Lunds Tekniska Högskola

Denna sida på svenska This page in English

CS MSc Day March 17 Schedule!


Four MSc theses to be presented on March 17, 2017.

March 17 is the day for coordinated master thesis presentations in Computer Science at Lund University, Faculty of Engineering. Four MSc theses will be presented.

The presentations will take place in the E-building, room E:2116. A preliminary schedule follows.

Note to potential opponents: Register as opponent to the presentation of your choice by sending an email to the examiner for that presentation ( Do not forget to specify the presentation you register for! Note that the number of opponents may be limited (often to two), so you might be forced to choose another presentation if you register too late. Registrations are individual, just as the oppositions are! Further instructions are found on this page.




PRESENTERSJonathan Lundholm, Paul Steneram Bibby
TITLEFalse Alarm Filtering with an External Classification Service
EXAMINERMathias Haage
SUPERVISORSJörn Janneck (LTH), Lars Larsson (Axis)
ABSTRACTWithin surveillance, a camera's inability to distinguish between human and non-human objects often gives rise to false alarms. False alarms are alarms triggered by non-human activity, such as a tree blowing in the wind, and are usually not of interest for the operators. This thesis shows that the use of an external classification service, which can classifying objects in images, can greatly reduce the number of false alarms. A classification service was developed as a distributed system, capable of classifying images on request. The service is deployed as a cluster on a number of AWS EC2 instances. The thesis has also looked at ways to reduce the network traffic, and showed it is possible to reduce the data needed to classify images, without losing precision.


PRESENTERAlexander Åhlander
TITLEMaintaining Source Origin in a Modelica Compiler
SUPERVISORSNiklas Fors (LTH), Jon Sten (Modelon AB), Jonathan Kämpe (Modelon AB)

Modelica is a modelling language used to describe a physical system and can be used for simulation of the system. A Modelica compiler takes a Modelica model and transforms it into a equation system in order to simulate it. During this transformation the information about the source of the equations are lost. This information could be useful to have when, e.g., trying to locate an error.

In this thesis we solve this problem for the Modelica compiler by propagating information about the source through the compiler. This makes it possible for us to show the origin of an error. We have also made sure that the connections between the transformed model and the original model can be viewed even when no error has occurred in a html document.

The increase in memory usage in the current implementation is well within acceptable levels, with the highest memory increase measured being 0.18%.


PRESENTERMahmoud Nasser
TITLEMeasuring Semantic Distances between Software Artifacts to Consolidate Issues from the Development and the Field
SUPERVISORSElizabeth Bjarnason (LTH), Markus Borg (SICS)
ABSTRACTIdentifying and tracking different structural representations of functionally overlapping issues is important in order to keep a well-maintained issue management corpus, establishing efficient response to develop and deploy repairs to the software defects.

While this normally is achieved with time-costly reviewing processes by special teams, this project intends allowing review-teams making better and faster qualitative assessments by providing a quantitative metric by implementing a tool using a search engine as information retrieval mechanism.

The project is a case-study at an unnamed company. We use informal interviews to define the semantic distance, but to measure and verify the accuracy of it we use qualitative and quantitative methods. As a result of the limited scope of this thesis, the tool has limited use in a live development environment. We conclude that this approach is potent and could bring fruitful findings in the issue management and issue maintenance field if developed further upon.


PRESENTERIben Lennerstad
TITLECrowdsourcing Component Selection by Text Mining Stack Overflow Discussions - Experiences from Active Learning and Self-training
SUPERVISORSElizabeth Bjarnason (LTH), Markus Borg (SICS), Rasmus Ros (LTH)
ABSTRACTComponent-based system engineering facilitates high-quality system development, however, the outcome depends on well-informed component choices. The objective of the thesis is to crowdsource Stack Overflow for component experiences, intended for component decision support.

Questions and answers on the domain were classified using an SVM, and two main annotators carried out Active Learning-iterations according to a set of criteria. Finally, we investigated the potential of self-training, especially in combination with Active Learning. We evaluated annotation agreement using pair-annotation and calculated Krippendorff’s $\alpha$, which proved poor. Two common disagreement cases could be inferred, and we encourage recurrent pair-annotation to confirm consensus. Although Active Learning was evaluated on the annotators’ training sets separately, the learning curve declines slightly, and we speculate that it risk introducing randomness in the training set by borderline cases. Self-training, however, improved accuracy if used with carefully tuned parameters, and appears especially promising in combination with Active Learning.