need to be able to
react”.

8https://wiki.jenkins-ci.org/display/JENKINS/BuildFailureAnalyzer.

https://wiki.jenkins-ci.org/display/JENKINS/BuildFailureAnalyzer

Empir Software Eng (2018) 23:186–223 205

The internal prioritization is managed by the development team itself, on delegation from
the upper manager, and lead by two developers which have the assigned role of tool man-
agers for Jenkins and Gerrit respectively. The focus areas frame the areas which need extra
attention. Every new feature is prioritized against existing issues and feature requests in the
backlog. External feature requests to OSS projects managed by the Tools department (e.g.
the Gerrit-trigger plug-in) are viewed in a similar manner as when deciding whether to make
an internal feature or project open or not. If it is deemed to benefit Sony Mobile enough, it
will be put in the backlog and it will be prioritized in regards to everything else. As stated
by I3, “. . .We almost never implemented any feature requests from outside unless we think
that it is a good idea [for Sony Mobile]”. If it is not interesting enough but still a good idea,
they are open for commits from the community.

An example regards the Gerrit-trigger plug-in and the implementation of different trigger
styles. Pressing issues in the Tools department’s backlog kept them from working on the new
features. At the same time, another software intense organization with interest in the plug-in
contacted the Tools department about features they wanted to implement. These features and
the trigger style functionality required a larger architectural reconstruction. It was agreed
that the external organization would perform the architectural changes with a continuous
discussion with the Tools department. This allowed for a smaller workload and the possi-
bility to implement this feature earlier. This feature-by-feature collaboration is a commonly
occurring practice as highlighted by I1, “It’s mostly feature per feature. It could be an orga-
nization that wants this feature and then they work on it and we work on it”. But we don’t
have any long standing collaborations”. I3 elaborates on this further and states that “. . . it
is quite common for these types of collaboration to happen just between plug-in maintainer
and someone else. They emailed us and we emailed back” as was the case in the previous
example.

In the projects where the Tools department is not a maintainer, community governance
needs more care. In the Gerrit community, new features are usually discussed via mail-
ing lists. However, large features are managed at hackathons by the Tools department
where they can communicate directly with the community to avoid getting stuck in
tiny details (Morgan et al. 2011). As brought up by I2, “. . . with the community you
need to get people to look at it the same way as you do and get an agreement,
otherwise it will be just discussions forever”. This is extra problematic in the Gerrit
community as the inner core team with the merge rights consists of only six people,
of which one is from Sony Mobile. One of the key features received from the com-
munity was the tagging support for patch sets. I2 stated, “. . .When developers upload
a change which can have several revisions, it enabled us to tag meta-data like what
is the issue in our issues handling system and changes in priorities as a result of that
change. This tagging feature allows the developers to handle their work flow in a better
way”. This whole feature was proposed and integrated during a hackathon, and con-
tained more than 40 shared patch sets. Prior to implementing this feature together with
the community (I3 quoted) “. . . we tried to do it with the help of external consultants
but we could not get it in, but meeting core developer in the community did the job for
us”.

As hackathons may not always be available, an alternative way to communicate feature
suggestions more efficiently is by mock-ups and prototypes. I3 described how important it
is to sell your features and get people excited about it. Screenshots is one way to visualize it
and show how it can help end-users. In the Jenkins community, this has been taken further
by hosting official webcasts where everyone is invited to present and show new development
ideas. Apart from using mailing lists and existing communication channels, Sony Mobile

206 Empir Software Eng (2018) 23:186–223

creates their own channels, e.g. with public blogs aimed at developers and the open source
communities.

This close collaboration with the community is important as Sony Mobile does not want
to end up with an internal fork of any tool. An I2 quoted, “If we start diverging from the
original software we can’t really put an issue in their issue tracker because we can’t know
for sure if it’s our fault or their system and we would loose the whole way of getting help
from community to fix stuff and collaborate on issues”. Another risk would be that “. . . all
of a sudden everybody is dependent on stuff that is taken away from the major version of
Gerrit. We cannot afford to re-work everything”. Due to these reasons, the Tools department
is keen on not keeping stuff for themselves, but contributing everything (Ven and Mannaert
2008; Wnuk et al. 2012). An issue in Jenkins is that there exist numerous combinations and
settings of plug-ins. Therefore, it is very important to have backward compatibility when
updating a plug-in and planning new features.

Conclusion The requirements engineering process does not seem to be very rigid, and a
majority of the features requests are submitted through e-mails, and monthly workshops
with the power users (e.g. internal developers and testers). However, large features are dis-
cussed directly with the community at hackathons by the Sony Mobile’s Tools department
to avoid communication bottlenecks. Furthermore, the prioritization of features is based on
the internal needs of Sony Mobile.

5.4 Testing

Similar to the requirements process, the testing process does not seem very rigid either.
I3 quoted, “. . .When we fix something we try to write tests for that so we know it doesn’t
happen again in another way. But that’s mostly our testing process I think. I mean, we write
JUnit and Hudson test cases for bugs that we fix”.

Bugs and issues are, similarly to feature requests, reported internally either via e-mail
or an open backlog. Externally, bugs or issues are reported via the issue trackers avail-
able in the community platforms. The content of the issue trackers is based on the most
current pressing needs in the Tools department. Critical issues are prioritized via the Kan-
ban speed lane which refers to a prioritized list of requirements/bugs based on the urgent
needs of Sony Mobile. If a bug or an issue has low priority, it is reported to the commu-
nity. This self-focused view correlates with the mentality of how the organization would
benefit from making a certain contribution, which is described to apply externally as well,
“. . .Organizations take the issues that affect them the most”. However, it is important to
show to the community that the organization wants to contribute to the project as a whole
and not just to its parts, as mentioned by Dahlander and Wallin (2006). In order to do so,
the Tools department continuously stays updated about the current bugs and their status. It
is a collaborative work with giving and taking. “Sometimes, if we have a big issue, someone
else may have it too and we can focus on fixing other bugs so we try to forward as many
issues as possible”.

In Gerrit, the Tools department is struggling with an old manual testing framework.
Openness has lead them to think about switching from the manual to an automated test-
ing process. I2 stated, “. . . It is one of my personal goals this year to figure out how we
can structure our Gerrit testing in collaboration with the community. Acceptance tests are
introduced greatly in Gerrit too but we need to look into and see how we can integrate our
tests with the community so that the whole testing becomes automated”. In Jenkins, one of
the biggest challenges in regards to test is to have a complete coverage as there are many

Empir Software Eng (2018) 23:186–223 207

different configurations and setups available due to the open plug-in architecture. However,
Gerrit still has some to catch up as stated by I2, “it is complex to write stable acceptance
tests in Gerrit as we are not mature enough compared to Jenkins”. A further issue is that
the test suites are getting bigger and therefore urges the need for automated testing.

Jenkins is considered more mature since the community has an automated test suite
which is run every week when a new version of the core is released. This test automation
uses Selenium,9 which is an external OSS test framework used to facilitate the automated
acceptance tests. It did not get any traction until recently because it was written in Ruby,
while the Jenkins community is mainly Java-oriented. This came up after a discussion at
a hackathon where the core members in the community gathered, including representa-
tives from the Tools department. It was decided to rework the framework to a Java-based
version, which has helped the testing to take off although there still remains a lot to be
done.

I3 highlighted that Sony Mobile played an important role in the Selenium Java transi-
tion process, “The idea of an acceptance test harness came from the community but [Sony
Mobile] was the biggest committer to actually getting traction on it”. From Sony Mobile’s
perspective, it can contribute its internal acceptance tests to the community and have the
community execute what Sony Mobile tests when setting up the next stable version. Con-
sequently, it requires less work of Sony Mobile when it is time to test a new stable version.
From the community perspective I3 stated, “an Acceptance Test Harness also helps the
community and other Organizations to understand what problems that big or small organi-
zations have in terms of features or in terms other requirements on the system. So it’s a tool
where everyone helps each other”.

Conclusion Like the requirements engineering process, the testing process is also very
informal, and Sony Mobile prioritizes the issues that affect them the most. One of the biggest
challenges faced by the community and organizations is to have complete test coverage
due to the open plug-in architecture. The introduction of an acceptance test harness was
an important step to make the whole testing process automated for organizations, and the
Jenkins and Gerrit communities.

5.5 Innovation outcomes

The word innovation has a connotation of newness (Assink 2006) and can be classified as
either things (products and services), or changes in the way we create and deliver products,
services and processes. Assink (2006) classified innovation into disruptive and incremental.
Disruptive innovations change the game by attacking an existing business and offering great
opportunities for new profits and growth. Incremental innovations remain within the bound-
aries of the existing technology, market and technology of an organization. The innovation
outcomes found in this study are related to incremental innovations.

Sony Mobile does not have any metrics for measuring process and product innovation
outcomes. However, valuable insights were found during the interviews regarding what
Sony Mobile has gained from the Jenkins and Gerrit community involvement. During the
analysis, the following innovation outcomes have been identified:

9http://www.seleniumhq.org/.

http://www.seleniumhq.org/

208 Empir Software Eng (2018) 23:186–223

1. Free features.
2. Free maintenance.
3. Freed-up time.
4. Knowledge retention.
5. Flexibility in implementing new features and fixing bugs.
6. Increased turnaround speed.
7. Increased quality assurance.
8. Improved new product releases and upgrades.
9. Inner source initiative.

The most distinct innovation outcome is the notion of obtaining free features from the com-
munity, which have different facets (Dahlander and Magnusson 2008; Stuermer et al. 2009).
For projects maintained by Sony Mobile, such as the Gerrit-trigger plug-in, a noticeable
amount of external commits can be accounted for. Similarly, in communities where Sony
Mobile is not a maintainer, they can still account for free work, but it requires a higher
effort in lobbying and actively steering the community in order to maximize the benefits
for the organization. Along also comes, the free maintenance and quality assurance work,
which renders better quality in the tools. Furthermore, the use of tools (Jenkins and Gerrit)
helped software developers and testers to better manage their work-flow. Consequently, it
freed-up time for the developers and testers that could be used to spent on other innovation
activities. The observed innovation example in this case was the developers working with
OSS communities, acquiring and integrating the external knowledge into internal product
development.

Correlated to the free work is the acknowledgement that the development team of six
people in the Tools department will have a hard time keeping up with the external workforce,
if they were to work in a closed environment. “. . . I mean Gerrit has like let us say we
have 50 active developers, it’s hard for the tech organization to compete with that kind of
workforce and these developers at Gerrit are really smart guys. It is hard to compete for
commercial Organizations”. Further on, “. . .We are mature enough to know that we lose
the competitive edge if we do not open up because we cannot keep up with hundreds of
developers in the community that develops the same thing”.

An organizational innovation outcome of opening up is the knowledge retention which
comes from having a movable workforce. People in the community may move around geo-
graphically, socially and professionally but can still be part of the community and continue
to contribute. I3, who took part in the initiation of many projects, recently left Sony Mobile
but is still involved in development and reviewing code for his former colleagues which
is in line with the findings of previous studies (Morgan et al. 2011; Stuermer et al. 2009).
Otherwise, the knowledge tied to I3 would have risked being lost for Sony Mobile.

Sony Mobile had many proprietary tools before opening up. Adapting these tools, such
as the build server Electric commander, was cumbersome and it took long time before
even a small fix would be implemented and delivered by the supplier. This created a stiff-
ness whereas open source brought flexibility. I2 quoted, “. . . Say you just want a small fix,
and you can fix that yourself very easily but putting a requirement on another organiza-
tion, I mean it can take years. Nothing says that they have to do it”. This increase in the
turnaround speed was besides the absence of license fees, a main argument in the discus-
sions when looking at Jenkins as an alternative to Electric commander. This was despite the
required extra involvement and cost of more internal man-hours. As a result, the continuous
integration tool chain could be tailored specifically to the needs of the product development

Empir Software Eng (2018) 23:186–223 209

team. I1 stated that “. . . Jenkins and Gerrit have been set up for testers and developers
in a way that they can have their own projects that build code and make changes. Devel-
opers can handle all those parts by themselves and get to know in less than 3 minutes
whether or not their change had introduced any bugs or errors to the system”. Ultimately,
it provides quality assurance and performance gains by making the work flow easier for
software developers and testers. Prior to the introduction of these tools there was one engi-
neer who was managing the builds for all developers. In the current practice everybody is
free to extend on what is given to them from tools department. It offers more scalability and
flexibility (Morgan and Finnegan 2010).

I1 stated that besides the flexibility, the Tools department is currently able to make a
“. . .more stable tools environment [at Sony Mobile] and that sort of makes our customers
of the tools department, the testers and the engineers, to have an environment that actually
works and does not collapse while trying to use it”. I2 mentioned that “. . . I think it is due
to the part of open source and we are trying to embrace all these changes to our advantage.
I think we can make high quality products in less time and in the end it lets us make better
products. I think we never made an as good product as we are doing today”. Further explo-
ration of this statement revealed the background context where Sony Mobile has improved
in terms of handling all the new releases and upgrades in their phones compared to their
competitors and part of its credit is given to the flexibility offered by the open source tools
Jenkins and Gerrit.

The obtained external knowledge about the different parts of the continuous integra-
tion tool chain enabled better product development. However, the Tools department has to
take the responsibility for the whole tool chain and not just its different parts, e.g. Jenk-
ins and Gerrit, described by I5 as the next step in the maturity process. The tool chain has
the potential to function as an enabler in other contexts as well, seeing Sony Mobile as a
diversified organization with multiple product branches. By opening up in the way that the
Tools department has done, effects from the coupled OI processes with Jenkins and Gerrit
may spread even further into other product branches, possibly rendering in further innova-
tions on different abstraction levels (Linåker et al. 2015). A way of facilitating this spread
is the creation of an inner source initiative which will allow for knowledge sharing across
the different borders inside Sony Mobile, comparable to an internal OSS community, or as
a bazaar inside a cathedral (Wesselius 2008). The tool chain is even seen as the foundation
for a platform which is supposed to facilitate this sharing (Linåker et al. 2014). The Tools
department is considered more mature in terms of contributing and controlling the OSS
communities. Hence, the Tools department can be used as an example of how other parts of
the organization could open up and work with OSS communities. I5 uses this when evan-
gelizing and working on further opening up the organization at large, and describes how
“. . . they’ve been spearheading the culture of being active or in engaging something with
communities”.

Conclusion Some of the innovation outcomes attached to Sony Mobile’s openness entail
more freed-up time for developers, better quality assurance, improved product releases and
upgrades, inner source initiatives and faster time to market.

6 Results and discussion

Results from the quantitative and qualitative analysis are discussed below, of which the latter
is addressed per theme, and connected to the research questions defined in Table 1. Table 8

210 Empir Software Eng (2018) 23:186–223

Table 8 Mapping of answers to
RQs with section numbers Research questions Answers to RQs

RQ1 Section 6.1

RQ2 Section 6.2, 6.7

RQ3 Section 6.3

RQ4 Section 6.6

RQ5 Section 6.4, 6.5

presents the mapping of research questions to answers with section numbers. Furthermore,
a brief summary of answers to research questions is highlighted in Section 7.

6.1 Involvement of Sony Mobile in OSS communities

Addressing RQ1 in Table 1, the quantitative analysis showed that Sony Mobile has an active
role in numerous OSS projects. In most of the analysed projects, Sony Mobile is the initia-
tor and maintainer. An exception is Gerrit where they entered an already established project.
However, with 8.2% (see Table 6) of the commits during the investigated time-span, they
have established themselves in the community and been able to contribute the necessary
adaptions for Gerrit to function as a part of the continuous integration tool-chain used inside
Sony Mobile. This shows that Sony Mobile has an open mindset to creating their own OSS
projects, as well as getting involved and contributing back in existing ones. In the projects
which Sony Mobile has released themselves, they further show that they are open for con-
tributions by others. In the Gerrit-trigger plug-in for example, they only represent 65% of
the total commits. This also gives a clear picture of the help gained by the external work-
force as highlighted by OI. By opening up the Gerrit-trigger plugin and making it a part
of the Jenkins community, they earn benefits such as shared feature development, mainte-
nance and quality assurance. A reason why some of the other projects have fewer external
commits (e.g., PyGerrit, Build-failure-analyzer and Team-views) may be that they are not
as established and attractive for others outside Sony Mobile. A further explanation could be
that Sony Mobile has not invested the time and attention needed in order to build successful
communities around these projects.

6.2 Opening up

In relation to RQ2, the move to Android took Sony Mobile from a closed context to an
external arena for OI, recalls the description provided by Grotnes (Grøtnes 2009). With
this, the R&D was moved from a structured joint venture and an internal vertical hierar-
chy to an OI community. This novel way of using pooled R&D (West and Gallagher 2006)
can be further found on the operational level of the Tools department, which freely cooper-
ates with both known and unknown partners in the Jenkins and Gerrit communities. From
the OI perspective, these activities can be seen as a number of outside-in and inside-out
transactions.

The Tools department’s involvement in Jenkins and Gerrit and the associated contribu-
tion process are repetitive and bidirectional. Thus, this interaction can be classified as a
coupled innovation process (Gassmann and Enkel 2004). This also complies with Grotnes’

Empir Software Eng (2018) 23:186–223 211

description of how an open membership renders in a coupled process, as Jenkins and Ger-
rit communities both are free for anyone to join, in contrast to the Android platform and its
Open Handset Alliance, which is invite-only (Grøtnes 2009).

The quantitative results provide further support for the hypothesis that both established,
larger corporations and small scale software organizations are involved in the development
of Jenkins and Gerrit (see Table 6). Some of the small organizations are Garmin, Ostro-
vsky, Luksza, Codeaurora, Quelltextlich etc. This confirms findings from the existing OI
literature, e.g. (Stam 2009; Henkel 2008) that other community players also can use these
communities as external R&D resources and complimentary assets to internal R&D pro-
cesses. One possible motivation for start-ups or small scale organizations to utilize external
R&D is their lack of in-house R&D capabilities. Large scale software organizations exploit
communities to influence not only the development direction, but also to gain a good repu-
tation in the community as underlined by prior studies (Dahlander and Wallin 2006; Henkel
2008).

Gaining a good reputation requires more than just being an active committer. Stam (Stam
2009) separates between technical (e.g. commits) and social activities (e.g. organizing
conferences and actively promoting the community), where the latter is needed as comple-
mentary in order to maximize the benefits gained from the former. Sony Mobile and the
Tools department have evolved in this vein as they are continuously present at conferences,
hackathons and in online discussions. Focused on technical activities, the Tools department
have progressively moved from making small to more substantial commits. Along with
the growth of commits, they have also matured in their commit strategy. As described in
Section 5.2, the intent was originally to keep the Gerrit-trigger plug-in enclosed. This form
of selective revealing (Henkel 2006) has however been minimized due to a more open mind-
set. As a consequence of the openness more plug-ins were initiated and the development
time was reduced.

Although the adoption of Jenkins and Gerrit came along with an adaption to the Android
development, it was also driven bottom-up by the engineers since they felt the need for
easing off the complex integration tool chain and building process as mentioned by Wnuk
et al. (2012). As described in Section 5.1, this process was not free of hurdles, one being
the cultural and managerial aspect of giving away internally developed intellectual prop-
erty (Huesig and Kohn 2011). The fear to reveal intellectual property was resolved thanks to
the introduction of an OSS review board that involved both legal and technical aspects. Hav-
ing an internal champion to give leverage to the needed organizational and process changes,
convince skeptical managers (Henkel 2008), and evangelism of open source was a great
success factor, also identified in the inner source literature (Lindman et al. 2008).

6.3 Determinants of openness

When discussing if something should be made open or closed (RQ3) in Table 1, an initial
distinction within the Tools department regarding the possible four cases is made:

1. New projects created internally (e.g. Gerrit-trigger).
2. New features to non-maintained projects (e.g. Gerrit).
3. External feature requirement requests to maintained projects (e.g. Gerrit-trigger).
4. External bug reports to already maintained projects (e.g. Gerrit-trigger).

The first two may be seen as an inside-out transaction, whilst the two latter are of an
outside-in character. All have their distinct considerations, but one they have in common, as
described in Section 5.2, is whether Sony Mobile will benefit from it or not. Even though

212 Empir Software Eng (2018) 23:186–223

the transaction cost is relative low, it still needs to be prioritized against the current needs.
In the case of the two former, if a feature is too specific for Sony Mobile’s case it will not
gain any traction, and it will be a lost opportunity cost (Lerner and Tirole 2002).

The fact that Sony Mobile considers their supportive tools, e.g. Jenkins and Gerrit, as
a non-competitive advantage is interesting as they constitute an essential part of their con-
tinuous integration process, and hence the development process. As stated in regards to the
initial intent to keep Gerrit-trigger internally, they saw a greater benefit in releasing it to the
OSS community and having others adopt it than keeping it closed. The fear that the commu-
nity was moving in another direction, rendering in a costly need of patch-sets and possible
risk of an internal fork, was one reason for giving the plug-in to the community (Ven and
Mannaert 2008). Wnuk et al. (2012) reason in a similar manner in their study where they
differentiate between contributing early or late to the community in regards to specific fea-
tures. By going with the former strategy, one may risk losing the competitive edge, however
the latter creates potentially high maintenance costs.

Sony Mobile is aware that increased mobility (Chesbrough et al. 2006) poses a threat
to the Tools department as it is not possible for them to work in the OSS communities’
pace due to the limited amount of resources (Chesbrough et al. 2006). Consequently, it may
end up damaging the originally perceived competitive advantage by lagging behind. On the
other hand, openness gives Sony Mobile an opportunity to have an access to pragmatic soft-
ware development workforce and also, Sony Mobile does not have to compete against the
community. Additionally, by adopting a first mover strategy (Lieberman and Montgomery
1998) Sony Mobile can use their contributions to steer and influence the direction of the
community.

6.4 Requirements engineering

Tracing back to RQ5 in Table 1, the Tools department may be viewed as both a devel-
oper and an end-user, making up a source of requirements as can often be seen in Open
Source Software Development (OSSD) (Scacchi 2002). This applies both internally (as a
supplier and an administrator of the tools), and externally (as a member of the communities).
From an RE perspective, they are their own stakeholder, competing with other stakeholders
(members) in the Jenkins and Gerrit communities. These are important characteristics as
stakeholders who are not developers are often neither identified nor considered (Alspaugh
and Scacchi 2013). A consequence otherwise could be that certain areas are forgotten or
neglected which stands in contrast to Wnuk et al. (2012) who state that adoption of OI
makes identifying stakeholders’ needs more manageable. Further, this brings an interest-
ing contrast to traditional RE where non-technical stakeholders often need considerable
help in expressing themselves. The RE in OI applied through OSS can be seen as quicker,
light-weight and more technically oriented than traditional RE (Scacchi 2002).

In OSSD, one often needs to have a high authority level or have a group of stakehold-
ers backing up the intent. Sony Mobile has been very successful in this respect due to the
Tools department involvement inside these communities (Dahlander and Wallin 2006). Due
to their high commitment and good track record, Sony Mobile employees have reached a
high level in the governance organization. The Tools department combines these positions
in the communities together with openness in terms of helping competitors and interact-
ing in social activities (Stam 2009) (e.g. developer conferences (Knauss et al. 2014)). One
reason for this is to attract quiet stakeholders, both in terms of influencing the commu-
nity (Dahlander and Magnusson 2008), but also to get access to others’ knowledge which
could be relevant for Sony Mobile. An example of this is the introduced focus on scalability

Empir Software Eng (2018) 23:186–223 213

in both the Jenkins and Gerrit communities, where the Tools department needed to find
stakeholders with similar issues to raise awareness and create traction to the topic. Commu-
nication in this requirements value chain (Fricker 2010) between the different stakeholders,
as well as with grouping can be deemed very ad-hoc, similar to OSS RE in general (Scacchi
2002). This correlates to the power structure and how influence may move between different
stakeholders.

Social interaction between the stakeholders is stressed by Lucas et al. (2008) as an
important aspect to resolve conflicts and to coordinate dependencies in distributed software
development projects. The Tools department’s preference for live meetings over the other-
wise available electronic options such as mailing lists, issue trackers and discussion boards,
is due to time differences and lag in discussions that complicate implementation of larger
features. Open source hackathons (Scacchi 2010) is the preferable choice as it brings the
core stakeholders together which allows for informal negotiations (Fricker 2010) and a live
just-in-time requirements process (Ernst and Murphy 2012), meaning that requirements are
captured in a less formal matter and first fully elaborated during implementation. As high-
lighted in Section 5.3, feature-by-feature collaborations is also a common practice. This is
also due to the ease of communication as it may be performed between two single parties.
Hence, it may be concluded that communication in this type of distributed development is
a critical challenge, and in this case overcome by live meetings and keeping the number of
collaborators per feature low.

This use of live-meetings and social events for requirements communication and discus-
sion, highlights the importance of being socially present in a community other than just
online if a stakeholder wants to stay aware of important decisions and implementations.
Another reason for the individual stakeholder is to maintain or grow its influence and posi-
tion in the governance ladder. Hence, organizations might need to revise their community
involvement strategy and value what their intents are in contrast to if an online presence is
enough.

Another interesting reflection on the feature-by-feature collaborations is that these may
be performed with different stakeholders, i.e. relations between stakeholders fluctuate
depending on their respective interests. This objective and short-term way of looking at
collaborations imply a need of standardized practices in a community for it to be effective.

6.5 Testing

Addressing the RQ5 in Table 1, we noticed during interviews that both Jenkins and Gerrit
focus on manual test cases. At the same time, the communities started the transformation
journey towards automated testing, with the Jenkins community leading. The openness of
the Tools department led them to participate in the testing part of Jenkins community and
to use its influence to rally the traction towards it amongst the other stakeholders in the
community. This is especially important for the Jenkins community due to the rich number
of settings offered by the plug-ins.

The Gerrit community is currently following the Jenkins’ community patch, as stressed
by interviewee I2. With this move towards automated testing, quality assurance will hope-
fully become better and enable more stable releases. These are important aspects and
business drivers for the Tools department as Jenkins and Gerrit constitute the critical parts
in Sony Mobile’s continuous integration tool chain. From this perspective, a trend may be
seen in how the different communities are becoming more professionalized in the sense that
the tools make up business critical assets for many of the stakeholders in the communities,
which motivates a continuous effort in risk-reduction (Munga et al. 2009; Henkel 2006).

214 Empir Software Eng (2018) 23:186–223

The move towards automated testing also allowed for the Tools department to con-
tribute their internal test cases. This may be viewed as profitable from two angles. First,
it reduces the internal workload and second, it secures that settings and cases specific for
Sony Mobile are addressed and cared for. The test cases may to some extent be viewed as
a set of informal requirements, which secure quality aspects in regards to scalability for
example which is important for Sony Mobile (Bjarnason et al. 2015). Similar practices,
but much more formal, are commonly used in more traditional (closed) software develop-
ment environments. From a community perspective, other stakeholders benefit from this
as they get the view and settings from a large environment which enable them to grow as
well.

As can be noted in Table 5, the focus is on forward and re-engineering. An interesting
concern is when and how much one should contribute to bug fixes and what should be
left for the community, because some bug fixes are very specific to Sony Mobile and the
community will not gain anything from them. As discussed earlier, Sony Mobile has the
strategy of focusing on issues which are self-beneficiary. Therefore, to be able to keep the
influence and strategic position in the communities, the work still has to be done in this area
as well.

6.6 Innovation outcomes

In relation to RQ4 in Table 1, the focal point of the OI theory is value creation and cap-
ture (Chesbrough 2003). In the studied case, the value is created and captured through
their involvement in the Jenkins and Gerrit communities. However, measuring that value
using key performance indicators is a daunting challenge. Edison et al. (2013) confirmed
a limited number of measurement models, and that the existing ones neither model all
innovation aspects, nor say what metric can be used to measure a certain aspect. Fur-
thermore, existing literature is scarce in regards to how data should be gathered and used
for the metrics proposed in the literature. As expected, we found that Sony Mobile does
not have established mechanisms in place to measure their performance before and after
the Jenkins and Gerrit introduction. However, from the qualitative data collected from the
interviews we specifically looked for two types of innovations: product innovations in the
tools Jenkins and Gerrit, and process innovation in Sony Mobile’s product development.
Other types, specifically market and organizational innovation were considered but not
identified.

By taking an active part in the knowledge sharing and exchange process with communi-
ties (Dahlander and Magnusson 2008; Stuermer et al. 2009), the Tools department enjoys the
benefits of contributions extending the functionality of their continuous integration tools.
Another benefit is the free maintenance and bug corrections and the test cases extension
for further quality assurance. By extension, these software improvements may be labeled
as product innovations depending on what definition to be used (Edison et al. 2013). This
may also be viewed from the process innovation perspective (OECD 2005) as Sony Mobile
gets access to extra work force and a broad variety of competencies, which are internally
unavailable (Dahlander and Magnusson 2008). The interviewees admit to that even a large
scale software organization cannot keep up the technical work force beyond the organiza-
tion’s borders and there is a huge risk of losing the competitive edge by not being open. This
is an acknowledgement to Joy’s law (Lakhani and Panetta 2007) “No matter who you are,
not all smart people work for you”. Hence, it is vital to reach work force beyond organisa-
tional boundaries when innovating (Chesbrough 2003), and knowledge is still retained even
if people move around inside the community.

Empir Software Eng (2018) 23:186–223 215

Furthermore, these software improvements and product innovations affect the perfor-
mance and quality of the continuous integration process used by Sony Mobile’s product
development. Continuous integration as an agile practice (Beck et al. 2001) enables
early identification of integration issues as well as increases the developers’ productivity
and release frequency (Ståhl and Bosch 2014). With this reasoning, as reported else-
where (Linåker et al. 2015), we deem that the product innovations captured in Jenkins and
Gerrit transfer on as process innovation to Sony Mobile’s product development. The main
reason behind this connection is the possibility to tailor and be flexible that OSS develop-
ment permits. By adapting the tool chain to the specific needs of the product development
the mentioned benefits (e.g. increased build quality and performance) are achieved and
waste is reduced in the form of freed up hours, which product developers and testers may
spend on alternative tasks, as confirmed by Möller and Wahlqvist (2012). Reduced time to
market and increased quality of products are among the visible business outcomes. How-
ever, these outcomes cannot be confirmed due to a lack of objective metrics and came up as
a result of interviews.

Another process innovation, which could also be classified as an organizational innova-
tion outcome (OECD 2005) is the inner source initiative. This initiative not only helps Sony
Mobile to spread the tool chain, but also to build a platform (i.e. software forge (Linåker
et al. 2014)) for sharing built on the tool within the other business units of Sony Mobile.
This may be seen as an intra-organizational level OI as described by Morgan et al. (2011).
By integrating the knowledge from other domains, as well as opening up for development
and commits, this allows a broader adoption and a higher innovation outcome for Sony
Mobile and neighboring business units, as well as for communities. Organizational change
in regards to processes and structures and related governance issues, would however be
one of many challenges (Morgan et al. 2011). Since Sony Mobile is a multinational cor-
poration with a wide spread of internal culture, organizational changes are context and
challenging.

6.7 Openness of tools software vs. proprietary software

A specific aspect of RQ2 in Table 1 is that Sony Mobile only opens up its non-competitive
tools that are not the part of the revenue stream. I3 stated that “. . . Sony Mobile has learnt
that even collaborating with its worst competitors does not take away their competitive
advantage, rather they bring help for Sony Mobile and becomes better and better”. This
raises a discussion point of why Sony Mobile limits its openness to noncompetitive tools,
despite knowing that opening up creates a win-win situation for all stakeholders involved.
Furthermore, it remains an open question why the research activity related to OI in SE is
low, as confirmed by the results of a mapping study performed on the area (Munir et al.
2016).

In the light of the mapping study, it would be fair to state that the SE literature lacks
studies on OI (Munir et al. 2016). Organizations have a tendency to open proprietary prod-
ucts when they lose their value, and spinning off is a one way of re-capturing the value by
creating a community around it (van der Linden et al. 2009). This implication paves the
way for future studies using proprietary solutions as units of analysis. Moreover, it will lead
to contextualization of OI practices, which may or may not work under different circum-
stances. Therefore, the findings could also be used to address the lack of contextualization
weakness of OI mentioned by Mowery (2009). It is also important to note that this study
focuses on OI via OSS participation, which is significantly different from the situation

216 Empir Software Eng (2018) 23:186–223

where OI is based on open source code for the product itself (like Android or Linux). In
future work we plan to explore that situation to see if there are other patterns in these OI
processes.

7 Conclusions

This study focuses on OI in SE at two levels: 1) innovation incorporated into Jenkins and
Gerrit as software products, and 2) how these software improvements affect process and
product innovation of Sony Mobile. By keeping the development of the tools open, the in-
and out-flows of knowledge between the Tools department and the OSS communities bring
improvement to Sony Mobile and innovate the way how products are developed. This type
of openness should be separated from the cases where OSS is used as a basis for the organi-
zation’s product or service offering, e.g. as a platform, component or full product (Ven and
Mannaert 2008). To the best of our knowledge, no study has yet focused on the former version,
which highlights the contribution of this study and the need for future research of the area.

Our findings suggest that both incumbents and many small scale organizations are
involved in the development of Jenkins and Gerrit (RQ1). Sony Mobile may be considered
as one of the top committers in the development of the two tools. The main trigger behind
adopting OI turned out to be a paradigm shift, moving to an open source product platform
(RQ2). Sony Mobile’s opening up process is limited to the tools that are non-competitive
and non-pecuniary. Furthermore, Sony Mobile makes projects or features open source,
which are neither seen as a main source of revenue nor as a competitive advantage (RQ3).

In relation to the main innovation outcomes from OI participation (RQ4), we discovered
that Sony Mobile lacks quantitative indicators to measure its innovative capacity before and
after the introduction of OSS at the Tools department. However, the qualitative findings
suggest that it has made the development environment more stable and flexible. One key
reason, other than commits from communities, regards the possibility of tailoring the tools
to internal needs. Still, it is left for future research efforts to further investigate in how OI
adoption affects product quality and time to market.

When looking at the impact of OI adoption on requirements and testing processes (RQ5),
Sony Mobile uses dedicated internal resources to gain influence, which together with an
openness toward direct competitors and communities is used to draw attention to issues rel-
evant for Sony Mobile, e.g. scalability of tools to large production environments. Social
presence outside of online channels is highly valued in order to manage communication
challenges related to distributed development. Another way of tackling such challenges
regards co-creation on a feature-by-feature basis between two single parties. Choice of part-
ner fluctuates and depends on the feature in question and individual needs of the respective
parties. Further, prioritization is made in regards to how an issue or feature may be seen
as beneficial, in contrast to the pressing needs of the moment. Regarding testing, much
focus is directed towards automating test activities in order to raise quality standards and
professionalize communities to organizational standards.

The scope of the study findings is limited to software organizations with similar con-
text, domain and size as Sony Mobile. It is also worth mentioning that the involvement of
stakeholders in the Jenkins and Gerrit OSS communities suggests that the continuous inte-
gration processes of these OSS projects are comparable to the corresponding process at Sony
Mobile. Thus, we believe that findings of this study may also be applicable to incumbents
as well as small software organizations identified in this study.

Empir Software Eng (2018) 23:186–223 217

Future work includes investigation of other contexts and cases where companies use
OSS aiming to leverage OI, and to cross-analyze the presented findings in this paper with
findings from future case studies.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Supplementary interview questionnaire

Demographics

– Where do you work?
– What is your job title?
– Which department do you work for in the organization?
– How many years of experience do you have?
– Could you, in short, describe your daily work and responsibilities?

General involvement

– Are you, or have been, in any way actively involved in any open source community in
your daily work? (Gerrit, Jenkins, any other?)

– Could you describe your involvement?
– What is/was the reasons for your involvement in these open source communities?

(Volunteered or tasked by management?)
– How much time are you allowed to spend on community interaction?
– How is your involvement with these community in your spare time, outside of your

daily work?
– What development process/methodology do you use and how does it interact with the

community? (process of working)

Requirements

– What are the sources (internal and external) behind the requirements/features? (by tool
developers, tool users, pm’s, others)

– How do you manage and implement the requirements/features?
– How are the requirements approved and prioritized? (By developers alone, pm’s,

community)
– How is your involvement perceived from the community? Positive or negative? How

come? (competitors)
– Are there any internal (organizational) obstacles in contributing to the community?

(Time, IP, management.)
– Are there any external obstacles related to the involvement in the community related to

the addition of new requirements/features?
– How did you overcome these?

Testing

– How does your internal process of reporting bugs differ from the community’s? (tools
for reporting bugs in community)

http://creativecommons.org/licenses/by/4.0/

218 Empir Software Eng (2018) 23:186–223

– How do you manage traceability between tests and requirements?
– Who is responsible for fixing those bugs? (Process behind, consequence on quality and

resolution time)
– How does your internal process for correcting bugs or issues, differ from the

community’s?
– Are there any obstacles related to the involvement in the community related to the

testing process? How did you overcome these? (Communication, synchronized level of
quality/tests between contributors)

Business/strategy

– What motivates your organization to contribute to open source project(s)? (Beyond
lower cost, improved quality?)

– What is the strategy behind these commits?
– Did you consider alternate strategies such as buying proprietary tools (COTS) or hiring

people/outsourcing for the development these tools? Why?
– How are these strategies supported by your internal procedures (IP department)?
– Is it a local strategy or global strategy? Who are the sponsors?
– How has the commits effected the relation with other (corporate) stakeholders in

the communities? (Free-riding, governance structure, constraints, Sony Authority,
collaboration, balance between community and Sony’s needs, community buildup)

– How has the commits effected the relation with other competitors? (Free-riding,
governance structure, collaboration)

Perception on innovation and outcome

– How has the usage/development of these tools effected the Sony Mobile’s product
development? (Developers, testers)

– How has the usage of these tools effected the products?
– Is innovativeness of a requirement/issue/bug considered, and if so, what effect does it

have on the requirements and contribution process?
– How has the involvement in the communities implicated on innovation in your: 1)

Processes? 2) Products 3) Organization 4) Business strategies
– How do you measure the impact from the development/usage of these tools on Sony

Mobile’s product development? Metrics etc.
– Is the knowledge gained from the OSS tool development transferred and exploi-

ted outside of the tools development? (Absorptive capacity – Firm level, individual
level)

Ending remarks

References

Alspaugh T, Scacchi W (2013) Ongoing software development without classical requirements. In: 2013 21st
IEEE International Requirements Engineering Conference (RE), pp 165–174

Assink M (2006) Inhibitors of disruptive innovation capability: A conceptual model. Eur J Innov Manag
9(2):215–233

Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham W, Fowler M, Grenning J, Highsmith
J, Hunt A, Jeffries R et al (2001) Manifesto for agile software development. http://agilemanifesto.org/
principles.html

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html

Empir Software Eng (2018) 23:186–223 219

Bird C, Nagappan N (2012) Who? where? what?: Examining distributed development in two large open
source projects. IEEE Press, Piscataway, pp 237–246

Bjarnason E, Unterkalmsteiner M, Engström E, Borg M (2015) An industrial case study on test cases as
requirements. In: Proceedings of the Agile Processes in Software Engineering and Extreme Program-
ming: 16th International Conference, XP 2015, Helsinki, Finland, May 25-29, 2015, pp 27–39, Cham.
Springer International Publishing

Chesbrough H, Vanhaverbeke W, West J (2006) Open innovation: Researching a new paradigm, Oxford
University Press

Chesbrough H, Vanhaverbeke W, West J (eds.) (2014) New Frontiers in Open Innovation, Oxford University
Press

Chesbrough HW (2003) Open innovation: The new imperative for creating and profiting from technology.
Harvard Business School Press, Boston

Chesbrough HW, Appleyard MM (2007) Open innovation and strategy. Calif Manag Rev 50(1):57–76
Cruzes DS, Dybå T (2011) Research synthesis in software engineering: A tertiary study. Inf Softw Technol

53(5):440–455
Cruzes DS, Dybå T, Runeson P, Höst M (2015) Case studies synthesis: A thematic, cross-case, and narrative

synthesis worked example. Empir Softw Eng 20(6):1634–1665
Dahlander L, Magnusson M (2008) How do firms make use of open source communities? Long Range Plan

41(6):629–649
Dahlander L, Magnusson MG (2005) Relationships between open source software companies and commu-

nities: Observations from nordic firms. Res Policy 34(4):481–493
Dahlander L, Wallin M (2006) A man on the inside Unlocking communities as complementary assets. Res

Policy 35(8):1243–1259
Daniel S, Maruping L, Cataldo M, Herbsleb J (2011) When cultures clash: Participation in open source

communities and its implications for organizational commitment. In: Proceedings of the International
Conference on Information Systems (ICIS), Shanghai

Edison H, Ali NB, Torkar R (2013) Towards innovation measurement in the software industry. J Syst Softw
86(5):1390–1407

Enkel E, Gassmann O, Chesbrough H (2009) Open R&d and open innovation: Exploring the phenomenon.
R&D Manag 39(4):311–316

Ernst N, Murphy G (2012) Case studies in just-in-time requirements analysis. In: 2012 2nd IEEE Interna-
tional Workshop on Empirical Requirements Engineering (EmpiRE), pp 25–32

Fricker S (2010) Requirements value chains: Stakeholder management and requirements engineering
in software ecosystems. In: Requirements Engineering: Foundation for Software Quality. Springer,
pp 60–66

Gassmann O, Enkel E (2004) Towards a theory of open innovation: Three core process archetypes. In:
Proceedings of the R&D Management Conference, Lisbon, pp 1–18

Gonzalez-Barahona JM, Izquierdo-Cortazar D, Maffulli S, Robles G (2013) Understanding how companies
interact with free software communities. IEEE softw 30(5):38–45

Grøtnes E (2009) Standardization as open innovation: Two cases from the mobile industry. Information
Technology & People 22(4):367–381

Hattori L, Lanza M (2008) On the nature of commits. In: 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering - Workshops, pp 63–71

Henkel J (2006) Selective revealing in open innovation processes: The case of embedded linux. Res Policy
35(7):953–969

Henkel J (2008) Champions of revealing-the role of open source developers in commercial firms. Ind Corp
Chang 18(3):435–471

Henkel J, Schöberl S, Alexy O (2014) The emergence of openness: How and why firms adopt selective
revealing in open innovation. Res Policy 43(5):879–890. Open Innovation: New Insights and Evidence

Google Project Hosting (2014) Gerrit code review source code repository. https://code.google.com/p/gerrit/
wiki/Source?tm=4

Huesig S, Kohn S (2011) Open cai 2.0 - computer aided innovation in the era of open innovation and web
2.0. Comput Ind 62(4):407–13

Jansen S, Brinkkemper S, Souer J, Luinenburg L (2012) Shades of gray Opening up a software producing
organization with the open software enterprise model. J Syst Softw 85(7):1495–1510

Jensen C, Scacchi W (2007) Role migration and advancement processes in ossd projects: A comparative case
study. In: 29th International Conference on Software Engineering (ICSE’07), pp 364–374

Jensen C, Scacchi W (2010) Governance in open source software development projects: A comparative
multi-level analysis. In: IFIP International Conference on Open Source Systems. Springer, pp 130–142

https://code.google.com/p/gerrit/wiki/Source?tm=4
https://code.google.com/p/gerrit/wiki/Source?tm=4

220 Empir Software Eng (2018) 23:186–223

Knauss E, Damian D, Knauss A, Borici A (2014) Openness and requirements: Opportunities and tradeoffs
in software ecosystems. In: 2014 IEEE 22nd International Requirements Engineering Conference (RE),
pp 213–222

Lakhani K, Panetta JA (2007) The principles of distributed innovation SSRN Scholarly Paper ID 1021034.
Social Science Research Network, Rochester

Lakhani KR, von Hippel E (2003) How open source software works: ”free” user-to-user assistance. Res
Policy 32(6):923–943

Lee GK, Cole RE (2003) From a firm-based to a community-based model of knowledge creation: The case
of the linux kernel development. Organ Sci 14(6):633–649

Lee S-YT, Kim H-W, Gupta S (2009) Measuring open source software success. Omega 37(2):426–438
Lerner J, Tirole J (2002) Some simple economics of open source. The Journal of Industrial Economics

50(2):197–234
Lieberman MB, Montgomery DB (1998) First-mover (Dis) advantages: Retrospective and link with the

resource-based view, Graduate School of Business Stanford University
Linåker J, Krantz M, Höst M (2014) On infrastructure for facilitation of inner source in small development

teams. In: Product-Focused Software Process Improvement. Springer, pp 149–163
Linåker J, Munir H, Runeson P, Regnell B, Schrewelius C (2015) A Survey on the Perception of Innovation

in a Large Product-Focused Software Organization, Springer international publishing cham
Linåker J, Rempel P, Regnell B, Mäder P (2016) How firms adapt and interact in open source ecosystems:

Analyzing stakeholder influence and collaboration patterns. In: Requirements Engineering: Foundation
for Software Quality. Springer, pp 63–81

van der Linden F, Lundell B, Marttiin P (2009) Commodification of industrial software: A case for open
source. IEEE Softw 26(4):77–83

Lindman J, Rossi M, Marttiin P (2008) Applying open source development practices inside a company. In:
Open Source Development, Communities and Quality. Springer, pp 381–387

MetricsGrimoire (2014) CVSAnalY. http://metricsgrimoire.github.io/CVSAnalY/
Mockus A, Herbsleb JD (2002) Why not improve coordination in distributed software development by steal-

ing good ideas from open source. In: Meeting Challenges, and Surviving Success: The 2nd Workshop
on Open Source Software Engineering, pp 19–25

Möller C, Wahlqvist M (2012) Critical Success Factors for Innovative Performance of Individuals. Manage-
ment 39(5):1155–1161

Morgan L, Feller J, Finnegan P (2011) Exploring inner source as a form of intra-organisational open
innovation. In: 19th European Conference on Information Systems (ECIS), Helsinki, Finland

Morgan L, Finnegan P (2010) Open innovation in secondary software firms: An exploration of managers’
perceptions of open source software. SIGMIS Database 41(1):76–95

Mowery DC (2009) Plus ca change: Industrial R&D in the third industrial revolution. Ind Corp Chang
18(1):1–50

Munga N, Fogwill T, Williams Q (2009) The adoption of open source software in business models: A red hat
and ibm case study. In: Proceedings of the 2009 Annual Research Conference of the South African Institute
of Computer Scientists and Information Technologists, SAICSIT’09. ACM, New York, pp 112–121

Munir H, Moayyed M, Petersen K (2014) Considering rigor and relevance when evaluating test driven
development: A systematic review. Inf Softw Technol 56(4):375–394

Munir H, Wnuk K, Runeson P (2016) Open innovation in software engineering: A systematic mapping study.
Empir Softw Eng 21(2):684–723

OECD (2005) Oslo Manual – Guidelines for collecting and interpreting innovation data, 3rd edn. OECD And
Eurostat

Ohloh.net (2014) The jenkins gerrit trigger plugin open source project. https://www.ohloh.net/p/
gerrit-trigger-plugin

Lucas PD, Damian D, Storey M-A (2008) Cooperation and coordination concerns in a distributed software
development project. In: Proceedings of the 2008 international workshop on Cooperative and human
aspects of software engineering. ACM, pp 77–80

Pohl K, Böckle G, van der Linden FJ (2005) Software product line Engineering: Foundations, principles and
techniques. Springer-verlag, New York

Rolandsson B, Bergquist M, Ljungberg J (2011) Open source in the firm Opening up professional practices
of software development. Res Policy 40(4):576–587

Runeson P, Höst M, Rainer A, Regnell B (2012) Case study research in software engineering - guidelines
and examples, Wiley

Scacchi W (2002) Understanding the requirements for developing open source software systems. In: IEE
Proceedings - Software, vol 149. IET, pp 24–39

http://metricsgrimoire.github.io/CVSAnalY/
https://www.ohloh.net/p/gerrit-trigger-plugin
https://www.ohloh.net/p/gerrit-trigger-plugin

Empir Software Eng (2018) 23:186–223 221

Scacchi W (2010) Collaboration practices and affordances in free/open source software development. In:
Collaborative software engineering. Springer, pp 307–327

Ståhl D, Bosch J (2014) Modeling continuous integration practice differences in industry software develop-
ment. J Syst Softw 87:48–59

Stam W (2009) When does community participation enhance the performance of open source software
companies? Res Policy 38(8):1288–1299

Stol K-J, Avgeriou P, Babar MA, Lucas Y, Fitzgerald B (2014) Key factors for adopting inner source. ACM
Trans Softw Eng Methodol (TOSEM) 23(2):18

Stuermer M, Spaeth S, Von Krogh G (2009) Extending private-collective innovation: A case study. R&D
Manag 39(2):170–191

Ven K, Mannaert H (2008) Challenges and strategies in the use of open source software by independent
software vendors. Inf Softw Technol 50(9):991–1002

Wesselius J (2008) The bazaar inside the cathedral: Business models for internal markets. IEEE Softw
25(3):60–66

West J (2003) How open is open enough?: Melding proprietary and open source platform strategies. Res
Policy 32(7):1259–1285

West J, Bogers M (2014) Leveraging external sources of innovation: A review of research on open innovation.
J Prod Innov Manag 31(4):814–831

West J, Gallagher S (2006) Challenges of open innovation: The paradox of firm investment in open-source
software. R&D Manag 36(3):319–331

West J, Wood D (2008) Creating and evolving an open innovation ecosystem: Lessons from symbian ltd.
Available at SSRN 1532926

West J, Wood D (2013) Evolving an open ecosystem: the rise and fall of the symbian platform. Adv Strateg
Manag 30:27–67

Wnuk K, Pfahl D, Callele D, Karlsson E-A (2012) How can open source software development help require-
ments management gain the potential of open innovation: An exploratory study. In: Proceedings of the
ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM’12.
ACM, New York, pp 271–280

Hussan Munir is a PHD student at Lund University. He received his Master of Science in Software Engi-
neering from Blekinge Institute of Technology. Thereafter, he worked as a software engineer at Ericsson
AB with the main focus on automated testing. His current research focus encompasses Open Innovation for
Software Engineering in collaboration with Sony Mobile Lund.

222 Empir Software Eng (2018) 23:186–223

Johan Linåker is a PhD student at Lund University where he also received his MSc. in Industrial Engi-
neering and Management. Before entering his PhD studies, Johan worked two years as a software developer
at IKEA IT. His research interests include requirements engineering and software product management for
firms involved in open source software communities.

Krzysztof Wnuk is an assistant professor at the Software Engineering Research Group (SERL), Blekinge
Institute of Technology, Sweden. His research interests include market-driven software development, require-
ments engineering, software product management, decision making in requirements engineering, large-scale
software, system and requirements engineering and management and empirical research methods. He is inter-
ested in software business, open innovation, and open source software. He works as an expert consultant in
software engineering for the Swedish software industry.

Empir Software Eng (2018) 23:186–223 223

Dr. Per Runeson is a professor of software engineering at Lund University, Sweden, head of the Department
of Computer Science, and the leader of its Software Engineering Research Group (SERG) and the Industrial
Excellence Center on Embedded Applications Software Engineering (EASE). His research interests include
empirical research on software development and management methods, in particular for software testing
and open innovation, and cross disciplinary topics on the digital society. He has contributed significantly to
software engineering research methodology by the books on case studies and experimentation in software
engineering. He serves on the editorial boards of Empirical Software Engineering and Software Testing,
Verification and Reliability, and is a member of several program committees.

Björn Regnell is professor in software engineering in the Faculty of Engineering, LTH, Lund Univer-
sity, Sweden. He has contributed to several software engineering research areas including requirements
engineering, software quality, software product management and empirical research methods in software
engineering. He was ranked among the top 13 scholars in the world in experimental software engineering
in the IEEE Transactions on Software Engineering, 31(9):733-753 (2005). He is/was a reviewer for sev-
eral high-impact journals and peer-reviewed conference program committees and he is currently a member
of the editorial board of the Requirements Engineering journal (Springer) and the steering committee chair
of www.refsq.org. He has published more than 80 peer reviewed articles in journals and conferences. He
has edited several special issues in journals and proceedings and he is co-author of several books including
the widely cited Introduction to Experimentation in Software Engineering (Springer, 2000) and Case Study
Research in Software Engineering-Guidelines and Examples (Wiley, 2012). He worked part time as senior
researcher with Sony Ericsson, CTO Office, Lund, Sweden 2005-2007, and he works as expert consultant in
software engineering for the Swedish software industry.

	Open innovation using open source tools: a case study at Sony Mobile
	Abstract
	Introduction
	Related work
	Summary

	Case study design
	Research questions
	Case selection and units of analysis
	Case study procedure
	Methods for quantitative analysis
	Preliminary investigation of jenkins and gerrit commits
	Classification of commit messages

	Methods for qualitative analysis
	Interviewee selection

	Validity threats
	Internal validity
	Confounding factors
	Subjectivity
	Triangulation

	External validity
	Construct validity
	Selection of interviewees
	Reactive bias
	Design of the interviews

	Reliability
	Member checking
	Audit trail

	Quantitative analysis
	Gerrit
	PyGerrit
	Conclusion

	Gerrit-event
	Conclusion

	Jenkins
	Gerrit-trigger
	Conclusion

	Build-failure-analyzer
	Conclusion

	External-resource-viewer
	Conclusion

	Team-views
	Conclusion

	Qualitative analysis
	Opening up
	Conclusion

	Determinants of openness
	Conclusion

	Requirements engineering
	Conclusion

	Testing
	Conclusion

	Innovation outcomes
	Conclusion

	Results and discussion
	Involvement of Sony Mobile in OSS communities
	Opening up
	Determinants of openness
	Requirements engineering
	Testing
	Innovation outcomes
	Openness of tools software vs. proprietary software

	Conclusions
	Open Access
	Appendix: A: Supplementary interview questionnaire
	References

